| 1 | // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/compiler/backend/flow_graph.h" |
| 6 | |
| 7 | #include "vm/bit_vector.h" |
| 8 | #include "vm/compiler/backend/flow_graph_compiler.h" |
| 9 | #include "vm/compiler/backend/il.h" |
| 10 | #include "vm/compiler/backend/il_printer.h" |
| 11 | #include "vm/compiler/backend/loops.h" |
| 12 | #include "vm/compiler/backend/range_analysis.h" |
| 13 | #include "vm/compiler/cha.h" |
| 14 | #include "vm/compiler/compiler_state.h" |
| 15 | #include "vm/compiler/compiler_timings.h" |
| 16 | #include "vm/compiler/frontend/flow_graph_builder.h" |
| 17 | #include "vm/compiler/frontend/kernel_translation_helper.h" |
| 18 | #include "vm/growable_array.h" |
| 19 | #include "vm/object_store.h" |
| 20 | #include "vm/resolver.h" |
| 21 | |
| 22 | namespace dart { |
| 23 | |
| 24 | #if defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_IA32) |
| 25 | // Smi->Int32 widening pass is disabled due to dartbug.com/32619. |
| 26 | DEFINE_FLAG(bool, use_smi_widening, false, "Enable Smi->Int32 widening pass." ); |
| 27 | DEFINE_FLAG(bool, trace_smi_widening, false, "Trace Smi->Int32 widening pass." ); |
| 28 | #endif |
| 29 | DEFINE_FLAG(bool, prune_dead_locals, true, "optimize dead locals away" ); |
| 30 | |
| 31 | // Quick access to the current zone. |
| 32 | #define Z (zone()) |
| 33 | |
| 34 | FlowGraph::FlowGraph(const ParsedFunction& parsed_function, |
| 35 | GraphEntryInstr* graph_entry, |
| 36 | intptr_t max_block_id, |
| 37 | PrologueInfo prologue_info) |
| 38 | : thread_(Thread::Current()), |
| 39 | parent_(), |
| 40 | current_ssa_temp_index_(0), |
| 41 | max_block_id_(max_block_id), |
| 42 | parsed_function_(parsed_function), |
| 43 | num_direct_parameters_(parsed_function.function().MakesCopyOfParameters() |
| 44 | ? 0 |
| 45 | : parsed_function.function().NumParameters()), |
| 46 | direct_parameters_size_(0), |
| 47 | graph_entry_(graph_entry), |
| 48 | preorder_(), |
| 49 | postorder_(), |
| 50 | reverse_postorder_(), |
| 51 | optimized_block_order_(), |
| 52 | constant_null_(nullptr), |
| 53 | constant_dead_(nullptr), |
| 54 | licm_allowed_(true), |
| 55 | prologue_info_(prologue_info), |
| 56 | loop_hierarchy_(nullptr), |
| 57 | loop_invariant_loads_(nullptr), |
| 58 | captured_parameters_(new(zone()) BitVector(zone(), variable_count())), |
| 59 | inlining_id_(-1), |
| 60 | should_print_(false) { |
| 61 | should_print_ = FlowGraphPrinter::ShouldPrint(function: parsed_function.function(), |
| 62 | compiler_pass_filter: &compiler_pass_filters_); |
| 63 | |
| 64 | direct_parameters_size_ = ParameterOffsetAt( |
| 65 | function: function(), index: num_direct_parameters_, /*last_slot*/ false); |
| 66 | DiscoverBlocks(); |
| 67 | } |
| 68 | |
| 69 | void FlowGraph::EnsureSSATempIndex(Definition* defn, Definition* replacement) { |
| 70 | if ((replacement->ssa_temp_index() == -1) && (defn->ssa_temp_index() != -1)) { |
| 71 | AllocateSSAIndex(def: replacement); |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | intptr_t FlowGraph::ParameterOffsetAt(const Function& function, |
| 76 | intptr_t index, |
| 77 | bool last_slot /*=true*/) { |
| 78 | ASSERT(index <= function.NumParameters()); |
| 79 | intptr_t param_offset = 0; |
| 80 | for (intptr_t i = 0; i < index; i++) { |
| 81 | if (function.is_unboxed_integer_parameter_at(index: i)) { |
| 82 | param_offset += compiler::target::kIntSpillFactor; |
| 83 | } else if (function.is_unboxed_double_parameter_at(index: i)) { |
| 84 | param_offset += compiler::target::kDoubleSpillFactor; |
| 85 | } else { |
| 86 | ASSERT(!function.is_unboxed_parameter_at(i)); |
| 87 | // Unboxed parameters always occupy one word |
| 88 | param_offset++; |
| 89 | } |
| 90 | } |
| 91 | if (last_slot) { |
| 92 | ASSERT(index < function.NumParameters()); |
| 93 | if (function.is_unboxed_double_parameter_at(index) && |
| 94 | compiler::target::kDoubleSpillFactor > 1) { |
| 95 | ASSERT(compiler::target::kDoubleSpillFactor == 2); |
| 96 | param_offset++; |
| 97 | } else if (function.is_unboxed_integer_parameter_at(index) && |
| 98 | compiler::target::kIntSpillFactor > 1) { |
| 99 | ASSERT(compiler::target::kIntSpillFactor == 2); |
| 100 | param_offset++; |
| 101 | } |
| 102 | } |
| 103 | return param_offset; |
| 104 | } |
| 105 | |
| 106 | Representation FlowGraph::ParameterRepresentationAt(const Function& function, |
| 107 | intptr_t index) { |
| 108 | if (function.IsNull()) { |
| 109 | return kTagged; |
| 110 | } |
| 111 | ASSERT(index < function.NumParameters()); |
| 112 | if (function.is_unboxed_integer_parameter_at(index)) { |
| 113 | return kUnboxedInt64; |
| 114 | } else if (function.is_unboxed_double_parameter_at(index)) { |
| 115 | return kUnboxedDouble; |
| 116 | } else { |
| 117 | ASSERT(!function.is_unboxed_parameter_at(index)); |
| 118 | return kTagged; |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | Representation FlowGraph::ReturnRepresentationOf(const Function& function) { |
| 123 | if (function.IsNull()) { |
| 124 | return kTagged; |
| 125 | } |
| 126 | if (function.has_unboxed_integer_return()) { |
| 127 | return kUnboxedInt64; |
| 128 | } else if (function.has_unboxed_double_return()) { |
| 129 | return kUnboxedDouble; |
| 130 | } else if (function.has_unboxed_record_return()) { |
| 131 | return kPairOfTagged; |
| 132 | } else { |
| 133 | ASSERT(!function.has_unboxed_return()); |
| 134 | return kTagged; |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | void FlowGraph::ReplaceCurrentInstruction(ForwardInstructionIterator* iterator, |
| 139 | Instruction* current, |
| 140 | Instruction* replacement) { |
| 141 | Definition* current_defn = current->AsDefinition(); |
| 142 | if ((replacement != nullptr) && (current_defn != nullptr)) { |
| 143 | Definition* replacement_defn = replacement->AsDefinition(); |
| 144 | ASSERT(replacement_defn != nullptr); |
| 145 | current_defn->ReplaceUsesWith(other: replacement_defn); |
| 146 | EnsureSSATempIndex(defn: current_defn, replacement: replacement_defn); |
| 147 | |
| 148 | if (FLAG_trace_optimization) { |
| 149 | THR_Print("Replacing v%" Pd " with v%" Pd "\n" , |
| 150 | current_defn->ssa_temp_index(), |
| 151 | replacement_defn->ssa_temp_index()); |
| 152 | } |
| 153 | } else if (FLAG_trace_optimization) { |
| 154 | if (current_defn == nullptr) { |
| 155 | THR_Print("Removing %s\n" , current->DebugName()); |
| 156 | } else { |
| 157 | ASSERT(!current_defn->HasUses()); |
| 158 | THR_Print("Removing v%" Pd ".\n" , current_defn->ssa_temp_index()); |
| 159 | } |
| 160 | } |
| 161 | if (current->ArgumentCount() != 0) { |
| 162 | ASSERT(!current->HasMoveArguments()); |
| 163 | } |
| 164 | iterator->RemoveCurrentFromGraph(); |
| 165 | } |
| 166 | |
| 167 | bool FlowGraph::ShouldReorderBlocks(const Function& function, |
| 168 | bool is_optimized) { |
| 169 | return is_optimized && FLAG_reorder_basic_blocks && |
| 170 | !function.is_intrinsic() && !function.IsFfiTrampoline(); |
| 171 | } |
| 172 | |
| 173 | GrowableArray<BlockEntryInstr*>* FlowGraph::CodegenBlockOrder( |
| 174 | bool is_optimized) { |
| 175 | return ShouldReorderBlocks(function(), is_optimized) ? &optimized_block_order_ |
| 176 | : &reverse_postorder_; |
| 177 | } |
| 178 | |
| 179 | ConstantInstr* FlowGraph::GetExistingConstant( |
| 180 | const Object& object, |
| 181 | Representation representation) const { |
| 182 | return constant_instr_pool_.LookupValue( |
| 183 | key: ConstantAndRepresentation{.constant: object, .representation: representation}); |
| 184 | } |
| 185 | |
| 186 | ConstantInstr* FlowGraph::GetConstant(const Object& object, |
| 187 | Representation representation) { |
| 188 | ConstantInstr* constant = GetExistingConstant(object, representation); |
| 189 | if (constant == nullptr) { |
| 190 | // Otherwise, allocate and add it to the pool. |
| 191 | const Object& zone_object = Object::ZoneHandle(zone: zone(), ptr: object.ptr()); |
| 192 | if (representation == kTagged) { |
| 193 | constant = new (zone()) ConstantInstr(zone_object); |
| 194 | } else { |
| 195 | constant = new (zone()) UnboxedConstantInstr(zone_object, representation); |
| 196 | } |
| 197 | AllocateSSAIndex(def: constant); |
| 198 | AddToGraphInitialDefinitions(defn: constant); |
| 199 | constant_instr_pool_.Insert(kv: constant); |
| 200 | } |
| 201 | return constant; |
| 202 | } |
| 203 | |
| 204 | bool FlowGraph::IsConstantRepresentable(const Object& value, |
| 205 | Representation target_rep, |
| 206 | bool tagged_value_must_be_smi) { |
| 207 | switch (target_rep) { |
| 208 | case kTagged: |
| 209 | return !tagged_value_must_be_smi || value.IsSmi(); |
| 210 | |
| 211 | case kUnboxedInt32: |
| 212 | if (value.IsInteger()) { |
| 213 | return Utils::IsInt(N: 32, value: Integer::Cast(obj: value).AsInt64Value()); |
| 214 | } |
| 215 | return false; |
| 216 | |
| 217 | case kUnboxedUint32: |
| 218 | if (value.IsInteger()) { |
| 219 | return Utils::IsUint(N: 32, value: Integer::Cast(obj: value).AsInt64Value()); |
| 220 | } |
| 221 | return false; |
| 222 | |
| 223 | case kUnboxedInt64: |
| 224 | return value.IsInteger(); |
| 225 | |
| 226 | case kUnboxedDouble: |
| 227 | return value.IsInteger() || value.IsDouble(); |
| 228 | |
| 229 | default: |
| 230 | return false; |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | Definition* FlowGraph::TryCreateConstantReplacementFor(Definition* op, |
| 235 | const Object& value) { |
| 236 | // Check that representation of the constant matches expected representation. |
| 237 | const auto representation = op->representation(); |
| 238 | if (!IsConstantRepresentable( |
| 239 | value, target_rep: representation, |
| 240 | /*tagged_value_must_be_smi=*/op->Type()->IsNullableSmi())) { |
| 241 | return op; |
| 242 | } |
| 243 | |
| 244 | if (representation == kUnboxedDouble && value.IsInteger()) { |
| 245 | // Convert the boxed constant from int to double. |
| 246 | return GetConstant(object: Double::Handle(ptr: Double::NewCanonical( |
| 247 | d: Integer::Cast(obj: value).AsDoubleValue())), |
| 248 | representation: kUnboxedDouble); |
| 249 | } |
| 250 | |
| 251 | return GetConstant(object: value, representation); |
| 252 | } |
| 253 | |
| 254 | void FlowGraph::AddToGraphInitialDefinitions(Definition* defn) { |
| 255 | defn->set_previous(graph_entry_); |
| 256 | graph_entry_->initial_definitions()->Add(defn); |
| 257 | } |
| 258 | |
| 259 | void FlowGraph::AddToInitialDefinitions(BlockEntryWithInitialDefs* entry, |
| 260 | Definition* defn) { |
| 261 | ASSERT(defn->previous() == nullptr); |
| 262 | defn->set_previous(entry); |
| 263 | if (auto par = defn->AsParameter()) { |
| 264 | par->set_block(entry); // set cached block |
| 265 | } |
| 266 | entry->initial_definitions()->Add(defn); |
| 267 | } |
| 268 | |
| 269 | void FlowGraph::InsertAfter(Instruction* prev, |
| 270 | Instruction* instr, |
| 271 | Environment* env, |
| 272 | UseKind use_kind) { |
| 273 | if (use_kind == kValue) { |
| 274 | ASSERT(instr->IsDefinition()); |
| 275 | AllocateSSAIndex(def: instr->AsDefinition()); |
| 276 | } |
| 277 | instr->InsertAfter(prev); |
| 278 | ASSERT(instr->env() == nullptr); |
| 279 | if (env != nullptr) { |
| 280 | env->DeepCopyTo(zone: zone(), instr); |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | void FlowGraph::InsertSpeculativeAfter(Instruction* prev, |
| 285 | Instruction* instr, |
| 286 | Environment* env, |
| 287 | UseKind use_kind) { |
| 288 | InsertAfter(prev, instr, env, use_kind); |
| 289 | if (instr->env() != nullptr) { |
| 290 | instr->env()->MarkAsLazyDeoptToBeforeDeoptId(); |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | Instruction* FlowGraph::AppendTo(Instruction* prev, |
| 295 | Instruction* instr, |
| 296 | Environment* env, |
| 297 | UseKind use_kind) { |
| 298 | if (use_kind == kValue) { |
| 299 | ASSERT(instr->IsDefinition()); |
| 300 | AllocateSSAIndex(def: instr->AsDefinition()); |
| 301 | } |
| 302 | ASSERT(instr->env() == nullptr); |
| 303 | if (env != nullptr) { |
| 304 | env->DeepCopyTo(zone: zone(), instr); |
| 305 | } |
| 306 | return prev->AppendInstruction(tail: instr); |
| 307 | } |
| 308 | Instruction* FlowGraph::AppendSpeculativeTo(Instruction* prev, |
| 309 | Instruction* instr, |
| 310 | Environment* env, |
| 311 | UseKind use_kind) { |
| 312 | auto result = AppendTo(prev, instr, env, use_kind); |
| 313 | if (instr->env() != nullptr) { |
| 314 | instr->env()->MarkAsLazyDeoptToBeforeDeoptId(); |
| 315 | } |
| 316 | return result; |
| 317 | } |
| 318 | |
| 319 | // A wrapper around block entries including an index of the next successor to |
| 320 | // be read. |
| 321 | class BlockTraversalState { |
| 322 | public: |
| 323 | explicit BlockTraversalState(BlockEntryInstr* block) |
| 324 | : block_(block), |
| 325 | next_successor_ix_(block->last_instruction()->SuccessorCount() - 1) {} |
| 326 | |
| 327 | bool HasNextSuccessor() const { return next_successor_ix_ >= 0; } |
| 328 | BlockEntryInstr* NextSuccessor() { |
| 329 | ASSERT(HasNextSuccessor()); |
| 330 | return block_->last_instruction()->SuccessorAt(index: next_successor_ix_--); |
| 331 | } |
| 332 | |
| 333 | BlockEntryInstr* block() const { return block_; } |
| 334 | |
| 335 | private: |
| 336 | BlockEntryInstr* block_; |
| 337 | intptr_t next_successor_ix_; |
| 338 | |
| 339 | DISALLOW_ALLOCATION(); |
| 340 | }; |
| 341 | |
| 342 | void FlowGraph::DiscoverBlocks() { |
| 343 | COMPILER_TIMINGS_TIMER_SCOPE(thread(), DiscoverBlocks); |
| 344 | |
| 345 | StackZone zone(thread()); |
| 346 | |
| 347 | // Initialize state. |
| 348 | preorder_.Clear(); |
| 349 | postorder_.Clear(); |
| 350 | reverse_postorder_.Clear(); |
| 351 | parent_.Clear(); |
| 352 | |
| 353 | GrowableArray<BlockTraversalState> block_stack; |
| 354 | graph_entry_->DiscoverBlock(nullptr, &preorder_, &parent_); |
| 355 | block_stack.Add(BlockTraversalState(graph_entry_)); |
| 356 | while (!block_stack.is_empty()) { |
| 357 | BlockTraversalState& state = block_stack.Last(); |
| 358 | BlockEntryInstr* block = state.block(); |
| 359 | if (state.HasNextSuccessor()) { |
| 360 | // Process successors one-by-one. |
| 361 | BlockEntryInstr* succ = state.NextSuccessor(); |
| 362 | if (succ->DiscoverBlock(block, &preorder_, &parent_)) { |
| 363 | block_stack.Add(BlockTraversalState(succ)); |
| 364 | } |
| 365 | } else { |
| 366 | // All successors have been processed, pop the current block entry node |
| 367 | // and add it to the postorder list. |
| 368 | block_stack.RemoveLast(); |
| 369 | block->set_postorder_number(postorder_.length()); |
| 370 | postorder_.Add(block); |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | ASSERT(postorder_.length() == preorder_.length()); |
| 375 | |
| 376 | // Create an array of blocks in reverse postorder. |
| 377 | intptr_t block_count = postorder_.length(); |
| 378 | for (intptr_t i = 0; i < block_count; ++i) { |
| 379 | reverse_postorder_.Add(postorder_[block_count - i - 1]); |
| 380 | } |
| 381 | |
| 382 | ResetLoopHierarchy(); |
| 383 | } |
| 384 | |
| 385 | void FlowGraph::MergeBlocks() { |
| 386 | bool changed = false; |
| 387 | BitVector* merged = new (zone()) BitVector(zone(), postorder().length()); |
| 388 | for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| 389 | block_it.Advance()) { |
| 390 | BlockEntryInstr* block = block_it.Current(); |
| 391 | if (block->IsGraphEntry()) continue; |
| 392 | if (merged->Contains(i: block->postorder_number())) continue; |
| 393 | |
| 394 | Instruction* last = block->last_instruction(); |
| 395 | BlockEntryInstr* last_merged_block = nullptr; |
| 396 | while (auto goto_instr = last->AsGoto()) { |
| 397 | JoinEntryInstr* successor = goto_instr->successor(); |
| 398 | if (successor->PredecessorCount() > 1) break; |
| 399 | if (block->try_index() != successor->try_index()) break; |
| 400 | |
| 401 | // Replace all phis with their arguments prior to removing successor. |
| 402 | for (PhiIterator it(successor); !it.Done(); it.Advance()) { |
| 403 | PhiInstr* phi = it.Current(); |
| 404 | Value* input = phi->InputAt(0); |
| 405 | phi->ReplaceUsesWith(input->definition()); |
| 406 | input->RemoveFromUseList(); |
| 407 | } |
| 408 | |
| 409 | // Remove environment uses and unlink goto and block entry. |
| 410 | successor->UnuseAllInputs(); |
| 411 | last->previous()->LinkTo(next: successor->next()); |
| 412 | last->UnuseAllInputs(); |
| 413 | |
| 414 | last = successor->last_instruction(); |
| 415 | merged->Add(i: successor->postorder_number()); |
| 416 | last_merged_block = successor; |
| 417 | changed = true; |
| 418 | if (FLAG_trace_optimization) { |
| 419 | THR_Print("Merged blocks B%" Pd " and B%" Pd "\n" , block->block_id(), |
| 420 | successor->block_id()); |
| 421 | } |
| 422 | } |
| 423 | // The new block inherits the block id of the last successor to maintain |
| 424 | // the order of phi inputs at its successors consistent with block ids. |
| 425 | if (last_merged_block != nullptr) { |
| 426 | block->set_block_id(last_merged_block->block_id()); |
| 427 | } |
| 428 | } |
| 429 | // Recompute block order after changes were made. |
| 430 | if (changed) DiscoverBlocks(); |
| 431 | } |
| 432 | |
| 433 | void FlowGraph::ComputeIsReceiverRecursive( |
| 434 | PhiInstr* phi, |
| 435 | GrowableArray<PhiInstr*>* unmark) const { |
| 436 | if (phi->is_receiver() != PhiInstr::kUnknownReceiver) return; |
| 437 | phi->set_is_receiver(PhiInstr::kReceiver); |
| 438 | for (intptr_t i = 0; i < phi->InputCount(); ++i) { |
| 439 | Definition* def = phi->InputAt(i)->definition(); |
| 440 | if (def->IsParameter() && (def->AsParameter()->env_index() == 0)) continue; |
| 441 | if (!def->IsPhi()) { |
| 442 | phi->set_is_receiver(PhiInstr::kNotReceiver); |
| 443 | break; |
| 444 | } |
| 445 | ComputeIsReceiverRecursive(phi: def->AsPhi(), unmark); |
| 446 | if (def->AsPhi()->is_receiver() == PhiInstr::kNotReceiver) { |
| 447 | phi->set_is_receiver(PhiInstr::kNotReceiver); |
| 448 | break; |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | if (phi->is_receiver() == PhiInstr::kNotReceiver) { |
| 453 | unmark->Add(phi); |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | void FlowGraph::ComputeIsReceiver(PhiInstr* phi) const { |
| 458 | GrowableArray<PhiInstr*> unmark; |
| 459 | ComputeIsReceiverRecursive(phi, unmark: &unmark); |
| 460 | |
| 461 | // Now drain unmark. |
| 462 | while (!unmark.is_empty()) { |
| 463 | PhiInstr* phi = unmark.RemoveLast(); |
| 464 | for (Value::Iterator it(phi->input_use_list()); !it.Done(); it.Advance()) { |
| 465 | PhiInstr* use = it.Current()->instruction()->AsPhi(); |
| 466 | if ((use != nullptr) && (use->is_receiver() == PhiInstr::kReceiver)) { |
| 467 | use->set_is_receiver(PhiInstr::kNotReceiver); |
| 468 | unmark.Add(use); |
| 469 | } |
| 470 | } |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | bool FlowGraph::IsReceiver(Definition* def) const { |
| 475 | def = def->OriginalDefinition(); // Could be redefined. |
| 476 | if (def->IsParameter()) return (def->AsParameter()->env_index() == 0); |
| 477 | if (!def->IsPhi() || graph_entry()->HasSingleEntryPoint()) { |
| 478 | return false; |
| 479 | } |
| 480 | PhiInstr* phi = def->AsPhi(); |
| 481 | if (phi->is_receiver() != PhiInstr::kUnknownReceiver) { |
| 482 | return (phi->is_receiver() == PhiInstr::kReceiver); |
| 483 | } |
| 484 | // Not known if this phi is the receiver yet. Compute it now. |
| 485 | ComputeIsReceiver(phi); |
| 486 | return (phi->is_receiver() == PhiInstr::kReceiver); |
| 487 | } |
| 488 | |
| 489 | FlowGraph::ToCheck FlowGraph::CheckForInstanceCall( |
| 490 | InstanceCallInstr* call, |
| 491 | UntaggedFunction::Kind kind) const { |
| 492 | if (!FLAG_use_cha_deopt && !isolate_group()->all_classes_finalized()) { |
| 493 | // Even if class or function are private, lazy class finalization |
| 494 | // may later add overriding methods. |
| 495 | return ToCheck::kCheckCid; |
| 496 | } |
| 497 | |
| 498 | // Best effort to get the receiver class. |
| 499 | Value* receiver = call->Receiver(); |
| 500 | Class& receiver_class = Class::Handle(zone: zone()); |
| 501 | bool receiver_maybe_null = false; |
| 502 | if (function().IsDynamicFunction() && IsReceiver(def: receiver->definition())) { |
| 503 | // Call receiver is callee receiver: calling "this.g()" in f(). |
| 504 | receiver_class = function().Owner(); |
| 505 | } else { |
| 506 | // Get the receiver's compile type. Note that |
| 507 | // we allow nullable types, which may result in just generating |
| 508 | // a null check rather than the more elaborate class check |
| 509 | CompileType* type = receiver->Type(); |
| 510 | const intptr_t receiver_cid = type->ToNullableCid(); |
| 511 | if (receiver_cid != kDynamicCid) { |
| 512 | receiver_class = isolate_group()->class_table()->At(cid: receiver_cid); |
| 513 | receiver_maybe_null = type->is_nullable(); |
| 514 | } else { |
| 515 | const AbstractType* atype = type->ToAbstractType(); |
| 516 | if (atype->IsInstantiated() && atype->HasTypeClass() && |
| 517 | !atype->IsDynamicType()) { |
| 518 | if (type->is_nullable()) { |
| 519 | receiver_maybe_null = true; |
| 520 | } |
| 521 | receiver_class = atype->type_class(); |
| 522 | if (receiver_class.is_implemented()) { |
| 523 | receiver_class = Class::null(); |
| 524 | } |
| 525 | } |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | // Useful receiver class information? |
| 530 | if (receiver_class.IsNull()) { |
| 531 | return ToCheck::kCheckCid; |
| 532 | } else if (call->HasICData()) { |
| 533 | // If the static class type does not match information found in ICData |
| 534 | // (which may be "guessed"), then bail, since subsequent code generation |
| 535 | // (AOT and JIT) for inlining uses the latter. |
| 536 | // TODO(ajcbik): improve this by using the static class. |
| 537 | const intptr_t cid = receiver_class.id(); |
| 538 | const ICData* data = call->ic_data(); |
| 539 | bool match = false; |
| 540 | Class& cls = Class::Handle(zone: zone()); |
| 541 | Function& fun = Function::Handle(zone: zone()); |
| 542 | for (intptr_t i = 0, len = data->NumberOfChecks(); i < len; i++) { |
| 543 | if (!data->IsUsedAt(i)) { |
| 544 | continue; // do not consider |
| 545 | } |
| 546 | fun = data->GetTargetAt(index: i); |
| 547 | cls = fun.Owner(); |
| 548 | if (data->GetReceiverClassIdAt(index: i) == cid || cls.id() == cid) { |
| 549 | match = true; |
| 550 | break; |
| 551 | } |
| 552 | } |
| 553 | if (!match) { |
| 554 | return ToCheck::kCheckCid; |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | const String& method_name = |
| 559 | (kind == UntaggedFunction::kMethodExtractor) |
| 560 | ? String::Handle(zone(), Field::NameFromGetter(getter_name: call->function_name())) |
| 561 | : call->function_name(); |
| 562 | |
| 563 | // If the receiver can have the null value, exclude any method |
| 564 | // that is actually valid on a null receiver. |
| 565 | if (receiver_maybe_null) { |
| 566 | const Class& null_class = |
| 567 | Class::Handle(zone: zone(), ptr: isolate_group()->object_store()->null_class()); |
| 568 | Function& target = Function::Handle(zone: zone()); |
| 569 | if (null_class.EnsureIsFinalized(thread: thread()) == Error::null()) { |
| 570 | target = Resolver::ResolveDynamicAnyArgs(zone: zone(), receiver_class: null_class, function_name: method_name); |
| 571 | } |
| 572 | if (!target.IsNull()) { |
| 573 | return ToCheck::kCheckCid; |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | // Use CHA to determine if the method is not overridden by any subclass |
| 578 | // of the receiver class. Any methods that are valid when the receiver |
| 579 | // has a null value are excluded above (to avoid throwing an exception |
| 580 | // on something valid, like null.hashCode). |
| 581 | intptr_t subclass_count = 0; |
| 582 | CHA& cha = thread()->compiler_state().cha(); |
| 583 | if (!cha.HasOverride(cls: receiver_class, function_name: method_name, subclass_count: &subclass_count)) { |
| 584 | if (FLAG_trace_cha) { |
| 585 | THR_Print( |
| 586 | " **(CHA) Instance call needs no class check since there " |
| 587 | "are no overrides of method '%s' on '%s'\n" , |
| 588 | method_name.ToCString(), receiver_class.ToCString()); |
| 589 | } |
| 590 | if (FLAG_use_cha_deopt) { |
| 591 | cha.AddToGuardedClassesForSubclassCount(cls: receiver_class, subclass_count); |
| 592 | } |
| 593 | return receiver_maybe_null ? ToCheck::kCheckNull : ToCheck::kNoCheck; |
| 594 | } |
| 595 | return ToCheck::kCheckCid; |
| 596 | } |
| 597 | |
| 598 | Instruction* FlowGraph::CreateCheckClass(Definition* to_check, |
| 599 | const Cids& cids, |
| 600 | intptr_t deopt_id, |
| 601 | const InstructionSource& source) { |
| 602 | if (cids.IsMonomorphic() && cids.MonomorphicReceiverCid() == kSmiCid) { |
| 603 | return new (zone()) |
| 604 | CheckSmiInstr(new (zone()) Value(to_check), deopt_id, source); |
| 605 | } |
| 606 | return new (zone()) |
| 607 | CheckClassInstr(new (zone()) Value(to_check), deopt_id, cids, source); |
| 608 | } |
| 609 | |
| 610 | Definition* FlowGraph::CreateCheckBound(Definition* length, |
| 611 | Definition* index, |
| 612 | intptr_t deopt_id) { |
| 613 | Value* val1 = new (zone()) Value(length); |
| 614 | Value* val2 = new (zone()) Value(index); |
| 615 | if (CompilerState::Current().is_aot()) { |
| 616 | return new (zone()) GenericCheckBoundInstr(val1, val2, deopt_id); |
| 617 | } |
| 618 | return new (zone()) CheckArrayBoundInstr(val1, val2, deopt_id); |
| 619 | } |
| 620 | |
| 621 | void FlowGraph::AddExactnessGuard(InstanceCallInstr* call, |
| 622 | intptr_t receiver_cid) { |
| 623 | const Class& cls = |
| 624 | Class::Handle(zone: zone(), ptr: isolate_group()->class_table()->At(cid: receiver_cid)); |
| 625 | |
| 626 | Definition* load_type_args = new (zone()) LoadFieldInstr( |
| 627 | call->Receiver()->CopyWithType(), |
| 628 | Slot::GetTypeArgumentsSlotFor(thread: thread(), cls), call->source()); |
| 629 | InsertBefore(next: call, instr: load_type_args, env: call->env(), use_kind: FlowGraph::kValue); |
| 630 | |
| 631 | const AbstractType& type = |
| 632 | AbstractType::Handle(zone(), call->ic_data()->receivers_static_type()); |
| 633 | ASSERT(!type.IsNull()); |
| 634 | const TypeArguments& args = TypeArguments::Handle( |
| 635 | zone: zone(), ptr: Type::Cast(obj: type).GetInstanceTypeArguments(thread: thread())); |
| 636 | Instruction* guard = new (zone()) CheckConditionInstr( |
| 637 | new StrictCompareInstr(call->source(), Token::kEQ_STRICT, |
| 638 | new (zone()) Value(load_type_args), |
| 639 | new (zone()) Value(GetConstant(object: args)), |
| 640 | /*needs_number_check=*/false, call->deopt_id()), |
| 641 | call->deopt_id()); |
| 642 | InsertBefore(next: call, instr: guard, env: call->env(), use_kind: FlowGraph::kEffect); |
| 643 | } |
| 644 | |
| 645 | // Verify that a redefinition dominates all uses of the redefined value. |
| 646 | bool FlowGraph::VerifyRedefinitions() { |
| 647 | for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| 648 | block_it.Advance()) { |
| 649 | for (ForwardInstructionIterator instr_it(block_it.Current()); |
| 650 | !instr_it.Done(); instr_it.Advance()) { |
| 651 | RedefinitionInstr* redefinition = instr_it.Current()->AsRedefinition(); |
| 652 | if (redefinition != nullptr) { |
| 653 | Definition* original = redefinition->value()->definition(); |
| 654 | for (Value::Iterator it(original->input_use_list()); !it.Done(); |
| 655 | it.Advance()) { |
| 656 | Value* original_use = it.Current(); |
| 657 | if (original_use->instruction() == redefinition) { |
| 658 | continue; |
| 659 | } |
| 660 | if (original_use->instruction()->IsDominatedBy(dom: redefinition)) { |
| 661 | FlowGraphPrinter::PrintGraph(phase: "VerifyRedefinitions" , flow_graph: this); |
| 662 | THR_Print("%s\n" , redefinition->ToCString()); |
| 663 | THR_Print("use=%s\n" , original_use->instruction()->ToCString()); |
| 664 | return false; |
| 665 | } |
| 666 | } |
| 667 | } |
| 668 | } |
| 669 | } |
| 670 | return true; |
| 671 | } |
| 672 | |
| 673 | LivenessAnalysis::LivenessAnalysis( |
| 674 | intptr_t variable_count, |
| 675 | const GrowableArray<BlockEntryInstr*>& postorder) |
| 676 | : zone_(Thread::Current()->zone()), |
| 677 | variable_count_(variable_count), |
| 678 | postorder_(postorder), |
| 679 | live_out_(postorder.length()), |
| 680 | kill_(postorder.length()), |
| 681 | live_in_(postorder.length()) {} |
| 682 | |
| 683 | bool LivenessAnalysis::UpdateLiveOut(const BlockEntryInstr& block) { |
| 684 | BitVector* live_out = live_out_[block.postorder_number()]; |
| 685 | bool changed = false; |
| 686 | Instruction* last = block.last_instruction(); |
| 687 | ASSERT(last != nullptr); |
| 688 | for (intptr_t i = 0; i < last->SuccessorCount(); i++) { |
| 689 | BlockEntryInstr* succ = last->SuccessorAt(index: i); |
| 690 | ASSERT(succ != nullptr); |
| 691 | if (live_out->AddAll(live_in_[succ->postorder_number()])) { |
| 692 | changed = true; |
| 693 | } |
| 694 | } |
| 695 | return changed; |
| 696 | } |
| 697 | |
| 698 | bool LivenessAnalysis::UpdateLiveIn(const BlockEntryInstr& block) { |
| 699 | BitVector* live_out = live_out_[block.postorder_number()]; |
| 700 | BitVector* kill = kill_[block.postorder_number()]; |
| 701 | BitVector* live_in = live_in_[block.postorder_number()]; |
| 702 | return live_in->KillAndAdd(kill, gen: live_out); |
| 703 | } |
| 704 | |
| 705 | void LivenessAnalysis::ComputeLiveInAndLiveOutSets() { |
| 706 | const intptr_t block_count = postorder_.length(); |
| 707 | bool changed; |
| 708 | do { |
| 709 | changed = false; |
| 710 | |
| 711 | for (intptr_t i = 0; i < block_count; i++) { |
| 712 | const BlockEntryInstr& block = *postorder_[i]; |
| 713 | |
| 714 | // Live-in set depends only on kill set which does not |
| 715 | // change in this loop and live-out set. If live-out |
| 716 | // set does not change there is no need to recompute |
| 717 | // live-in set. |
| 718 | if (UpdateLiveOut(block) && UpdateLiveIn(block)) { |
| 719 | changed = true; |
| 720 | } |
| 721 | } |
| 722 | } while (changed); |
| 723 | } |
| 724 | |
| 725 | void LivenessAnalysis::Analyze() { |
| 726 | const intptr_t block_count = postorder_.length(); |
| 727 | for (intptr_t i = 0; i < block_count; i++) { |
| 728 | live_out_.Add(new (zone()) BitVector(zone(), variable_count_)); |
| 729 | kill_.Add(new (zone()) BitVector(zone(), variable_count_)); |
| 730 | live_in_.Add(new (zone()) BitVector(zone(), variable_count_)); |
| 731 | } |
| 732 | |
| 733 | ComputeInitialSets(); |
| 734 | ComputeLiveInAndLiveOutSets(); |
| 735 | } |
| 736 | |
| 737 | static void PrintBitVector(const char* tag, BitVector* v) { |
| 738 | THR_Print("%s:" , tag); |
| 739 | for (BitVector::Iterator it(v); !it.Done(); it.Advance()) { |
| 740 | THR_Print(" %" Pd "" , it.Current()); |
| 741 | } |
| 742 | THR_Print("\n" ); |
| 743 | } |
| 744 | |
| 745 | void LivenessAnalysis::Dump() { |
| 746 | const intptr_t block_count = postorder_.length(); |
| 747 | for (intptr_t i = 0; i < block_count; i++) { |
| 748 | BlockEntryInstr* block = postorder_[i]; |
| 749 | THR_Print("block @%" Pd " -> " , block->block_id()); |
| 750 | |
| 751 | Instruction* last = block->last_instruction(); |
| 752 | for (intptr_t j = 0; j < last->SuccessorCount(); j++) { |
| 753 | BlockEntryInstr* succ = last->SuccessorAt(index: j); |
| 754 | THR_Print(" @%" Pd "" , succ->block_id()); |
| 755 | } |
| 756 | THR_Print("\n" ); |
| 757 | |
| 758 | PrintBitVector(" live out" , live_out_[i]); |
| 759 | PrintBitVector(" kill" , kill_[i]); |
| 760 | PrintBitVector(" live in" , live_in_[i]); |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | // Computes liveness information for local variables. |
| 765 | class VariableLivenessAnalysis : public LivenessAnalysis { |
| 766 | public: |
| 767 | explicit VariableLivenessAnalysis(FlowGraph* flow_graph) |
| 768 | : LivenessAnalysis(flow_graph->variable_count(), flow_graph->postorder()), |
| 769 | flow_graph_(flow_graph), |
| 770 | assigned_vars_() {} |
| 771 | |
| 772 | // For every block (in preorder) compute and return set of variables that |
| 773 | // have new assigned values flowing out of that block. |
| 774 | const GrowableArray<BitVector*>& ComputeAssignedVars() { |
| 775 | // We can't directly return kill_ because it uses postorder numbering while |
| 776 | // SSA construction uses preorder numbering internally. |
| 777 | // We have to permute postorder into preorder. |
| 778 | assigned_vars_.Clear(); |
| 779 | |
| 780 | const intptr_t block_count = flow_graph_->preorder().length(); |
| 781 | for (intptr_t i = 0; i < block_count; i++) { |
| 782 | BlockEntryInstr* block = flow_graph_->preorder()[i]; |
| 783 | // All locals are assigned inside a try{} block. |
| 784 | // This is a safe approximation and workaround to force insertion of |
| 785 | // phis for stores that appear non-live because of the way catch-blocks |
| 786 | // are connected to the graph: They normally are dominated by the |
| 787 | // try-entry, but are direct successors of the graph entry in our flow |
| 788 | // graph. |
| 789 | // TODO(fschneider): Improve this approximation by better modeling the |
| 790 | // actual data flow to reduce the number of redundant phis. |
| 791 | BitVector* kill = GetKillSet(block); |
| 792 | if (block->InsideTryBlock()) { |
| 793 | kill->SetAll(); |
| 794 | } else { |
| 795 | kill->Intersect(other: GetLiveOutSet(block)); |
| 796 | } |
| 797 | assigned_vars_.Add(kill); |
| 798 | } |
| 799 | |
| 800 | return assigned_vars_; |
| 801 | } |
| 802 | |
| 803 | // Returns true if the value set by the given store reaches any load from the |
| 804 | // same local variable. |
| 805 | bool IsStoreAlive(BlockEntryInstr* block, StoreLocalInstr* store) { |
| 806 | if (store->local().Equals(other: *flow_graph_->CurrentContextVar())) { |
| 807 | return true; |
| 808 | } |
| 809 | |
| 810 | if (store->is_dead()) { |
| 811 | return false; |
| 812 | } |
| 813 | if (store->is_last()) { |
| 814 | const intptr_t index = flow_graph_->EnvIndex(variable: &store->local()); |
| 815 | return GetLiveOutSet(block)->Contains(index); |
| 816 | } |
| 817 | |
| 818 | return true; |
| 819 | } |
| 820 | |
| 821 | // Returns true if the given load is the last for the local and the value |
| 822 | // of the local will not flow into another one. |
| 823 | bool IsLastLoad(BlockEntryInstr* block, LoadLocalInstr* load) { |
| 824 | if (load->local().Equals(other: *flow_graph_->CurrentContextVar())) { |
| 825 | return false; |
| 826 | } |
| 827 | const intptr_t index = flow_graph_->EnvIndex(variable: &load->local()); |
| 828 | return load->is_last() && !GetLiveOutSet(block)->Contains(index); |
| 829 | } |
| 830 | |
| 831 | private: |
| 832 | virtual void ComputeInitialSets(); |
| 833 | |
| 834 | const FlowGraph* flow_graph_; |
| 835 | GrowableArray<BitVector*> assigned_vars_; |
| 836 | }; |
| 837 | |
| 838 | void VariableLivenessAnalysis::ComputeInitialSets() { |
| 839 | const intptr_t block_count = postorder_.length(); |
| 840 | |
| 841 | BitVector* last_loads = new (zone()) BitVector(zone(), variable_count_); |
| 842 | for (intptr_t i = 0; i < block_count; i++) { |
| 843 | BlockEntryInstr* block = postorder_[i]; |
| 844 | |
| 845 | BitVector* kill = kill_[i]; |
| 846 | BitVector* live_in = live_in_[i]; |
| 847 | last_loads->Clear(); |
| 848 | |
| 849 | // There is an implicit use (load-local) of every local variable at each |
| 850 | // call inside a try{} block and every call has an implicit control-flow |
| 851 | // to the catch entry. As an approximation we mark all locals as live |
| 852 | // inside try{}. |
| 853 | // TODO(fschneider): Improve this approximation, since not all local |
| 854 | // variable stores actually reach a call. |
| 855 | if (block->InsideTryBlock()) { |
| 856 | live_in->SetAll(); |
| 857 | continue; |
| 858 | } |
| 859 | |
| 860 | // Iterate backwards starting at the last instruction. |
| 861 | for (BackwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 862 | Instruction* current = it.Current(); |
| 863 | |
| 864 | LoadLocalInstr* load = current->AsLoadLocal(); |
| 865 | if (load != nullptr) { |
| 866 | const intptr_t index = flow_graph_->EnvIndex(variable: &load->local()); |
| 867 | if (index >= live_in->length()) continue; // Skip tmp_locals. |
| 868 | live_in->Add(i: index); |
| 869 | if (!last_loads->Contains(i: index)) { |
| 870 | last_loads->Add(i: index); |
| 871 | load->mark_last(); |
| 872 | } |
| 873 | continue; |
| 874 | } |
| 875 | |
| 876 | StoreLocalInstr* store = current->AsStoreLocal(); |
| 877 | if (store != nullptr) { |
| 878 | const intptr_t index = flow_graph_->EnvIndex(variable: &store->local()); |
| 879 | if (index >= live_in->length()) continue; // Skip tmp_locals. |
| 880 | if (kill->Contains(i: index)) { |
| 881 | if (!live_in->Contains(i: index)) { |
| 882 | store->mark_dead(); |
| 883 | } |
| 884 | } else { |
| 885 | if (!live_in->Contains(i: index)) { |
| 886 | store->mark_last(); |
| 887 | } |
| 888 | kill->Add(i: index); |
| 889 | } |
| 890 | live_in->Remove(i: index); |
| 891 | continue; |
| 892 | } |
| 893 | } |
| 894 | |
| 895 | // For blocks with parameter or special parameter instructions we add them |
| 896 | // to the kill set. |
| 897 | const bool is_function_entry = block->IsFunctionEntry(); |
| 898 | const bool is_osr_entry = block->IsOsrEntry(); |
| 899 | const bool is_catch_block_entry = block->IsCatchBlockEntry(); |
| 900 | if (is_function_entry || is_osr_entry || is_catch_block_entry) { |
| 901 | const intptr_t parameter_count = |
| 902 | (is_osr_entry || is_catch_block_entry) |
| 903 | ? flow_graph_->variable_count() |
| 904 | : flow_graph_->num_direct_parameters(); |
| 905 | for (intptr_t i = 0; i < parameter_count; ++i) { |
| 906 | live_in->Remove(i); |
| 907 | kill->Add(i); |
| 908 | } |
| 909 | } |
| 910 | if (is_function_entry) { |
| 911 | if (flow_graph_->parsed_function().has_arg_desc_var()) { |
| 912 | const auto index = flow_graph_->ArgumentDescriptorEnvIndex(); |
| 913 | live_in->Remove(i: index); |
| 914 | kill->Add(i: index); |
| 915 | } |
| 916 | } |
| 917 | } |
| 918 | } |
| 919 | |
| 920 | void FlowGraph::ComputeSSA( |
| 921 | ZoneGrowableArray<Definition*>* inlining_parameters) { |
| 922 | GrowableArray<BitVector*> dominance_frontier; |
| 923 | GrowableArray<intptr_t> idom; |
| 924 | |
| 925 | #ifdef DEBUG |
| 926 | if (inlining_parameters != nullptr) { |
| 927 | for (intptr_t i = 0, n = inlining_parameters->length(); i < n; ++i) { |
| 928 | Definition* defn = (*inlining_parameters)[i]; |
| 929 | if (defn->IsConstant()) { |
| 930 | ASSERT(defn->previous() == graph_entry_); |
| 931 | ASSERT(defn->HasSSATemp()); |
| 932 | ASSERT(defn->ssa_temp_index() < current_ssa_temp_index()); |
| 933 | } else { |
| 934 | ASSERT(defn->previous() == nullptr); |
| 935 | ASSERT(!defn->HasSSATemp()); |
| 936 | } |
| 937 | } |
| 938 | } else { |
| 939 | ASSERT(current_ssa_temp_index() == 0); |
| 940 | } |
| 941 | #endif |
| 942 | |
| 943 | ComputeDominators(dominance_frontier: &dominance_frontier); |
| 944 | |
| 945 | VariableLivenessAnalysis variable_liveness(this); |
| 946 | variable_liveness.Analyze(); |
| 947 | |
| 948 | GrowableArray<PhiInstr*> live_phis; |
| 949 | |
| 950 | InsertPhis(preorder_, variable_liveness.ComputeAssignedVars(), |
| 951 | dominance_frontier, &live_phis); |
| 952 | |
| 953 | // Rename uses to reference inserted phis where appropriate. |
| 954 | // Collect phis that reach a non-environment use. |
| 955 | Rename(live_phis: &live_phis, variable_liveness: &variable_liveness, inlining_parameters); |
| 956 | |
| 957 | // Propagate alive mark transitively from alive phis and then remove |
| 958 | // non-live ones. |
| 959 | RemoveDeadPhis(live_phis: &live_phis); |
| 960 | } |
| 961 | |
| 962 | // Compute immediate dominators and the dominance frontier for each basic |
| 963 | // block. As a side effect of the algorithm, sets the immediate dominator |
| 964 | // of each basic block. |
| 965 | // |
| 966 | // dominance_frontier: an output parameter encoding the dominance frontier. |
| 967 | // The array maps the preorder block number of a block to the set of |
| 968 | // (preorder block numbers of) blocks in the dominance frontier. |
| 969 | void FlowGraph::ComputeDominators( |
| 970 | GrowableArray<BitVector*>* dominance_frontier) { |
| 971 | // Use the SEMI-NCA algorithm to compute dominators. This is a two-pass |
| 972 | // version of the Lengauer-Tarjan algorithm (LT is normally three passes) |
| 973 | // that eliminates a pass by using nearest-common ancestor (NCA) to |
| 974 | // compute immediate dominators from semidominators. It also removes a |
| 975 | // level of indirection in the link-eval forest data structure. |
| 976 | // |
| 977 | // The algorithm is described in Georgiadis, Tarjan, and Werneck's |
| 978 | // "Finding Dominators in Practice". |
| 979 | // https://renatowerneck.files.wordpress.com/2016/06/gtw06-dominators.pdf |
| 980 | |
| 981 | // All arrays are maps between preorder basic-block numbers. |
| 982 | intptr_t size = parent_.length(); |
| 983 | GrowableArray<intptr_t> idom(size); // Immediate dominator. |
| 984 | GrowableArray<intptr_t> semi(size); // Semidominator. |
| 985 | GrowableArray<intptr_t> label(size); // Label for link-eval forest. |
| 986 | |
| 987 | // 1. First pass: compute semidominators as in Lengauer-Tarjan. |
| 988 | // Semidominators are computed from a depth-first spanning tree and are an |
| 989 | // approximation of immediate dominators. |
| 990 | |
| 991 | // Use a link-eval data structure with path compression. Implement path |
| 992 | // compression in place by mutating the parent array. Each block has a |
| 993 | // label, which is the minimum block number on the compressed path. |
| 994 | |
| 995 | // Initialize idom, semi, and label used by SEMI-NCA. Initialize the |
| 996 | // dominance frontier output array. |
| 997 | for (intptr_t i = 0; i < size; ++i) { |
| 998 | idom.Add(parent_[i]); |
| 999 | semi.Add(i); |
| 1000 | label.Add(i); |
| 1001 | dominance_frontier->Add(new (zone()) BitVector(zone(), size)); |
| 1002 | } |
| 1003 | |
| 1004 | // Loop over the blocks in reverse preorder (not including the graph |
| 1005 | // entry). Clear the dominated blocks in the graph entry in case |
| 1006 | // ComputeDominators is used to recompute them. |
| 1007 | preorder_[0]->ClearDominatedBlocks(); |
| 1008 | for (intptr_t block_index = size - 1; block_index >= 1; --block_index) { |
| 1009 | // Loop over the predecessors. |
| 1010 | BlockEntryInstr* block = preorder_[block_index]; |
| 1011 | // Clear the immediately dominated blocks in case ComputeDominators is |
| 1012 | // used to recompute them. |
| 1013 | block->ClearDominatedBlocks(); |
| 1014 | for (intptr_t i = 0, count = block->PredecessorCount(); i < count; ++i) { |
| 1015 | BlockEntryInstr* pred = block->PredecessorAt(index: i); |
| 1016 | ASSERT(pred != nullptr); |
| 1017 | |
| 1018 | // Look for the semidominator by ascending the semidominator path |
| 1019 | // starting from pred. |
| 1020 | intptr_t pred_index = pred->preorder_number(); |
| 1021 | intptr_t best = pred_index; |
| 1022 | if (pred_index > block_index) { |
| 1023 | CompressPath(block_index, pred_index, &parent_, &label); |
| 1024 | best = label[pred_index]; |
| 1025 | } |
| 1026 | |
| 1027 | // Update the semidominator if we've found a better one. |
| 1028 | semi[block_index] = Utils::Minimum(semi[block_index], semi[best]); |
| 1029 | } |
| 1030 | |
| 1031 | // Now use label for the semidominator. |
| 1032 | label[block_index] = semi[block_index]; |
| 1033 | } |
| 1034 | |
| 1035 | // 2. Compute the immediate dominators as the nearest common ancestor of |
| 1036 | // spanning tree parent and semidominator, for all blocks except the entry. |
| 1037 | for (intptr_t block_index = 1; block_index < size; ++block_index) { |
| 1038 | intptr_t dom_index = idom[block_index]; |
| 1039 | while (dom_index > semi[block_index]) { |
| 1040 | dom_index = idom[dom_index]; |
| 1041 | } |
| 1042 | idom[block_index] = dom_index; |
| 1043 | preorder_[dom_index]->AddDominatedBlock(preorder_[block_index]); |
| 1044 | } |
| 1045 | |
| 1046 | // 3. Now compute the dominance frontier for all blocks. This is |
| 1047 | // algorithm in "A Simple, Fast Dominance Algorithm" (Figure 5), which is |
| 1048 | // attributed to a paper by Ferrante et al. There is no bookkeeping |
| 1049 | // required to avoid adding a block twice to the same block's dominance |
| 1050 | // frontier because we use a set to represent the dominance frontier. |
| 1051 | for (intptr_t block_index = 0; block_index < size; ++block_index) { |
| 1052 | BlockEntryInstr* block = preorder_[block_index]; |
| 1053 | intptr_t count = block->PredecessorCount(); |
| 1054 | if (count <= 1) continue; |
| 1055 | for (intptr_t i = 0; i < count; ++i) { |
| 1056 | BlockEntryInstr* runner = block->PredecessorAt(index: i); |
| 1057 | while (runner != block->dominator()) { |
| 1058 | (*dominance_frontier)[runner->preorder_number()]->Add(block_index); |
| 1059 | runner = runner->dominator(); |
| 1060 | } |
| 1061 | } |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | void FlowGraph::CompressPath(intptr_t start_index, |
| 1066 | intptr_t current_index, |
| 1067 | GrowableArray<intptr_t>* parent, |
| 1068 | GrowableArray<intptr_t>* label) { |
| 1069 | intptr_t next_index = (*parent)[current_index]; |
| 1070 | if (next_index > start_index) { |
| 1071 | CompressPath(start_index, current_index: next_index, parent, label); |
| 1072 | (*label)[current_index] = |
| 1073 | Utils::Minimum((*label)[current_index], (*label)[next_index]); |
| 1074 | (*parent)[current_index] = (*parent)[next_index]; |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | void FlowGraph::InsertPhis(const GrowableArray<BlockEntryInstr*>& preorder, |
| 1079 | const GrowableArray<BitVector*>& assigned_vars, |
| 1080 | const GrowableArray<BitVector*>& dom_frontier, |
| 1081 | GrowableArray<PhiInstr*>* live_phis) { |
| 1082 | const intptr_t block_count = preorder.length(); |
| 1083 | // Map preorder block number to the highest variable index that has a phi |
| 1084 | // in that block. Use it to avoid inserting multiple phis for the same |
| 1085 | // variable. |
| 1086 | GrowableArray<intptr_t> has_already(block_count); |
| 1087 | // Map preorder block number to the highest variable index for which the |
| 1088 | // block went on the worklist. Use it to avoid adding the same block to |
| 1089 | // the worklist more than once for the same variable. |
| 1090 | GrowableArray<intptr_t> work(block_count); |
| 1091 | |
| 1092 | // Initialize has_already and work. |
| 1093 | for (intptr_t block_index = 0; block_index < block_count; ++block_index) { |
| 1094 | has_already.Add(-1); |
| 1095 | work.Add(-1); |
| 1096 | } |
| 1097 | |
| 1098 | // Insert phis for each variable in turn. |
| 1099 | GrowableArray<BlockEntryInstr*> worklist; |
| 1100 | for (intptr_t var_index = 0; var_index < variable_count(); ++var_index) { |
| 1101 | const bool always_live = |
| 1102 | !FLAG_prune_dead_locals || IsImmortalVariable(env_index: var_index); |
| 1103 | // Add to the worklist each block containing an assignment. |
| 1104 | for (intptr_t block_index = 0; block_index < block_count; ++block_index) { |
| 1105 | if (assigned_vars[block_index]->Contains(var_index)) { |
| 1106 | work[block_index] = var_index; |
| 1107 | worklist.Add(preorder[block_index]); |
| 1108 | } |
| 1109 | } |
| 1110 | |
| 1111 | while (!worklist.is_empty()) { |
| 1112 | BlockEntryInstr* current = worklist.RemoveLast(); |
| 1113 | // Ensure a phi for each block in the dominance frontier of current. |
| 1114 | for (BitVector::Iterator it(dom_frontier[current->preorder_number()]); |
| 1115 | !it.Done(); it.Advance()) { |
| 1116 | int index = it.Current(); |
| 1117 | if (has_already[index] < var_index) { |
| 1118 | JoinEntryInstr* join = preorder[index]->AsJoinEntry(); |
| 1119 | ASSERT(join != nullptr); |
| 1120 | PhiInstr* phi = join->InsertPhi( |
| 1121 | var_index, variable_count() + join->stack_depth()); |
| 1122 | if (always_live) { |
| 1123 | phi->mark_alive(); |
| 1124 | live_phis->Add(phi); |
| 1125 | } |
| 1126 | has_already[index] = var_index; |
| 1127 | if (work[index] < var_index) { |
| 1128 | work[index] = var_index; |
| 1129 | worklist.Add(join); |
| 1130 | } |
| 1131 | } |
| 1132 | } |
| 1133 | } |
| 1134 | } |
| 1135 | } |
| 1136 | |
| 1137 | void FlowGraph::CreateCommonConstants() { |
| 1138 | constant_null_ = GetConstant(object: Object::ZoneHandle()); |
| 1139 | constant_dead_ = GetConstant(object: Object::optimized_out()); |
| 1140 | } |
| 1141 | |
| 1142 | void FlowGraph::AddSyntheticPhis(BlockEntryInstr* block) { |
| 1143 | ASSERT(IsCompiledForOsr()); |
| 1144 | if (auto join = block->AsJoinEntry()) { |
| 1145 | const intptr_t local_phi_count = variable_count() + join->stack_depth(); |
| 1146 | // Never insert more phi's than that we had osr variables. |
| 1147 | const intptr_t osr_phi_count = |
| 1148 | Utils::Minimum(x: local_phi_count, y: osr_variable_count()); |
| 1149 | for (intptr_t i = variable_count(); i < osr_phi_count; ++i) { |
| 1150 | if (join->phis() == nullptr || (*join->phis())[i] == nullptr) { |
| 1151 | join->InsertPhi(i, local_phi_count)->mark_alive(); |
| 1152 | } |
| 1153 | } |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | void FlowGraph::Rename(GrowableArray<PhiInstr*>* live_phis, |
| 1158 | VariableLivenessAnalysis* variable_liveness, |
| 1159 | ZoneGrowableArray<Definition*>* inlining_parameters) { |
| 1160 | GraphEntryInstr* entry = graph_entry(); |
| 1161 | |
| 1162 | // Add global constants to the initial definitions. |
| 1163 | CreateCommonConstants(); |
| 1164 | |
| 1165 | // Initial renaming environment. |
| 1166 | GrowableArray<Definition*> env(variable_count()); |
| 1167 | env.FillWith(constant_dead(), 0, num_direct_parameters()); |
| 1168 | env.FillWith(constant_null(), num_direct_parameters(), num_stack_locals()); |
| 1169 | |
| 1170 | if (entry->catch_entries().length() > 0) { |
| 1171 | // Functions with try-catch have a fixed area of stack slots reserved |
| 1172 | // so that all local variables are stored at a known location when |
| 1173 | // on entry to the catch. |
| 1174 | entry->set_fixed_slot_count(num_stack_locals()); |
| 1175 | } else { |
| 1176 | ASSERT(entry->unchecked_entry() != nullptr ? entry->SuccessorCount() == 2 |
| 1177 | : entry->SuccessorCount() == 1); |
| 1178 | } |
| 1179 | |
| 1180 | // For OSR on a non-empty stack, insert synthetic phis on every joining entry. |
| 1181 | // These phis are synthetic since they are not driven by live variable |
| 1182 | // analysis, but merely serve the purpose of merging stack slots from |
| 1183 | // parameters and other predecessors at the block in which OSR occurred. |
| 1184 | // The original definition could flow into a join via multiple predecessors |
| 1185 | // but with the same definition, not requiring a phi. However, with an OSR |
| 1186 | // entry in a different block, phis are required to merge the OSR variable |
| 1187 | // and original definition where there was no phi. Therefore, we need |
| 1188 | // synthetic phis in all (reachable) blocks, not just in the first join. |
| 1189 | if (IsCompiledForOsr()) { |
| 1190 | for (intptr_t i = 0, n = preorder().length(); i < n; ++i) { |
| 1191 | AddSyntheticPhis(preorder()[i]); |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | RenameRecursive(entry, &env, live_phis, variable_liveness, |
| 1196 | inlining_parameters); |
| 1197 | |
| 1198 | #if defined(DEBUG) |
| 1199 | ValidatePhis(); |
| 1200 | #endif // defined(DEBUG) |
| 1201 | } |
| 1202 | |
| 1203 | void FlowGraph::PopulateEnvironmentFromFunctionEntry( |
| 1204 | FunctionEntryInstr* function_entry, |
| 1205 | GrowableArray<Definition*>* env, |
| 1206 | GrowableArray<PhiInstr*>* live_phis, |
| 1207 | VariableLivenessAnalysis* variable_liveness, |
| 1208 | ZoneGrowableArray<Definition*>* inlining_parameters) { |
| 1209 | ASSERT(!IsCompiledForOsr()); |
| 1210 | const intptr_t direct_parameter_count = num_direct_parameters_; |
| 1211 | |
| 1212 | // Check if inlining_parameters include a type argument vector parameter. |
| 1213 | const intptr_t inlined_type_args_param = |
| 1214 | ((inlining_parameters != nullptr) && function().IsGeneric()) ? 1 : 0; |
| 1215 | |
| 1216 | ASSERT(variable_count() == env->length()); |
| 1217 | ASSERT(direct_parameter_count <= env->length()); |
| 1218 | intptr_t param_offset = 0; |
| 1219 | for (intptr_t i = 0; i < direct_parameter_count; i++) { |
| 1220 | ASSERT(FLAG_precompiled_mode || !function().is_unboxed_parameter_at(i)); |
| 1221 | ParameterInstr* param; |
| 1222 | |
| 1223 | const intptr_t index = (function().IsFactory() ? (i - 1) : i); |
| 1224 | |
| 1225 | if (index >= 0 && function().is_unboxed_integer_parameter_at(index)) { |
| 1226 | constexpr intptr_t kCorrection = compiler::target::kIntSpillFactor - 1; |
| 1227 | param = new (zone()) ParameterInstr(/*env_index=*/i, /*param_index=*/i, |
| 1228 | param_offset + kCorrection, |
| 1229 | function_entry, kUnboxedInt64); |
| 1230 | param_offset += compiler::target::kIntSpillFactor; |
| 1231 | } else if (index >= 0 && function().is_unboxed_double_parameter_at(index)) { |
| 1232 | constexpr intptr_t kCorrection = compiler::target::kDoubleSpillFactor - 1; |
| 1233 | param = new (zone()) ParameterInstr(/*env_index=*/i, /*param_index=*/i, |
| 1234 | param_offset + kCorrection, |
| 1235 | function_entry, kUnboxedDouble); |
| 1236 | param_offset += compiler::target::kDoubleSpillFactor; |
| 1237 | } else { |
| 1238 | ASSERT(index < 0 || !function().is_unboxed_parameter_at(index)); |
| 1239 | param = |
| 1240 | new (zone()) ParameterInstr(/*env_index=*/i, /*param_index=*/i, |
| 1241 | param_offset, function_entry, kTagged); |
| 1242 | param_offset++; |
| 1243 | } |
| 1244 | AllocateSSAIndex(def: param); |
| 1245 | AddToInitialDefinitions(function_entry, param); |
| 1246 | (*env)[i] = param; |
| 1247 | } |
| 1248 | |
| 1249 | // Override the entries in the renaming environment which are special (i.e. |
| 1250 | // inlining arguments, type parameter, args descriptor, context, ...) |
| 1251 | { |
| 1252 | // Replace parameter slots with inlining definitions coming in. |
| 1253 | if (inlining_parameters != nullptr) { |
| 1254 | for (intptr_t i = 0; i < function().NumParameters(); ++i) { |
| 1255 | Definition* defn = (*inlining_parameters)[inlined_type_args_param + i]; |
| 1256 | if (defn->IsConstant()) { |
| 1257 | ASSERT(defn->previous() == graph_entry_); |
| 1258 | ASSERT(defn->HasSSATemp()); |
| 1259 | } else { |
| 1260 | ASSERT(defn->previous() == nullptr); |
| 1261 | AllocateSSAIndex(def: defn); |
| 1262 | AddToInitialDefinitions(function_entry, defn); |
| 1263 | } |
| 1264 | intptr_t index = EnvIndex(variable: parsed_function_.RawParameterVariable(i)); |
| 1265 | (*env)[index] = defn; |
| 1266 | } |
| 1267 | } |
| 1268 | |
| 1269 | // Replace the type arguments slot with a special parameter. |
| 1270 | const bool reify_generic_argument = function().IsGeneric(); |
| 1271 | if (reify_generic_argument) { |
| 1272 | ASSERT(parsed_function().function_type_arguments() != nullptr); |
| 1273 | Definition* defn; |
| 1274 | if (inlining_parameters == nullptr) { |
| 1275 | // Note: If we are not inlining, then the prologue builder will |
| 1276 | // take care of checking that we got the correct reified type |
| 1277 | // arguments. This includes checking the argument descriptor in order |
| 1278 | // to even find out if the parameter was passed or not. |
| 1279 | defn = constant_dead(); |
| 1280 | } else { |
| 1281 | defn = (*inlining_parameters)[0]; |
| 1282 | } |
| 1283 | if (defn->IsConstant()) { |
| 1284 | ASSERT(defn->previous() == graph_entry_); |
| 1285 | ASSERT(defn->HasSSATemp()); |
| 1286 | } else { |
| 1287 | ASSERT(defn->previous() == nullptr); |
| 1288 | AllocateSSAIndex(def: defn); |
| 1289 | AddToInitialDefinitions(function_entry, defn); |
| 1290 | } |
| 1291 | (*env)[RawTypeArgumentEnvIndex()] = defn; |
| 1292 | } |
| 1293 | |
| 1294 | // Replace the argument descriptor slot with a special parameter. |
| 1295 | if (parsed_function().has_arg_desc_var()) { |
| 1296 | Definition* defn = |
| 1297 | new (Z) SpecialParameterInstr(SpecialParameterInstr::kArgDescriptor, |
| 1298 | DeoptId::kNone, function_entry); |
| 1299 | AllocateSSAIndex(def: defn); |
| 1300 | AddToInitialDefinitions(function_entry, defn); |
| 1301 | (*env)[ArgumentDescriptorEnvIndex()] = defn; |
| 1302 | } |
| 1303 | } |
| 1304 | } |
| 1305 | |
| 1306 | void FlowGraph::PopulateEnvironmentFromOsrEntry( |
| 1307 | OsrEntryInstr* osr_entry, |
| 1308 | GrowableArray<Definition*>* env) { |
| 1309 | ASSERT(IsCompiledForOsr()); |
| 1310 | // During OSR, all variables and possibly a non-empty stack are |
| 1311 | // passed as parameters. The latter mimics the incoming expression |
| 1312 | // stack that was set up prior to triggering OSR. |
| 1313 | const intptr_t parameter_count = osr_variable_count(); |
| 1314 | ASSERT(parameter_count == env->length()); |
| 1315 | for (intptr_t i = 0; i < parameter_count; i++) { |
| 1316 | const intptr_t param_index = (i < num_direct_parameters()) |
| 1317 | ? i |
| 1318 | : ParameterInstr::kNotFunctionParameter; |
| 1319 | ParameterInstr* param = new (zone()) |
| 1320 | ParameterInstr(/*env_index=*/i, param_index, i, osr_entry, kTagged); |
| 1321 | AllocateSSAIndex(def: param); |
| 1322 | AddToInitialDefinitions(osr_entry, param); |
| 1323 | (*env)[i] = param; |
| 1324 | } |
| 1325 | } |
| 1326 | |
| 1327 | void FlowGraph::PopulateEnvironmentFromCatchEntry( |
| 1328 | CatchBlockEntryInstr* catch_entry, |
| 1329 | GrowableArray<Definition*>* env) { |
| 1330 | const intptr_t raw_exception_var_envindex = |
| 1331 | catch_entry->raw_exception_var() != nullptr |
| 1332 | ? EnvIndex(variable: catch_entry->raw_exception_var()) |
| 1333 | : -1; |
| 1334 | const intptr_t raw_stacktrace_var_envindex = |
| 1335 | catch_entry->raw_stacktrace_var() != nullptr |
| 1336 | ? EnvIndex(variable: catch_entry->raw_stacktrace_var()) |
| 1337 | : -1; |
| 1338 | |
| 1339 | // Add real definitions for all locals and parameters. |
| 1340 | ASSERT(variable_count() == env->length()); |
| 1341 | for (intptr_t i = 0, n = variable_count(); i < n; ++i) { |
| 1342 | // Replace usages of the raw exception/stacktrace variables with |
| 1343 | // [SpecialParameterInstr]s. |
| 1344 | Definition* param = nullptr; |
| 1345 | if (raw_exception_var_envindex == i) { |
| 1346 | param = new (Z) SpecialParameterInstr(SpecialParameterInstr::kException, |
| 1347 | DeoptId::kNone, catch_entry); |
| 1348 | } else if (raw_stacktrace_var_envindex == i) { |
| 1349 | param = new (Z) SpecialParameterInstr(SpecialParameterInstr::kStackTrace, |
| 1350 | DeoptId::kNone, catch_entry); |
| 1351 | } else { |
| 1352 | param = new (Z) |
| 1353 | ParameterInstr(/*env_index=*/i, |
| 1354 | /*param_index=*/ParameterInstr::kNotFunctionParameter, |
| 1355 | i, catch_entry, kTagged); |
| 1356 | } |
| 1357 | |
| 1358 | AllocateSSAIndex(def: param); // New SSA temp. |
| 1359 | (*env)[i] = param; |
| 1360 | AddToInitialDefinitions(catch_entry, param); |
| 1361 | } |
| 1362 | } |
| 1363 | |
| 1364 | void FlowGraph::AttachEnvironment(Instruction* instr, |
| 1365 | GrowableArray<Definition*>* env) { |
| 1366 | auto deopt_env = Environment::From(zone: zone(), definitions: *env, fixed_parameter_count: num_direct_parameters_, |
| 1367 | lazy_deopt_pruning_count: instr->NumberOfInputsConsumedBeforeCall(), |
| 1368 | parsed_function: parsed_function_); |
| 1369 | instr->SetEnvironment(deopt_env); |
| 1370 | for (Environment::DeepIterator it(deopt_env); !it.Done(); it.Advance()) { |
| 1371 | Value* use = it.CurrentValue(); |
| 1372 | use->definition()->AddEnvUse(value: use); |
| 1373 | } |
| 1374 | } |
| 1375 | |
| 1376 | void FlowGraph::RenameRecursive( |
| 1377 | BlockEntryInstr* block_entry, |
| 1378 | GrowableArray<Definition*>* env, |
| 1379 | GrowableArray<PhiInstr*>* live_phis, |
| 1380 | VariableLivenessAnalysis* variable_liveness, |
| 1381 | ZoneGrowableArray<Definition*>* inlining_parameters) { |
| 1382 | // 1. Process phis first. |
| 1383 | if (auto join = block_entry->AsJoinEntry()) { |
| 1384 | if (join->phis() != nullptr) { |
| 1385 | const intptr_t local_phi_count = variable_count() + join->stack_depth(); |
| 1386 | ASSERT(join->phis()->length() == local_phi_count); |
| 1387 | for (intptr_t i = 0; i < local_phi_count; ++i) { |
| 1388 | PhiInstr* phi = (*join->phis())[i]; |
| 1389 | if (phi != nullptr) { |
| 1390 | (*env)[i] = phi; |
| 1391 | AllocateSSAIndex(phi); // New SSA temp. |
| 1392 | if (block_entry->InsideTryBlock() && !phi->is_alive()) { |
| 1393 | // This is a safe approximation. Inside try{} all locals are |
| 1394 | // used at every call implicitly, so we mark all phis as live |
| 1395 | // from the start. |
| 1396 | // TODO(fschneider): Improve this approximation to eliminate |
| 1397 | // more redundant phis. |
| 1398 | phi->mark_alive(); |
| 1399 | live_phis->Add(phi); |
| 1400 | } |
| 1401 | } |
| 1402 | } |
| 1403 | } |
| 1404 | } else if (auto osr_entry = block_entry->AsOsrEntry()) { |
| 1405 | PopulateEnvironmentFromOsrEntry(osr_entry: osr_entry, env); |
| 1406 | } else if (auto function_entry = block_entry->AsFunctionEntry()) { |
| 1407 | ASSERT(!IsCompiledForOsr()); |
| 1408 | PopulateEnvironmentFromFunctionEntry( |
| 1409 | function_entry: function_entry, env, live_phis, variable_liveness, inlining_parameters); |
| 1410 | } else if (auto catch_entry = block_entry->AsCatchBlockEntry()) { |
| 1411 | PopulateEnvironmentFromCatchEntry(catch_entry: catch_entry, env); |
| 1412 | } |
| 1413 | |
| 1414 | if (!block_entry->IsGraphEntry() && |
| 1415 | !block_entry->IsBlockEntryWithInitialDefs()) { |
| 1416 | // Prune non-live variables at block entry by replacing their environment |
| 1417 | // slots with null. |
| 1418 | BitVector* live_in = variable_liveness->GetLiveInSet(block_entry); |
| 1419 | for (intptr_t i = 0; i < variable_count(); i++) { |
| 1420 | // TODO(fschneider): Make sure that live_in always contains the |
| 1421 | // CurrentContext variable to avoid the special case here. |
| 1422 | if (FLAG_prune_dead_locals && !live_in->Contains(i) && |
| 1423 | !IsImmortalVariable(env_index: i)) { |
| 1424 | (*env)[i] = constant_dead(); |
| 1425 | } |
| 1426 | } |
| 1427 | } |
| 1428 | |
| 1429 | // Attach environment to the block entry. |
| 1430 | AttachEnvironment(block_entry, env); |
| 1431 | |
| 1432 | // 2. Process normal instructions. |
| 1433 | for (ForwardInstructionIterator it(block_entry); !it.Done(); it.Advance()) { |
| 1434 | Instruction* current = it.Current(); |
| 1435 | |
| 1436 | // Attach current environment to the instructions that need it. |
| 1437 | if (current->NeedsEnvironment()) { |
| 1438 | AttachEnvironment(instr: current, env); |
| 1439 | } |
| 1440 | |
| 1441 | // 2a. Handle uses: |
| 1442 | // Update the expression stack renaming environment for each use by |
| 1443 | // removing the renamed value. For each use of a LoadLocal, StoreLocal, |
| 1444 | // MakeTemp, DropTemps or Constant (or any expression under OSR), |
| 1445 | // replace it with the renamed value. |
| 1446 | for (intptr_t i = current->InputCount() - 1; i >= 0; --i) { |
| 1447 | Value* v = current->InputAt(i); |
| 1448 | // Update expression stack. |
| 1449 | ASSERT(env->length() > variable_count()); |
| 1450 | Definition* reaching_defn = env->RemoveLast(); |
| 1451 | Definition* input_defn = v->definition(); |
| 1452 | if (input_defn != reaching_defn) { |
| 1453 | // Inspect the replacing definition before making the change. |
| 1454 | if (IsCompiledForOsr()) { |
| 1455 | // Under OSR, constants can reside on the expression stack. Just |
| 1456 | // generate the constant rather than going through a synthetic phi. |
| 1457 | if (input_defn->IsConstant() && reaching_defn->IsPhi()) { |
| 1458 | ASSERT(env->length() < osr_variable_count()); |
| 1459 | auto constant = GetConstant(object: input_defn->AsConstant()->value()); |
| 1460 | current->ReplaceInEnvironment(current: reaching_defn, replacement: constant); |
| 1461 | reaching_defn = constant; |
| 1462 | } |
| 1463 | } else { |
| 1464 | // Note: constants can only be replaced with other constants. |
| 1465 | ASSERT(input_defn->IsLoadLocal() || input_defn->IsStoreLocal() || |
| 1466 | input_defn->IsDropTemps() || input_defn->IsMakeTemp() || |
| 1467 | (input_defn->IsConstant() && reaching_defn->IsConstant())); |
| 1468 | } |
| 1469 | // Assert we are not referencing nulls in the initial environment. |
| 1470 | ASSERT(reaching_defn->ssa_temp_index() != -1); |
| 1471 | // Replace the definition. |
| 1472 | v->set_definition(reaching_defn); |
| 1473 | input_defn = reaching_defn; |
| 1474 | } |
| 1475 | input_defn->AddInputUse(value: v); |
| 1476 | } |
| 1477 | |
| 1478 | // 2b. Handle LoadLocal/StoreLocal/MakeTemp/DropTemps/Constant specially. |
| 1479 | // Other definitions are just pushed to the environment directly. |
| 1480 | Definition* result = nullptr; |
| 1481 | switch (current->tag()) { |
| 1482 | case Instruction::kLoadLocal: { |
| 1483 | LoadLocalInstr* load = current->Cast<LoadLocalInstr>(); |
| 1484 | |
| 1485 | // The graph construction ensures we do not have an unused LoadLocal |
| 1486 | // computation. |
| 1487 | ASSERT(load->HasTemp()); |
| 1488 | const intptr_t index = EnvIndex(variable: &load->local()); |
| 1489 | result = (*env)[index]; |
| 1490 | |
| 1491 | PhiInstr* phi = result->AsPhi(); |
| 1492 | if ((phi != nullptr) && !phi->is_alive()) { |
| 1493 | phi->mark_alive(); |
| 1494 | live_phis->Add(phi); |
| 1495 | } |
| 1496 | |
| 1497 | if (FLAG_prune_dead_locals && |
| 1498 | variable_liveness->IsLastLoad(block: block_entry, load)) { |
| 1499 | (*env)[index] = constant_dead(); |
| 1500 | } |
| 1501 | |
| 1502 | // Record captured parameters so that they can be skipped when |
| 1503 | // emitting sync code inside optimized try-blocks. |
| 1504 | if (load->local().is_captured_parameter()) { |
| 1505 | captured_parameters_->Add(i: index); |
| 1506 | } |
| 1507 | |
| 1508 | if (phi != nullptr) { |
| 1509 | // Assign type to Phi if it doesn't have a type yet. |
| 1510 | // For a Phi to appear in the local variable it either was placed |
| 1511 | // there as incoming value by renaming or it was stored there by |
| 1512 | // StoreLocal which took this Phi from another local via LoadLocal, |
| 1513 | // to which this reasoning applies recursively. |
| 1514 | // |
| 1515 | // This means that we are guaranteed to process LoadLocal for a |
| 1516 | // matching variable first, unless there was an OSR with a non-empty |
| 1517 | // expression stack. In the latter case, Phi inserted by |
| 1518 | // FlowGraph::AddSyntheticPhis for expression temp will not have an |
| 1519 | // assigned type and may be accessed by StoreLocal and subsequent |
| 1520 | // LoadLocal. |
| 1521 | // |
| 1522 | if (!phi->HasType()) { |
| 1523 | // Check if phi corresponds to the same slot. |
| 1524 | auto* phis = phi->block()->phis(); |
| 1525 | if ((index < phis->length()) && (*phis)[index] == phi) { |
| 1526 | phi->UpdateType(CompileType::FromAbstractType( |
| 1527 | type: load->local().type(), can_be_null: CompileType::kCanBeNull, |
| 1528 | /*can_be_sentinel=*/load->local().is_late())); |
| 1529 | } else { |
| 1530 | ASSERT(IsCompiledForOsr() && (phi->block()->stack_depth() > 0)); |
| 1531 | } |
| 1532 | } |
| 1533 | } |
| 1534 | break; |
| 1535 | } |
| 1536 | |
| 1537 | case Instruction::kStoreLocal: { |
| 1538 | StoreLocalInstr* store = current->Cast<StoreLocalInstr>(); |
| 1539 | const intptr_t index = EnvIndex(variable: &store->local()); |
| 1540 | result = store->value()->definition(); |
| 1541 | |
| 1542 | if (!FLAG_prune_dead_locals || |
| 1543 | variable_liveness->IsStoreAlive(block: block_entry, store)) { |
| 1544 | (*env)[index] = result; |
| 1545 | } else { |
| 1546 | (*env)[index] = constant_dead(); |
| 1547 | } |
| 1548 | break; |
| 1549 | } |
| 1550 | |
| 1551 | case Instruction::kDropTemps: { |
| 1552 | // Drop temps from the environment. |
| 1553 | DropTempsInstr* drop = current->Cast<DropTempsInstr>(); |
| 1554 | for (intptr_t j = 0; j < drop->num_temps(); j++) { |
| 1555 | env->RemoveLast(); |
| 1556 | } |
| 1557 | if (drop->value() != nullptr) { |
| 1558 | result = drop->value()->definition(); |
| 1559 | } |
| 1560 | ASSERT((drop->value() != nullptr) || !drop->HasTemp()); |
| 1561 | break; |
| 1562 | } |
| 1563 | |
| 1564 | case Instruction::kConstant: { |
| 1565 | ConstantInstr* constant = current->Cast<ConstantInstr>(); |
| 1566 | if (constant->HasTemp()) { |
| 1567 | result = GetConstant(object: constant->value()); |
| 1568 | } |
| 1569 | break; |
| 1570 | } |
| 1571 | |
| 1572 | case Instruction::kMakeTemp: { |
| 1573 | // Simply push a #null value to the expression stack. |
| 1574 | result = constant_null_; |
| 1575 | break; |
| 1576 | } |
| 1577 | |
| 1578 | case Instruction::kMoveArgument: |
| 1579 | UNREACHABLE(); |
| 1580 | break; |
| 1581 | |
| 1582 | case Instruction::kCheckStackOverflow: |
| 1583 | // Assert environment integrity at checkpoints. |
| 1584 | ASSERT((variable_count() + |
| 1585 | current->AsCheckStackOverflow()->stack_depth()) == |
| 1586 | env->length()); |
| 1587 | continue; |
| 1588 | |
| 1589 | default: |
| 1590 | // Other definitions directly go into the environment. |
| 1591 | if (Definition* definition = current->AsDefinition()) { |
| 1592 | if (definition->HasTemp()) { |
| 1593 | // Assign fresh SSA temporary and update expression stack. |
| 1594 | AllocateSSAIndex(def: definition); |
| 1595 | env->Add(definition); |
| 1596 | } |
| 1597 | } |
| 1598 | continue; |
| 1599 | } |
| 1600 | |
| 1601 | // Update expression stack and remove current instruction from the graph. |
| 1602 | Definition* definition = current->Cast<Definition>(); |
| 1603 | if (definition->HasTemp()) { |
| 1604 | ASSERT(result != nullptr); |
| 1605 | env->Add(result); |
| 1606 | } |
| 1607 | it.RemoveCurrentFromGraph(); |
| 1608 | } |
| 1609 | |
| 1610 | // 3. Process dominated blocks. |
| 1611 | const bool set_stack = (block_entry == graph_entry()) && IsCompiledForOsr(); |
| 1612 | for (intptr_t i = 0; i < block_entry->dominated_blocks().length(); ++i) { |
| 1613 | BlockEntryInstr* block = block_entry->dominated_blocks()[i]; |
| 1614 | GrowableArray<Definition*> new_env(env->length()); |
| 1615 | new_env.AddArray(*env); |
| 1616 | // During OSR, when traversing from the graph entry directly any block |
| 1617 | // (which may be a non-entry), we must adjust the environment to mimic |
| 1618 | // a non-empty incoming expression stack to ensure temporaries refer to |
| 1619 | // the right stack items. |
| 1620 | const intptr_t stack_depth = block->stack_depth(); |
| 1621 | ASSERT(stack_depth >= 0); |
| 1622 | if (set_stack) { |
| 1623 | ASSERT(variable_count() == new_env.length()); |
| 1624 | new_env.FillWith(constant_dead(), variable_count(), stack_depth); |
| 1625 | } else if (!block->last_instruction()->IsTailCall()) { |
| 1626 | // Assert environment integrity otherwise. |
| 1627 | ASSERT((variable_count() + stack_depth) == new_env.length()); |
| 1628 | } |
| 1629 | RenameRecursive(block_entry: block, env: &new_env, live_phis, variable_liveness, |
| 1630 | inlining_parameters); |
| 1631 | } |
| 1632 | |
| 1633 | // 4. Process successor block. We have edge-split form, so that only blocks |
| 1634 | // with one successor can have a join block as successor. |
| 1635 | if ((block_entry->last_instruction()->SuccessorCount() == 1) && |
| 1636 | block_entry->last_instruction()->SuccessorAt(index: 0)->IsJoinEntry()) { |
| 1637 | JoinEntryInstr* successor = |
| 1638 | block_entry->last_instruction()->SuccessorAt(index: 0)->AsJoinEntry(); |
| 1639 | intptr_t pred_index = successor->IndexOfPredecessor(pred: block_entry); |
| 1640 | ASSERT(pred_index >= 0); |
| 1641 | if (successor->phis() != nullptr) { |
| 1642 | for (intptr_t i = 0; i < successor->phis()->length(); ++i) { |
| 1643 | PhiInstr* phi = (*successor->phis())[i]; |
| 1644 | if (phi != nullptr) { |
| 1645 | // Rename input operand. |
| 1646 | Definition* input = (*env)[i]; |
| 1647 | ASSERT(input != nullptr); |
| 1648 | ASSERT(!input->IsMoveArgument()); |
| 1649 | Value* use = new (zone()) Value(input); |
| 1650 | phi->SetInputAt(pred_index, use); |
| 1651 | } |
| 1652 | } |
| 1653 | } |
| 1654 | } |
| 1655 | } |
| 1656 | |
| 1657 | #if defined(DEBUG) |
| 1658 | void FlowGraph::ValidatePhis() { |
| 1659 | if (!FLAG_prune_dead_locals) { |
| 1660 | // We can only check if dead locals are pruned. |
| 1661 | return; |
| 1662 | } |
| 1663 | |
| 1664 | for (intptr_t i = 0, n = preorder().length(); i < n; ++i) { |
| 1665 | BlockEntryInstr* block_entry = preorder()[i]; |
| 1666 | Instruction* last_instruction = block_entry->last_instruction(); |
| 1667 | |
| 1668 | if ((last_instruction->SuccessorCount() == 1) && |
| 1669 | last_instruction->SuccessorAt(index: 0)->IsJoinEntry()) { |
| 1670 | JoinEntryInstr* successor = |
| 1671 | last_instruction->SuccessorAt(index: 0)->AsJoinEntry(); |
| 1672 | if (successor->phis() != nullptr) { |
| 1673 | for (intptr_t j = 0; j < successor->phis()->length(); ++j) { |
| 1674 | PhiInstr* phi = (*successor->phis())[j]; |
| 1675 | if (phi == nullptr && !IsImmortalVariable(env_index: j)) { |
| 1676 | // We have no phi node for the this variable. |
| 1677 | // Double check we do not have a different value in our env. |
| 1678 | // If we do, we would have needed a phi-node in the successor. |
| 1679 | ASSERT(last_instruction->env() != nullptr); |
| 1680 | Definition* current_definition = |
| 1681 | last_instruction->env()->ValueAt(ix: j)->definition(); |
| 1682 | ASSERT(successor->env() != nullptr); |
| 1683 | Definition* successor_definition = |
| 1684 | successor->env()->ValueAt(j)->definition(); |
| 1685 | if (!current_definition->IsConstant() && |
| 1686 | !successor_definition->IsConstant()) { |
| 1687 | ASSERT(current_definition == successor_definition); |
| 1688 | } |
| 1689 | } |
| 1690 | } |
| 1691 | } |
| 1692 | } |
| 1693 | } |
| 1694 | } |
| 1695 | #endif // defined(DEBUG) |
| 1696 | |
| 1697 | void FlowGraph::RemoveDeadPhis(GrowableArray<PhiInstr*>* live_phis) { |
| 1698 | // Augment live_phis with those that have implicit real used at |
| 1699 | // potentially throwing instructions if there is a try-catch in this graph. |
| 1700 | if (!graph_entry()->catch_entries().is_empty()) { |
| 1701 | for (BlockIterator it(postorder_iterator()); !it.Done(); it.Advance()) { |
| 1702 | JoinEntryInstr* join = it.Current()->AsJoinEntry(); |
| 1703 | if (join == nullptr) continue; |
| 1704 | for (PhiIterator phi_it(join); !phi_it.Done(); phi_it.Advance()) { |
| 1705 | PhiInstr* phi = phi_it.Current(); |
| 1706 | if (phi == nullptr || phi->is_alive() || |
| 1707 | (phi->input_use_list() != nullptr) || |
| 1708 | (phi->env_use_list() == nullptr)) { |
| 1709 | continue; |
| 1710 | } |
| 1711 | for (Value::Iterator it(phi->env_use_list()); !it.Done(); |
| 1712 | it.Advance()) { |
| 1713 | Value* use = it.Current(); |
| 1714 | if (use->instruction()->MayThrow() && |
| 1715 | use->instruction()->GetBlock()->InsideTryBlock()) { |
| 1716 | live_phis->Add(phi); |
| 1717 | phi->mark_alive(); |
| 1718 | break; |
| 1719 | } |
| 1720 | } |
| 1721 | } |
| 1722 | } |
| 1723 | } |
| 1724 | |
| 1725 | while (!live_phis->is_empty()) { |
| 1726 | PhiInstr* phi = live_phis->RemoveLast(); |
| 1727 | for (intptr_t i = 0; i < phi->InputCount(); i++) { |
| 1728 | Value* val = phi->InputAt(i); |
| 1729 | PhiInstr* used_phi = val->definition()->AsPhi(); |
| 1730 | if ((used_phi != nullptr) && !used_phi->is_alive()) { |
| 1731 | used_phi->mark_alive(); |
| 1732 | live_phis->Add(used_phi); |
| 1733 | } |
| 1734 | } |
| 1735 | } |
| 1736 | |
| 1737 | for (BlockIterator it(postorder_iterator()); !it.Done(); it.Advance()) { |
| 1738 | JoinEntryInstr* join = it.Current()->AsJoinEntry(); |
| 1739 | if (join != nullptr) join->RemoveDeadPhis(replacement: constant_dead()); |
| 1740 | } |
| 1741 | } |
| 1742 | |
| 1743 | RedefinitionInstr* FlowGraph::EnsureRedefinition(Instruction* prev, |
| 1744 | Definition* original, |
| 1745 | CompileType compile_type) { |
| 1746 | RedefinitionInstr* first = prev->next()->AsRedefinition(); |
| 1747 | if (first != nullptr && (first->constrained_type() != nullptr)) { |
| 1748 | if ((first->value()->definition() == original) && |
| 1749 | first->constrained_type()->IsEqualTo(other: &compile_type)) { |
| 1750 | // Already redefined. Do nothing. |
| 1751 | return nullptr; |
| 1752 | } |
| 1753 | } |
| 1754 | RedefinitionInstr* redef = new RedefinitionInstr(new Value(original)); |
| 1755 | |
| 1756 | // Don't set the constrained type when the type is None(), which denotes an |
| 1757 | // unreachable value (e.g. using value null after some form of null check). |
| 1758 | if (!compile_type.IsNone()) { |
| 1759 | redef->set_constrained_type(new CompileType(compile_type)); |
| 1760 | } |
| 1761 | |
| 1762 | InsertAfter(prev, instr: redef, env: nullptr, use_kind: FlowGraph::kValue); |
| 1763 | RenameDominatedUses(def: original, dom: redef, other: redef); |
| 1764 | |
| 1765 | if (redef->input_use_list() == nullptr) { |
| 1766 | // There are no dominated uses, so the newly added Redefinition is useless. |
| 1767 | // Remove Redefinition to avoid interfering with |
| 1768 | // BranchSimplifier::Simplify which needs empty blocks. |
| 1769 | redef->RemoveFromGraph(); |
| 1770 | return nullptr; |
| 1771 | } |
| 1772 | |
| 1773 | return redef; |
| 1774 | } |
| 1775 | |
| 1776 | void FlowGraph::RemoveRedefinitions(bool keep_checks) { |
| 1777 | // Remove redefinition and check instructions that were inserted |
| 1778 | // to make a control dependence explicit with a data dependence, |
| 1779 | // for example, to inhibit hoisting. |
| 1780 | for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| 1781 | block_it.Advance()) { |
| 1782 | thread()->CheckForSafepoint(); |
| 1783 | for (ForwardInstructionIterator instr_it(block_it.Current()); |
| 1784 | !instr_it.Done(); instr_it.Advance()) { |
| 1785 | Instruction* instruction = instr_it.Current(); |
| 1786 | if (auto redef = instruction->AsRedefinition()) { |
| 1787 | redef->ReplaceUsesWith(other: redef->value()->definition()); |
| 1788 | instr_it.RemoveCurrentFromGraph(); |
| 1789 | } else if (keep_checks) { |
| 1790 | continue; |
| 1791 | } else if (auto def = instruction->AsDefinition()) { |
| 1792 | Value* value = def->RedefinedValue(); |
| 1793 | if (value != nullptr) { |
| 1794 | def->ReplaceUsesWith(other: value->definition()); |
| 1795 | def->ClearSSATempIndex(); |
| 1796 | } |
| 1797 | } |
| 1798 | } |
| 1799 | } |
| 1800 | } |
| 1801 | |
| 1802 | BitVector* FlowGraph::FindLoopBlocks(BlockEntryInstr* m, |
| 1803 | BlockEntryInstr* n) const { |
| 1804 | GrowableArray<BlockEntryInstr*> stack; |
| 1805 | BitVector* loop_blocks = new (zone()) BitVector(zone(), preorder_.length()); |
| 1806 | |
| 1807 | loop_blocks->Add(i: n->preorder_number()); |
| 1808 | if (n != m) { |
| 1809 | loop_blocks->Add(i: m->preorder_number()); |
| 1810 | stack.Add(m); |
| 1811 | } |
| 1812 | |
| 1813 | while (!stack.is_empty()) { |
| 1814 | BlockEntryInstr* p = stack.RemoveLast(); |
| 1815 | for (intptr_t i = 0; i < p->PredecessorCount(); ++i) { |
| 1816 | BlockEntryInstr* q = p->PredecessorAt(index: i); |
| 1817 | if (!loop_blocks->Contains(i: q->preorder_number())) { |
| 1818 | loop_blocks->Add(i: q->preorder_number()); |
| 1819 | stack.Add(q); |
| 1820 | } |
| 1821 | } |
| 1822 | } |
| 1823 | return loop_blocks; |
| 1824 | } |
| 1825 | |
| 1826 | LoopHierarchy* FlowGraph::ComputeLoops() const { |
| 1827 | // Iterate over all entry blocks in the flow graph to attach |
| 1828 | // loop information to each loop header. |
| 1829 | ZoneGrowableArray<BlockEntryInstr*>* = |
| 1830 | new (zone()) ZoneGrowableArray<BlockEntryInstr*>(); |
| 1831 | for (BlockIterator it = postorder_iterator(); !it.Done(); it.Advance()) { |
| 1832 | BlockEntryInstr* block = it.Current(); |
| 1833 | // Reset loop information on every entry block (since this method |
| 1834 | // may recompute loop information on a modified flow graph). |
| 1835 | block->set_loop_info(nullptr); |
| 1836 | // Iterate over predecessors to find back edges. |
| 1837 | for (intptr_t i = 0; i < block->PredecessorCount(); ++i) { |
| 1838 | BlockEntryInstr* pred = block->PredecessorAt(index: i); |
| 1839 | if (block->Dominates(other: pred)) { |
| 1840 | // Identify the block as a loop header and add the blocks in the |
| 1841 | // loop to the loop information. Loops that share the same loop |
| 1842 | // header are treated as one loop by merging these blocks. |
| 1843 | BitVector* loop_blocks = FindLoopBlocks(m: pred, n: block); |
| 1844 | if (block->loop_info() == nullptr) { |
| 1845 | intptr_t id = loop_headers->length(); |
| 1846 | block->set_loop_info(new (zone()) LoopInfo(id, block, loop_blocks)); |
| 1847 | loop_headers->Add(value: block); |
| 1848 | } else { |
| 1849 | ASSERT(block->loop_info()->header() == block); |
| 1850 | block->loop_info()->AddBlocks(blocks: loop_blocks); |
| 1851 | } |
| 1852 | block->loop_info()->AddBackEdge(block: pred); |
| 1853 | } |
| 1854 | } |
| 1855 | } |
| 1856 | |
| 1857 | // Build the loop hierarchy and link every entry block to |
| 1858 | // the closest enveloping loop in loop hierarchy. |
| 1859 | return new (zone()) LoopHierarchy(loop_headers, preorder_); |
| 1860 | } |
| 1861 | |
| 1862 | intptr_t FlowGraph::InstructionCount() const { |
| 1863 | intptr_t size = 0; |
| 1864 | // Iterate each block, skipping the graph entry. |
| 1865 | for (intptr_t i = 1; i < preorder_.length(); ++i) { |
| 1866 | BlockEntryInstr* block = preorder_[i]; |
| 1867 | |
| 1868 | // Skip any blocks from the prologue to make them not count towards the |
| 1869 | // inlining instruction budget. |
| 1870 | const intptr_t block_id = block->block_id(); |
| 1871 | if (prologue_info_.Contains(block_id)) { |
| 1872 | continue; |
| 1873 | } |
| 1874 | |
| 1875 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 1876 | ++size; |
| 1877 | } |
| 1878 | } |
| 1879 | return size; |
| 1880 | } |
| 1881 | |
| 1882 | void FlowGraph::ConvertUse(Value* use, Representation from_rep) { |
| 1883 | const Representation to_rep = |
| 1884 | use->instruction()->RequiredInputRepresentation(idx: use->use_index()); |
| 1885 | if (from_rep == to_rep || to_rep == kNoRepresentation) { |
| 1886 | return; |
| 1887 | } |
| 1888 | InsertConversion(from: from_rep, to: to_rep, use, /*is_environment_use=*/false); |
| 1889 | } |
| 1890 | |
| 1891 | static bool IsUnboxedInteger(Representation rep) { |
| 1892 | return (rep == kUnboxedInt32) || (rep == kUnboxedUint32) || |
| 1893 | (rep == kUnboxedInt64); |
| 1894 | } |
| 1895 | |
| 1896 | static bool ShouldInlineSimd() { |
| 1897 | return FlowGraphCompiler::SupportsUnboxedSimd128(); |
| 1898 | } |
| 1899 | |
| 1900 | static bool CanUnboxDouble() { |
| 1901 | return FlowGraphCompiler::SupportsUnboxedDoubles(); |
| 1902 | } |
| 1903 | |
| 1904 | static bool CanConvertInt64ToDouble() { |
| 1905 | return FlowGraphCompiler::CanConvertInt64ToDouble(); |
| 1906 | } |
| 1907 | |
| 1908 | void FlowGraph::InsertConversion(Representation from, |
| 1909 | Representation to, |
| 1910 | Value* use, |
| 1911 | bool is_environment_use) { |
| 1912 | ASSERT(from != to); |
| 1913 | Instruction* insert_before; |
| 1914 | PhiInstr* phi = use->instruction()->AsPhi(); |
| 1915 | if (phi != nullptr) { |
| 1916 | ASSERT(phi->is_alive()); |
| 1917 | // For phis conversions have to be inserted in the predecessor. |
| 1918 | auto predecessor = phi->block()->PredecessorAt(index: use->use_index()); |
| 1919 | insert_before = predecessor->last_instruction(); |
| 1920 | ASSERT(insert_before->GetBlock() == predecessor); |
| 1921 | } else { |
| 1922 | insert_before = use->instruction(); |
| 1923 | } |
| 1924 | const Instruction::SpeculativeMode speculative_mode = |
| 1925 | use->instruction()->SpeculativeModeOfInput(index: use->use_index()); |
| 1926 | Instruction* deopt_target = nullptr; |
| 1927 | if (speculative_mode == Instruction::kGuardInputs || to == kUnboxedInt32) { |
| 1928 | deopt_target = insert_before; |
| 1929 | } |
| 1930 | |
| 1931 | Definition* converted = nullptr; |
| 1932 | if (IsUnboxedInteger(rep: from) && IsUnboxedInteger(rep: to)) { |
| 1933 | const intptr_t deopt_id = (to == kUnboxedInt32) && (deopt_target != nullptr) |
| 1934 | ? deopt_target->DeoptimizationTarget() |
| 1935 | : DeoptId::kNone; |
| 1936 | converted = |
| 1937 | new (Z) IntConverterInstr(from, to, use->CopyWithType(), deopt_id); |
| 1938 | } else if ((from == kUnboxedInt32) && (to == kUnboxedDouble)) { |
| 1939 | converted = new Int32ToDoubleInstr(use->CopyWithType()); |
| 1940 | } else if ((from == kUnboxedInt64) && (to == kUnboxedDouble) && |
| 1941 | CanConvertInt64ToDouble()) { |
| 1942 | const intptr_t deopt_id = (deopt_target != nullptr) |
| 1943 | ? deopt_target->DeoptimizationTarget() |
| 1944 | : DeoptId::kNone; |
| 1945 | ASSERT(CanUnboxDouble()); |
| 1946 | converted = new Int64ToDoubleInstr(use->CopyWithType(), deopt_id); |
| 1947 | } else if ((from == kTagged) && Boxing::Supports(rep: to)) { |
| 1948 | const intptr_t deopt_id = (deopt_target != nullptr) |
| 1949 | ? deopt_target->DeoptimizationTarget() |
| 1950 | : DeoptId::kNone; |
| 1951 | converted = |
| 1952 | UnboxInstr::Create(to, value: use->CopyWithType(), deopt_id, speculative_mode); |
| 1953 | } else if ((to == kTagged) && Boxing::Supports(rep: from)) { |
| 1954 | converted = BoxInstr::Create(from, value: use->CopyWithType()); |
| 1955 | } else if ((to == kPairOfTagged) && (from == kTagged)) { |
| 1956 | // Insert conversion to an unboxed record, which can be only used |
| 1957 | // in Return instruction. |
| 1958 | ASSERT(use->instruction()->IsReturn()); |
| 1959 | Definition* x = new (Z) |
| 1960 | LoadFieldInstr(use->CopyWithType(), |
| 1961 | Slot::GetRecordFieldSlot( |
| 1962 | thread: thread(), offset_in_bytes: compiler::target::Record::field_offset(index: 0)), |
| 1963 | InstructionSource()); |
| 1964 | InsertBefore(next: insert_before, instr: x, env: nullptr, use_kind: FlowGraph::kValue); |
| 1965 | Definition* y = new (Z) |
| 1966 | LoadFieldInstr(use->CopyWithType(), |
| 1967 | Slot::GetRecordFieldSlot( |
| 1968 | thread: thread(), offset_in_bytes: compiler::target::Record::field_offset(index: 1)), |
| 1969 | InstructionSource()); |
| 1970 | InsertBefore(next: insert_before, instr: y, env: nullptr, use_kind: FlowGraph::kValue); |
| 1971 | converted = new (Z) MakePairInstr(new (Z) Value(x), new (Z) Value(y)); |
| 1972 | } else if ((to == kTagged) && (from == kPairOfTagged)) { |
| 1973 | // Handled in FlowGraph::InsertRecordBoxing. |
| 1974 | UNREACHABLE(); |
| 1975 | } else { |
| 1976 | // We have failed to find a suitable conversion instruction. |
| 1977 | // Insert two "dummy" conversion instructions with the correct |
| 1978 | // "from" and "to" representation. The inserted instructions will |
| 1979 | // trigger a deoptimization if executed. See #12417 for a discussion. |
| 1980 | // If the use is not speculative, then this code should be unreachable. |
| 1981 | // Insert Stop for a graceful error and aid unreachable code elimination. |
| 1982 | if (speculative_mode == Instruction::kNotSpeculative) { |
| 1983 | StopInstr* stop = new (Z) StopInstr("Incompatible conversion." ); |
| 1984 | InsertBefore(next: insert_before, instr: stop, env: nullptr, use_kind: FlowGraph::kEffect); |
| 1985 | } |
| 1986 | const intptr_t deopt_id = (deopt_target != nullptr) |
| 1987 | ? deopt_target->DeoptimizationTarget() |
| 1988 | : DeoptId::kNone; |
| 1989 | ASSERT(Boxing::Supports(from)); |
| 1990 | ASSERT(Boxing::Supports(to)); |
| 1991 | Definition* boxed = BoxInstr::Create(from, value: use->CopyWithType()); |
| 1992 | use->BindTo(def: boxed); |
| 1993 | InsertBefore(next: insert_before, instr: boxed, env: nullptr, use_kind: FlowGraph::kValue); |
| 1994 | converted = UnboxInstr::Create(to, value: new (Z) Value(boxed), deopt_id, |
| 1995 | speculative_mode); |
| 1996 | } |
| 1997 | ASSERT(converted != nullptr); |
| 1998 | InsertBefore(next: insert_before, instr: converted, |
| 1999 | env: (deopt_target != nullptr) ? deopt_target->env() : nullptr, |
| 2000 | use_kind: FlowGraph::kValue); |
| 2001 | if (is_environment_use) { |
| 2002 | use->BindToEnvironment(def: converted); |
| 2003 | } else { |
| 2004 | use->BindTo(def: converted); |
| 2005 | } |
| 2006 | } |
| 2007 | |
| 2008 | static bool NeedsRecordBoxing(Definition* def) { |
| 2009 | if (def->env_use_list() != nullptr) return true; |
| 2010 | for (Value::Iterator it(def->input_use_list()); !it.Done(); it.Advance()) { |
| 2011 | Value* use = it.Current(); |
| 2012 | if (use->instruction()->RequiredInputRepresentation(idx: use->use_index()) != |
| 2013 | kPairOfTagged) { |
| 2014 | return true; |
| 2015 | } |
| 2016 | } |
| 2017 | return false; |
| 2018 | } |
| 2019 | |
| 2020 | void FlowGraph::InsertRecordBoxing(Definition* def) { |
| 2021 | // Insert conversion from unboxed record, which can be only returned |
| 2022 | // by a Dart call with a known interface/direct target. |
| 2023 | const Function* target = nullptr; |
| 2024 | if (auto* call = def->AsStaticCall()) { |
| 2025 | target = &(call->function()); |
| 2026 | } else if (auto* call = def->AsInstanceCallBase()) { |
| 2027 | target = &(call->interface_target()); |
| 2028 | } else if (auto* call = def->AsDispatchTableCall()) { |
| 2029 | target = &(call->interface_target()); |
| 2030 | } else { |
| 2031 | UNREACHABLE(); |
| 2032 | } |
| 2033 | ASSERT(target != nullptr && !target->IsNull()); |
| 2034 | |
| 2035 | kernel::UnboxingInfoMetadata* unboxing_metadata = |
| 2036 | kernel::UnboxingInfoMetadataOf(function: *target, Z); |
| 2037 | ASSERT(unboxing_metadata != nullptr); |
| 2038 | const RecordShape shape = unboxing_metadata->return_info.record_shape; |
| 2039 | ASSERT(shape.num_fields() == 2); |
| 2040 | |
| 2041 | auto* x = new (Z) |
| 2042 | ExtractNthOutputInstr(new (Z) Value(def), 0, kTagged, kDynamicCid); |
| 2043 | auto* y = new (Z) |
| 2044 | ExtractNthOutputInstr(new (Z) Value(def), 1, kTagged, kDynamicCid); |
| 2045 | auto* alloc = new (Z) |
| 2046 | AllocateSmallRecordInstr(InstructionSource(), shape, new (Z) Value(x), |
| 2047 | new (Z) Value(y), nullptr, def->deopt_id()); |
| 2048 | def->ReplaceUsesWith(other: alloc); |
| 2049 | // Uses of 'def' in 'x' and 'y' should not be replaced as 'x' and 'y' |
| 2050 | // are not added to the flow graph yet. |
| 2051 | ASSERT(x->value()->definition() == def); |
| 2052 | ASSERT(y->value()->definition() == def); |
| 2053 | Instruction* insert_before = def->next(); |
| 2054 | ASSERT(insert_before != nullptr); |
| 2055 | InsertBefore(next: insert_before, instr: x, env: nullptr, use_kind: FlowGraph::kValue); |
| 2056 | InsertBefore(next: insert_before, instr: y, env: nullptr, use_kind: FlowGraph::kValue); |
| 2057 | InsertBefore(next: insert_before, instr: alloc, env: def->env(), use_kind: FlowGraph::kValue); |
| 2058 | } |
| 2059 | |
| 2060 | void FlowGraph::InsertConversionsFor(Definition* def) { |
| 2061 | const Representation from_rep = def->representation(); |
| 2062 | |
| 2063 | // Insert boxing of a record once after the definition (if needed) |
| 2064 | // in order to avoid multiple allocations. |
| 2065 | if (from_rep == kPairOfTagged) { |
| 2066 | if (NeedsRecordBoxing(def)) { |
| 2067 | InsertRecordBoxing(def); |
| 2068 | } |
| 2069 | return; |
| 2070 | } |
| 2071 | |
| 2072 | for (Value::Iterator it(def->input_use_list()); !it.Done(); it.Advance()) { |
| 2073 | ConvertUse(use: it.Current(), from_rep); |
| 2074 | } |
| 2075 | } |
| 2076 | |
| 2077 | namespace { |
| 2078 | class PhiUnboxingHeuristic : public ValueObject { |
| 2079 | public: |
| 2080 | explicit PhiUnboxingHeuristic(FlowGraph* flow_graph) |
| 2081 | : worklist_(flow_graph, 10) {} |
| 2082 | |
| 2083 | void Process(PhiInstr* phi) { |
| 2084 | Representation unboxed = phi->representation(); |
| 2085 | |
| 2086 | switch (phi->Type()->ToCid()) { |
| 2087 | case kDoubleCid: |
| 2088 | if (CanUnboxDouble()) { |
| 2089 | // Could be UnboxedDouble or UnboxedFloat |
| 2090 | unboxed = DetermineIfAnyIncomingUnboxedFloats(phi) ? kUnboxedFloat |
| 2091 | : kUnboxedDouble; |
| 2092 | #if defined(DEBUG) |
| 2093 | if (unboxed == kUnboxedFloat) { |
| 2094 | for (auto input : phi->inputs()) { |
| 2095 | ASSERT(input->representation() != kUnboxedDouble); |
| 2096 | } |
| 2097 | } |
| 2098 | #endif |
| 2099 | } |
| 2100 | break; |
| 2101 | case kFloat32x4Cid: |
| 2102 | if (ShouldInlineSimd()) { |
| 2103 | unboxed = kUnboxedFloat32x4; |
| 2104 | } |
| 2105 | break; |
| 2106 | case kInt32x4Cid: |
| 2107 | if (ShouldInlineSimd()) { |
| 2108 | unboxed = kUnboxedInt32x4; |
| 2109 | } |
| 2110 | break; |
| 2111 | case kFloat64x2Cid: |
| 2112 | if (ShouldInlineSimd()) { |
| 2113 | unboxed = kUnboxedFloat64x2; |
| 2114 | } |
| 2115 | break; |
| 2116 | } |
| 2117 | |
| 2118 | // If all the inputs are unboxed, leave the Phi unboxed. |
| 2119 | if ((unboxed == kTagged) && phi->Type()->IsInt()) { |
| 2120 | bool should_unbox = true; |
| 2121 | Representation new_representation = kTagged; |
| 2122 | for (auto input : phi->inputs()) { |
| 2123 | if (input == phi) continue; |
| 2124 | |
| 2125 | if (!IsUnboxedInteger(input->representation())) { |
| 2126 | should_unbox = false; |
| 2127 | break; |
| 2128 | } |
| 2129 | |
| 2130 | if (new_representation == kTagged) { |
| 2131 | new_representation = input->representation(); |
| 2132 | } else if (new_representation != input->representation()) { |
| 2133 | new_representation = kNoRepresentation; |
| 2134 | } |
| 2135 | } |
| 2136 | |
| 2137 | if (should_unbox) { |
| 2138 | unboxed = |
| 2139 | new_representation != kNoRepresentation ? new_representation |
| 2140 | : RangeUtils::Fits(range: phi->range(), size: RangeBoundary::kRangeBoundaryInt32) |
| 2141 | ? kUnboxedInt32 |
| 2142 | : kUnboxedInt64; |
| 2143 | } |
| 2144 | } |
| 2145 | |
| 2146 | // Decide if it is worth to unbox an integer phi. |
| 2147 | if ((unboxed == kTagged) && phi->Type()->IsInt() && |
| 2148 | !phi->Type()->can_be_sentinel()) { |
| 2149 | #if defined(TARGET_ARCH_IS_64_BIT) |
| 2150 | // In AOT mode on 64-bit platforms always unbox integer typed phis |
| 2151 | // (similar to how we treat doubles and other boxed numeric types). |
| 2152 | // In JIT mode only unbox phis which are not fully known to be Smi. |
| 2153 | if (is_aot_ || phi->Type()->ToCid() != kSmiCid) { |
| 2154 | unboxed = kUnboxedInt64; |
| 2155 | } |
| 2156 | #else |
| 2157 | // If we are on a 32-bit platform check if there are unboxed values |
| 2158 | // flowing into the phi and the phi value itself is flowing into an |
| 2159 | // unboxed operation prefer to keep it unboxed. |
| 2160 | // We use this heuristic instead of eagerly unboxing all the phis |
| 2161 | // because we are concerned about the code size and register pressure. |
| 2162 | const bool has_unboxed_incoming_value = HasUnboxedIncomingValue(phi); |
| 2163 | const bool flows_into_unboxed_use = FlowsIntoUnboxedUse(phi); |
| 2164 | |
| 2165 | if (has_unboxed_incoming_value && flows_into_unboxed_use) { |
| 2166 | unboxed = |
| 2167 | RangeUtils::Fits(phi->range(), RangeBoundary::kRangeBoundaryInt32) |
| 2168 | ? kUnboxedInt32 |
| 2169 | : kUnboxedInt64; |
| 2170 | } |
| 2171 | #endif |
| 2172 | } |
| 2173 | |
| 2174 | phi->set_representation(unboxed); |
| 2175 | } |
| 2176 | |
| 2177 | private: |
| 2178 | // Returns [true] if there are UnboxedFloats representation flowing into |
| 2179 | // the |phi|. |
| 2180 | // This function looks through phis. |
| 2181 | bool DetermineIfAnyIncomingUnboxedFloats(PhiInstr* phi) { |
| 2182 | worklist_.Clear(); |
| 2183 | worklist_.Add(phi); |
| 2184 | for (intptr_t i = 0; i < worklist_.definitions().length(); i++) { |
| 2185 | const auto defn = worklist_.definitions()[i]; |
| 2186 | for (auto input : defn->inputs()) { |
| 2187 | if (input->representation() == kUnboxedFloat) { |
| 2188 | return true; |
| 2189 | } |
| 2190 | if (input->IsPhi()) { |
| 2191 | worklist_.Add(input); |
| 2192 | } |
| 2193 | } |
| 2194 | } |
| 2195 | return false; |
| 2196 | } |
| 2197 | |
| 2198 | // Returns |true| iff there is an unboxed definition among all potential |
| 2199 | // definitions that can flow into the |phi|. |
| 2200 | // This function looks through phis. |
| 2201 | bool HasUnboxedIncomingValue(PhiInstr* phi) { |
| 2202 | worklist_.Clear(); |
| 2203 | worklist_.Add(phi); |
| 2204 | for (intptr_t i = 0; i < worklist_.definitions().length(); i++) { |
| 2205 | const auto defn = worklist_.definitions()[i]; |
| 2206 | for (auto input : defn->inputs()) { |
| 2207 | if (IsUnboxedInteger(input->representation()) || input->IsBox()) { |
| 2208 | return true; |
| 2209 | } else if (input->IsPhi()) { |
| 2210 | worklist_.Add(input); |
| 2211 | } |
| 2212 | } |
| 2213 | } |
| 2214 | return false; |
| 2215 | } |
| 2216 | |
| 2217 | // Returns |true| iff |phi| potentially flows into an unboxed use. |
| 2218 | // This function looks through phis. |
| 2219 | bool FlowsIntoUnboxedUse(PhiInstr* phi) { |
| 2220 | worklist_.Clear(); |
| 2221 | worklist_.Add(phi); |
| 2222 | for (intptr_t i = 0; i < worklist_.definitions().length(); i++) { |
| 2223 | const auto defn = worklist_.definitions()[i]; |
| 2224 | for (auto use : defn->input_uses()) { |
| 2225 | if (IsUnboxedInteger(use->instruction()->RequiredInputRepresentation( |
| 2226 | use->use_index())) || |
| 2227 | use->instruction()->IsUnbox()) { |
| 2228 | return true; |
| 2229 | } else if (auto phi_use = use->instruction()->AsPhi()) { |
| 2230 | worklist_.Add(phi_use); |
| 2231 | } |
| 2232 | } |
| 2233 | } |
| 2234 | return false; |
| 2235 | } |
| 2236 | |
| 2237 | const bool is_aot_ = CompilerState::Current().is_aot(); |
| 2238 | DefinitionWorklist worklist_; |
| 2239 | }; |
| 2240 | } // namespace |
| 2241 | |
| 2242 | void FlowGraph::SelectRepresentations() { |
| 2243 | // First we decide for each phi if it is beneficial to unbox it. If so, we |
| 2244 | // change it's `phi->representation()` |
| 2245 | PhiUnboxingHeuristic phi_unboxing_heuristic(this); |
| 2246 | for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| 2247 | block_it.Advance()) { |
| 2248 | JoinEntryInstr* join_entry = block_it.Current()->AsJoinEntry(); |
| 2249 | if (join_entry != nullptr) { |
| 2250 | for (PhiIterator it(join_entry); !it.Done(); it.Advance()) { |
| 2251 | PhiInstr* phi = it.Current(); |
| 2252 | phi_unboxing_heuristic.Process(phi); |
| 2253 | } |
| 2254 | } |
| 2255 | } |
| 2256 | |
| 2257 | // Process all initial definitions and insert conversions when needed (depends |
| 2258 | // on phi unboxing decision above). |
| 2259 | for (intptr_t i = 0; i < graph_entry()->initial_definitions()->length(); |
| 2260 | i++) { |
| 2261 | InsertConversionsFor(def: (*graph_entry()->initial_definitions())[i]); |
| 2262 | } |
| 2263 | for (intptr_t i = 0; i < graph_entry()->SuccessorCount(); ++i) { |
| 2264 | auto successor = graph_entry()->SuccessorAt(index: i); |
| 2265 | if (auto entry = successor->AsBlockEntryWithInitialDefs()) { |
| 2266 | auto& initial_definitions = *entry->initial_definitions(); |
| 2267 | for (intptr_t j = 0; j < initial_definitions.length(); j++) { |
| 2268 | InsertConversionsFor(def: initial_definitions[j]); |
| 2269 | } |
| 2270 | } |
| 2271 | } |
| 2272 | |
| 2273 | // Process all normal definitions and insert conversions when needed (depends |
| 2274 | // on phi unboxing decision above). |
| 2275 | for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| 2276 | block_it.Advance()) { |
| 2277 | BlockEntryInstr* entry = block_it.Current(); |
| 2278 | if (JoinEntryInstr* join_entry = entry->AsJoinEntry()) { |
| 2279 | for (PhiIterator it(join_entry); !it.Done(); it.Advance()) { |
| 2280 | PhiInstr* phi = it.Current(); |
| 2281 | ASSERT(phi != nullptr); |
| 2282 | ASSERT(phi->is_alive()); |
| 2283 | InsertConversionsFor(phi); |
| 2284 | } |
| 2285 | } |
| 2286 | for (ForwardInstructionIterator it(entry); !it.Done(); it.Advance()) { |
| 2287 | Definition* def = it.Current()->AsDefinition(); |
| 2288 | if (def != nullptr) { |
| 2289 | InsertConversionsFor(def); |
| 2290 | } |
| 2291 | } |
| 2292 | } |
| 2293 | } |
| 2294 | |
| 2295 | #if defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_IA32) |
| 2296 | // Smi widening pass is only meaningful on platforms where Smi |
| 2297 | // is smaller than 32bit. For now only support it on ARM and ia32. |
| 2298 | static bool CanBeWidened(BinarySmiOpInstr* smi_op) { |
| 2299 | return BinaryInt32OpInstr::IsSupported(smi_op->op_kind(), smi_op->left(), |
| 2300 | smi_op->right()); |
| 2301 | } |
| 2302 | |
| 2303 | static bool BenefitsFromWidening(BinarySmiOpInstr* smi_op) { |
| 2304 | // TODO(vegorov): when shifts with non-constants shift count are supported |
| 2305 | // add them here as we save untagging for the count. |
| 2306 | switch (smi_op->op_kind()) { |
| 2307 | case Token::kMUL: |
| 2308 | case Token::kSHR: |
| 2309 | case Token::kUSHR: |
| 2310 | // For kMUL we save untagging of the argument. |
| 2311 | // For kSHR/kUSHR we save tagging of the result. |
| 2312 | return true; |
| 2313 | |
| 2314 | default: |
| 2315 | return false; |
| 2316 | } |
| 2317 | } |
| 2318 | |
| 2319 | // Maps an entry block to its closest enveloping loop id, or -1 if none. |
| 2320 | static intptr_t LoopId(BlockEntryInstr* block) { |
| 2321 | LoopInfo* loop = block->loop_info(); |
| 2322 | if (loop != nullptr) { |
| 2323 | return loop->id(); |
| 2324 | } |
| 2325 | return -1; |
| 2326 | } |
| 2327 | |
| 2328 | void FlowGraph::WidenSmiToInt32() { |
| 2329 | if (!FLAG_use_smi_widening) { |
| 2330 | return; |
| 2331 | } |
| 2332 | |
| 2333 | GrowableArray<BinarySmiOpInstr*> candidates; |
| 2334 | |
| 2335 | // Step 1. Collect all instructions that potentially benefit from widening of |
| 2336 | // their operands (or their result) into int32 range. |
| 2337 | for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| 2338 | block_it.Advance()) { |
| 2339 | for (ForwardInstructionIterator instr_it(block_it.Current()); |
| 2340 | !instr_it.Done(); instr_it.Advance()) { |
| 2341 | BinarySmiOpInstr* smi_op = instr_it.Current()->AsBinarySmiOp(); |
| 2342 | if ((smi_op != nullptr) && smi_op->HasSSATemp() && |
| 2343 | BenefitsFromWidening(smi_op) && CanBeWidened(smi_op)) { |
| 2344 | candidates.Add(smi_op); |
| 2345 | } |
| 2346 | } |
| 2347 | } |
| 2348 | |
| 2349 | if (candidates.is_empty()) { |
| 2350 | return; |
| 2351 | } |
| 2352 | |
| 2353 | // Step 2. For each block in the graph compute which loop it belongs to. |
| 2354 | // We will use this information later during computation of the widening's |
| 2355 | // gain: we are going to assume that only conversion occurring inside the |
| 2356 | // same loop should be counted against the gain, all other conversions |
| 2357 | // can be hoisted and thus cost nothing compared to the loop cost itself. |
| 2358 | GetLoopHierarchy(); |
| 2359 | |
| 2360 | // Step 3. For each candidate transitively collect all other BinarySmiOpInstr |
| 2361 | // and PhiInstr that depend on it and that it depends on and count amount of |
| 2362 | // untagging operations that we save in assumption that this whole graph of |
| 2363 | // values is using kUnboxedInt32 representation instead of kTagged. |
| 2364 | // Convert those graphs that have positive gain to kUnboxedInt32. |
| 2365 | |
| 2366 | // BitVector containing SSA indexes of all processed definitions. Used to skip |
| 2367 | // those candidates that belong to dependency graph of another candidate. |
| 2368 | BitVector* processed = new (Z) BitVector(Z, current_ssa_temp_index()); |
| 2369 | |
| 2370 | // Worklist used to collect dependency graph. |
| 2371 | DefinitionWorklist worklist(this, candidates.length()); |
| 2372 | for (intptr_t i = 0; i < candidates.length(); i++) { |
| 2373 | BinarySmiOpInstr* op = candidates[i]; |
| 2374 | if (op->WasEliminated() || processed->Contains(op->ssa_temp_index())) { |
| 2375 | continue; |
| 2376 | } |
| 2377 | |
| 2378 | if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| 2379 | THR_Print("analysing candidate: %s\n" , op->ToCString()); |
| 2380 | } |
| 2381 | worklist.Clear(); |
| 2382 | worklist.Add(op); |
| 2383 | |
| 2384 | // Collect dependency graph. Note: more items are added to worklist |
| 2385 | // inside this loop. |
| 2386 | intptr_t gain = 0; |
| 2387 | for (intptr_t j = 0; j < worklist.definitions().length(); j++) { |
| 2388 | Definition* defn = worklist.definitions()[j]; |
| 2389 | |
| 2390 | if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| 2391 | THR_Print("> %s\n" , defn->ToCString()); |
| 2392 | } |
| 2393 | |
| 2394 | if (defn->IsBinarySmiOp() && |
| 2395 | BenefitsFromWidening(defn->AsBinarySmiOp())) { |
| 2396 | gain++; |
| 2397 | if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| 2398 | THR_Print("^ [%" Pd "] (o) %s\n" , gain, defn->ToCString()); |
| 2399 | } |
| 2400 | } |
| 2401 | |
| 2402 | const intptr_t defn_loop = LoopId(defn->GetBlock()); |
| 2403 | |
| 2404 | // Process all inputs. |
| 2405 | for (intptr_t k = 0; k < defn->InputCount(); k++) { |
| 2406 | Definition* input = defn->InputAt(k)->definition(); |
| 2407 | if (input->IsBinarySmiOp() && CanBeWidened(input->AsBinarySmiOp())) { |
| 2408 | worklist.Add(input); |
| 2409 | } else if (input->IsPhi() && (input->Type()->ToCid() == kSmiCid)) { |
| 2410 | worklist.Add(input); |
| 2411 | } else if (input->IsBinaryInt64Op()) { |
| 2412 | // Mint operation produces untagged result. We avoid tagging. |
| 2413 | gain++; |
| 2414 | if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| 2415 | THR_Print("^ [%" Pd "] (i) %s\n" , gain, input->ToCString()); |
| 2416 | } |
| 2417 | } else if (defn_loop == LoopId(input->GetBlock()) && |
| 2418 | (input->Type()->ToCid() == kSmiCid)) { |
| 2419 | // Input comes from the same loop, is known to be smi and requires |
| 2420 | // untagging. |
| 2421 | // TODO(vegorov) this heuristic assumes that values that are not |
| 2422 | // known to be smi have to be checked and this check can be |
| 2423 | // coalesced with untagging. Start coalescing them. |
| 2424 | gain--; |
| 2425 | if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| 2426 | THR_Print("v [%" Pd "] (i) %s\n" , gain, input->ToCString()); |
| 2427 | } |
| 2428 | } |
| 2429 | } |
| 2430 | |
| 2431 | // Process all uses. |
| 2432 | for (Value* use = defn->input_use_list(); use != nullptr; |
| 2433 | use = use->next_use()) { |
| 2434 | Instruction* instr = use->instruction(); |
| 2435 | Definition* use_defn = instr->AsDefinition(); |
| 2436 | if (use_defn == nullptr) { |
| 2437 | // We assume that tagging before returning or pushing argument costs |
| 2438 | // very little compared to the cost of the return/call itself. |
| 2439 | ASSERT(!instr->IsMoveArgument()); |
| 2440 | if (!instr->IsReturn() && |
| 2441 | (use->use_index() >= instr->ArgumentCount())) { |
| 2442 | gain--; |
| 2443 | if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| 2444 | THR_Print("v [%" Pd "] (u) %s\n" , gain, |
| 2445 | use->instruction()->ToCString()); |
| 2446 | } |
| 2447 | } |
| 2448 | continue; |
| 2449 | } else if (use_defn->IsBinarySmiOp() && |
| 2450 | CanBeWidened(use_defn->AsBinarySmiOp())) { |
| 2451 | worklist.Add(use_defn); |
| 2452 | } else if (use_defn->IsPhi() && |
| 2453 | use_defn->AsPhi()->Type()->ToCid() == kSmiCid) { |
| 2454 | worklist.Add(use_defn); |
| 2455 | } else if (use_defn->IsBinaryInt64Op()) { |
| 2456 | // BinaryInt64Op requires untagging of its inputs. |
| 2457 | // Converting kUnboxedInt32 to kUnboxedInt64 is essentially zero cost |
| 2458 | // sign extension operation. |
| 2459 | gain++; |
| 2460 | if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| 2461 | THR_Print("^ [%" Pd "] (u) %s\n" , gain, |
| 2462 | use->instruction()->ToCString()); |
| 2463 | } |
| 2464 | } else if (defn_loop == LoopId(instr->GetBlock())) { |
| 2465 | gain--; |
| 2466 | if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| 2467 | THR_Print("v [%" Pd "] (u) %s\n" , gain, |
| 2468 | use->instruction()->ToCString()); |
| 2469 | } |
| 2470 | } |
| 2471 | } |
| 2472 | } |
| 2473 | |
| 2474 | processed->AddAll(worklist.contains_vector()); |
| 2475 | |
| 2476 | if (FLAG_support_il_printer && FLAG_trace_smi_widening) { |
| 2477 | THR_Print("~ %s gain %" Pd "\n" , op->ToCString(), gain); |
| 2478 | } |
| 2479 | |
| 2480 | if (gain > 0) { |
| 2481 | // We have positive gain from widening. Convert all BinarySmiOpInstr into |
| 2482 | // BinaryInt32OpInstr and set representation of all phis to kUnboxedInt32. |
| 2483 | for (intptr_t j = 0; j < worklist.definitions().length(); j++) { |
| 2484 | Definition* defn = worklist.definitions()[j]; |
| 2485 | ASSERT(defn->IsPhi() || defn->IsBinarySmiOp()); |
| 2486 | |
| 2487 | // Since we widen the integer representation we've to clear out type |
| 2488 | // propagation information (e.g. it might no longer be a _Smi). |
| 2489 | for (Value::Iterator it(defn->input_use_list()); !it.Done(); |
| 2490 | it.Advance()) { |
| 2491 | it.Current()->SetReachingType(nullptr); |
| 2492 | } |
| 2493 | |
| 2494 | if (defn->IsBinarySmiOp()) { |
| 2495 | BinarySmiOpInstr* smi_op = defn->AsBinarySmiOp(); |
| 2496 | BinaryInt32OpInstr* int32_op = new (Z) BinaryInt32OpInstr( |
| 2497 | smi_op->op_kind(), smi_op->left()->CopyWithType(), |
| 2498 | smi_op->right()->CopyWithType(), smi_op->DeoptimizationTarget()); |
| 2499 | |
| 2500 | smi_op->ReplaceWith(int32_op, nullptr); |
| 2501 | } else if (defn->IsPhi()) { |
| 2502 | defn->AsPhi()->set_representation(kUnboxedInt32); |
| 2503 | ASSERT(defn->Type()->IsInt()); |
| 2504 | } |
| 2505 | } |
| 2506 | } |
| 2507 | } |
| 2508 | } |
| 2509 | #else |
| 2510 | void FlowGraph::WidenSmiToInt32() { |
| 2511 | // TODO(vegorov) ideally on 64-bit platforms we would like to narrow smi |
| 2512 | // operations to 32-bit where it saves tagging and untagging and allows |
| 2513 | // to use shorted (and faster) instructions. But we currently don't |
| 2514 | // save enough range information in the ICData to drive this decision. |
| 2515 | } |
| 2516 | #endif |
| 2517 | |
| 2518 | void FlowGraph::EliminateEnvironments() { |
| 2519 | // After this pass we can no longer perform LICM and hoist instructions |
| 2520 | // that can deoptimize. |
| 2521 | |
| 2522 | disallow_licm(); |
| 2523 | for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| 2524 | block_it.Advance()) { |
| 2525 | BlockEntryInstr* block = block_it.Current(); |
| 2526 | if (!block->IsCatchBlockEntry()) { |
| 2527 | block->RemoveEnvironment(); |
| 2528 | } |
| 2529 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 2530 | Instruction* current = it.Current(); |
| 2531 | if (!current->ComputeCanDeoptimize() && |
| 2532 | !current->ComputeCanDeoptimizeAfterCall() && |
| 2533 | (!current->MayThrow() || !current->GetBlock()->InsideTryBlock())) { |
| 2534 | // Instructions that can throw need an environment for optimized |
| 2535 | // try-catch. |
| 2536 | // TODO(srdjan): --source-lines needs deopt environments to get at |
| 2537 | // the code for this instruction, however, leaving the environment |
| 2538 | // changes code. |
| 2539 | current->RemoveEnvironment(); |
| 2540 | } |
| 2541 | } |
| 2542 | } |
| 2543 | } |
| 2544 | |
| 2545 | bool FlowGraph::Canonicalize() { |
| 2546 | bool changed = false; |
| 2547 | |
| 2548 | for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| 2549 | block_it.Advance()) { |
| 2550 | BlockEntryInstr* const block = block_it.Current(); |
| 2551 | if (auto join = block->AsJoinEntry()) { |
| 2552 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 2553 | PhiInstr* current = it.Current(); |
| 2554 | if (current->HasUnmatchedInputRepresentations() && |
| 2555 | (current->SpeculativeModeOfInputs() == Instruction::kGuardInputs)) { |
| 2556 | // Can't canonicalize this instruction until all conversions for its |
| 2557 | // speculative inputs are inserted. |
| 2558 | continue; |
| 2559 | } |
| 2560 | |
| 2561 | Definition* replacement = current->Canonicalize(flow_graph: this); |
| 2562 | ASSERT(replacement != nullptr); |
| 2563 | RELEASE_ASSERT(unmatched_representations_allowed() || |
| 2564 | !replacement->HasUnmatchedInputRepresentations()); |
| 2565 | if (replacement != current) { |
| 2566 | current->ReplaceUsesWith(replacement); |
| 2567 | it.RemoveCurrentFromGraph(); |
| 2568 | changed = true; |
| 2569 | } |
| 2570 | } |
| 2571 | } |
| 2572 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 2573 | Instruction* current = it.Current(); |
| 2574 | if (current->HasUnmatchedInputRepresentations() && |
| 2575 | (current->SpeculativeModeOfInputs() == Instruction::kGuardInputs)) { |
| 2576 | // Can't canonicalize this instruction until all conversions for its |
| 2577 | // speculative inputs are inserted. |
| 2578 | continue; |
| 2579 | } |
| 2580 | |
| 2581 | Instruction* replacement = current->Canonicalize(flow_graph: this); |
| 2582 | |
| 2583 | if (replacement != current) { |
| 2584 | // For non-definitions Canonicalize should return either nullptr or |
| 2585 | // this. |
| 2586 | if (replacement != nullptr) { |
| 2587 | ASSERT(current->IsDefinition()); |
| 2588 | if (!unmatched_representations_allowed()) { |
| 2589 | RELEASE_ASSERT(!replacement->HasUnmatchedInputRepresentations()); |
| 2590 | if ((replacement->representation() != current->representation()) && |
| 2591 | current->AsDefinition()->HasUses()) { |
| 2592 | // Can't canonicalize this instruction as unmatched |
| 2593 | // representations are not allowed at this point, but |
| 2594 | // replacement has a different representation. |
| 2595 | continue; |
| 2596 | } |
| 2597 | } |
| 2598 | } |
| 2599 | ReplaceCurrentInstruction(iterator: &it, current, replacement); |
| 2600 | changed = true; |
| 2601 | } |
| 2602 | } |
| 2603 | } |
| 2604 | return changed; |
| 2605 | } |
| 2606 | |
| 2607 | void FlowGraph::PopulateWithICData(const Function& function) { |
| 2608 | Zone* zone = Thread::Current()->zone(); |
| 2609 | |
| 2610 | for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| 2611 | block_it.Advance()) { |
| 2612 | ForwardInstructionIterator it(block_it.Current()); |
| 2613 | for (; !it.Done(); it.Advance()) { |
| 2614 | Instruction* instr = it.Current(); |
| 2615 | if (instr->IsInstanceCall()) { |
| 2616 | InstanceCallInstr* call = instr->AsInstanceCall(); |
| 2617 | if (!call->HasICData()) { |
| 2618 | const Array& arguments_descriptor = |
| 2619 | Array::Handle(zone, call->GetArgumentsDescriptor()); |
| 2620 | const ICData& ic_data = ICData::ZoneHandle( |
| 2621 | zone, |
| 2622 | ICData::New(function, call->function_name(), arguments_descriptor, |
| 2623 | call->deopt_id(), call->checked_argument_count(), |
| 2624 | ICData::kInstance)); |
| 2625 | call->set_ic_data(&ic_data); |
| 2626 | } |
| 2627 | } else if (instr->IsStaticCall()) { |
| 2628 | StaticCallInstr* call = instr->AsStaticCall(); |
| 2629 | if (!call->HasICData()) { |
| 2630 | const Array& arguments_descriptor = |
| 2631 | Array::Handle(zone, call->GetArgumentsDescriptor()); |
| 2632 | const Function& target = call->function(); |
| 2633 | int num_args_checked = |
| 2634 | MethodRecognizer::NumArgsCheckedForStaticCall(function: target); |
| 2635 | const ICData& ic_data = ICData::ZoneHandle( |
| 2636 | zone, ICData::NewForStaticCall( |
| 2637 | owner: function, target, arguments_descriptor, |
| 2638 | deopt_id: call->deopt_id(), num_args_tested: num_args_checked, rebind_rule: ICData::kStatic)); |
| 2639 | call->set_ic_data(&ic_data); |
| 2640 | } |
| 2641 | } |
| 2642 | } |
| 2643 | } |
| 2644 | } |
| 2645 | |
| 2646 | // Optimize (a << b) & c pattern: if c is a positive Smi or zero, then the |
| 2647 | // shift can be a truncating Smi shift-left and result is always Smi. |
| 2648 | // Merging occurs only per basic-block. |
| 2649 | void FlowGraph::TryOptimizePatterns() { |
| 2650 | if (!FLAG_truncating_left_shift) return; |
| 2651 | GrowableArray<BinarySmiOpInstr*> div_mod_merge; |
| 2652 | GrowableArray<InvokeMathCFunctionInstr*> sin_cos_merge; |
| 2653 | for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| 2654 | block_it.Advance()) { |
| 2655 | // Merging only per basic-block. |
| 2656 | div_mod_merge.Clear(); |
| 2657 | sin_cos_merge.Clear(); |
| 2658 | ForwardInstructionIterator it(block_it.Current()); |
| 2659 | for (; !it.Done(); it.Advance()) { |
| 2660 | if (it.Current()->IsBinarySmiOp()) { |
| 2661 | BinarySmiOpInstr* binop = it.Current()->AsBinarySmiOp(); |
| 2662 | if (binop->op_kind() == Token::kBIT_AND) { |
| 2663 | OptimizeLeftShiftBitAndSmiOp(current_iterator: &it, bit_and_instr: binop, left_instr: binop->left()->definition(), |
| 2664 | right_instr: binop->right()->definition()); |
| 2665 | } else if ((binop->op_kind() == Token::kTRUNCDIV) || |
| 2666 | (binop->op_kind() == Token::kMOD)) { |
| 2667 | if (binop->HasUses()) { |
| 2668 | div_mod_merge.Add(binop); |
| 2669 | } |
| 2670 | } |
| 2671 | } else if (it.Current()->IsBinaryInt64Op()) { |
| 2672 | BinaryInt64OpInstr* mintop = it.Current()->AsBinaryInt64Op(); |
| 2673 | if (mintop->op_kind() == Token::kBIT_AND) { |
| 2674 | OptimizeLeftShiftBitAndSmiOp(current_iterator: &it, bit_and_instr: mintop, |
| 2675 | left_instr: mintop->left()->definition(), |
| 2676 | right_instr: mintop->right()->definition()); |
| 2677 | } |
| 2678 | } else if (it.Current()->IsInvokeMathCFunction()) { |
| 2679 | InvokeMathCFunctionInstr* math_unary = |
| 2680 | it.Current()->AsInvokeMathCFunction(); |
| 2681 | if ((math_unary->recognized_kind() == MethodRecognizer::kMathSin) || |
| 2682 | (math_unary->recognized_kind() == MethodRecognizer::kMathCos)) { |
| 2683 | if (math_unary->HasUses()) { |
| 2684 | sin_cos_merge.Add(math_unary); |
| 2685 | } |
| 2686 | } |
| 2687 | } |
| 2688 | } |
| 2689 | TryMergeTruncDivMod(merge_candidates: &div_mod_merge); |
| 2690 | } |
| 2691 | } |
| 2692 | |
| 2693 | // Returns true if use is dominated by the given instruction. |
| 2694 | // Note: uses that occur at instruction itself are not dominated by it. |
| 2695 | static bool IsDominatedUse(Instruction* dom, Value* use) { |
| 2696 | BlockEntryInstr* dom_block = dom->GetBlock(); |
| 2697 | |
| 2698 | Instruction* instr = use->instruction(); |
| 2699 | |
| 2700 | PhiInstr* phi = instr->AsPhi(); |
| 2701 | if (phi != nullptr) { |
| 2702 | return dom_block->Dominates(other: phi->block()->PredecessorAt(index: use->use_index())); |
| 2703 | } |
| 2704 | |
| 2705 | BlockEntryInstr* use_block = instr->GetBlock(); |
| 2706 | if (use_block == dom_block) { |
| 2707 | // Fast path for the case of block entry. |
| 2708 | if (dom_block == dom) return true; |
| 2709 | |
| 2710 | for (Instruction* curr = dom->next(); curr != nullptr; |
| 2711 | curr = curr->next()) { |
| 2712 | if (curr == instr) return true; |
| 2713 | } |
| 2714 | |
| 2715 | return false; |
| 2716 | } |
| 2717 | |
| 2718 | return dom_block->Dominates(other: use_block); |
| 2719 | } |
| 2720 | |
| 2721 | void FlowGraph::RenameDominatedUses(Definition* def, |
| 2722 | Instruction* dom, |
| 2723 | Definition* other) { |
| 2724 | for (Value::Iterator it(def->input_use_list()); !it.Done(); it.Advance()) { |
| 2725 | Value* use = it.Current(); |
| 2726 | if (IsDominatedUse(dom, use)) { |
| 2727 | use->BindTo(def: other); |
| 2728 | } |
| 2729 | } |
| 2730 | } |
| 2731 | |
| 2732 | void FlowGraph::RenameUsesDominatedByRedefinitions() { |
| 2733 | for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| 2734 | block_it.Advance()) { |
| 2735 | for (ForwardInstructionIterator instr_it(block_it.Current()); |
| 2736 | !instr_it.Done(); instr_it.Advance()) { |
| 2737 | Definition* definition = instr_it.Current()->AsDefinition(); |
| 2738 | // CheckArrayBound instructions have their own mechanism for ensuring |
| 2739 | // proper dependencies, so we don't rewrite those here. |
| 2740 | if (definition != nullptr && !definition->IsCheckArrayBound()) { |
| 2741 | Value* redefined = definition->RedefinedValue(); |
| 2742 | if (redefined != nullptr) { |
| 2743 | if (!definition->HasSSATemp()) { |
| 2744 | AllocateSSAIndex(def: definition); |
| 2745 | } |
| 2746 | Definition* original = redefined->definition(); |
| 2747 | RenameDominatedUses(def: original, dom: definition, other: definition); |
| 2748 | } |
| 2749 | } |
| 2750 | } |
| 2751 | } |
| 2752 | } |
| 2753 | |
| 2754 | static bool IsPositiveOrZeroSmiConst(Definition* d) { |
| 2755 | ConstantInstr* const_instr = d->AsConstant(); |
| 2756 | if ((const_instr != nullptr) && (const_instr->value().IsSmi())) { |
| 2757 | return Smi::Cast(obj: const_instr->value()).Value() >= 0; |
| 2758 | } |
| 2759 | return false; |
| 2760 | } |
| 2761 | |
| 2762 | static BinarySmiOpInstr* AsSmiShiftLeftInstruction(Definition* d) { |
| 2763 | BinarySmiOpInstr* instr = d->AsBinarySmiOp(); |
| 2764 | if ((instr != nullptr) && (instr->op_kind() == Token::kSHL)) { |
| 2765 | return instr; |
| 2766 | } |
| 2767 | return nullptr; |
| 2768 | } |
| 2769 | |
| 2770 | void FlowGraph::OptimizeLeftShiftBitAndSmiOp( |
| 2771 | ForwardInstructionIterator* current_iterator, |
| 2772 | Definition* bit_and_instr, |
| 2773 | Definition* left_instr, |
| 2774 | Definition* right_instr) { |
| 2775 | ASSERT(bit_and_instr != nullptr); |
| 2776 | ASSERT((left_instr != nullptr) && (right_instr != nullptr)); |
| 2777 | |
| 2778 | // Check for pattern, smi_shift_left must be single-use. |
| 2779 | bool is_positive_or_zero = IsPositiveOrZeroSmiConst(d: left_instr); |
| 2780 | if (!is_positive_or_zero) { |
| 2781 | is_positive_or_zero = IsPositiveOrZeroSmiConst(d: right_instr); |
| 2782 | } |
| 2783 | if (!is_positive_or_zero) return; |
| 2784 | |
| 2785 | BinarySmiOpInstr* smi_shift_left = nullptr; |
| 2786 | if (bit_and_instr->InputAt(i: 0)->IsSingleUse()) { |
| 2787 | smi_shift_left = AsSmiShiftLeftInstruction(d: left_instr); |
| 2788 | } |
| 2789 | if ((smi_shift_left == nullptr) && |
| 2790 | (bit_and_instr->InputAt(i: 1)->IsSingleUse())) { |
| 2791 | smi_shift_left = AsSmiShiftLeftInstruction(d: right_instr); |
| 2792 | } |
| 2793 | if (smi_shift_left == nullptr) return; |
| 2794 | |
| 2795 | // Pattern recognized. |
| 2796 | smi_shift_left->mark_truncating(); |
| 2797 | ASSERT(bit_and_instr->IsBinarySmiOp() || bit_and_instr->IsBinaryInt64Op()); |
| 2798 | if (bit_and_instr->IsBinaryInt64Op()) { |
| 2799 | // Replace Mint op with Smi op. |
| 2800 | BinarySmiOpInstr* smi_op = new (Z) BinarySmiOpInstr( |
| 2801 | Token::kBIT_AND, new (Z) Value(left_instr), new (Z) Value(right_instr), |
| 2802 | DeoptId::kNone); // BIT_AND cannot deoptimize. |
| 2803 | bit_and_instr->ReplaceWith(other: smi_op, iterator: current_iterator); |
| 2804 | } |
| 2805 | } |
| 2806 | |
| 2807 | // Dart: |
| 2808 | // var x = d % 10; |
| 2809 | // var y = d ~/ 10; |
| 2810 | // var z = x + y; |
| 2811 | // |
| 2812 | // IL: |
| 2813 | // v4 <- %(v2, v3) |
| 2814 | // v5 <- ~/(v2, v3) |
| 2815 | // v6 <- +(v4, v5) |
| 2816 | // |
| 2817 | // IL optimized: |
| 2818 | // v4 <- DIVMOD(v2, v3); |
| 2819 | // v5 <- LoadIndexed(v4, 0); // ~/ result |
| 2820 | // v6 <- LoadIndexed(v4, 1); // % result |
| 2821 | // v7 <- +(v5, v6) |
| 2822 | // Because of the environment it is important that merged instruction replaces |
| 2823 | // first original instruction encountered. |
| 2824 | void FlowGraph::TryMergeTruncDivMod( |
| 2825 | GrowableArray<BinarySmiOpInstr*>* merge_candidates) { |
| 2826 | if (merge_candidates->length() < 2) { |
| 2827 | // Need at least a TRUNCDIV and a MOD. |
| 2828 | return; |
| 2829 | } |
| 2830 | for (intptr_t i = 0; i < merge_candidates->length(); i++) { |
| 2831 | BinarySmiOpInstr* curr_instr = (*merge_candidates)[i]; |
| 2832 | if (curr_instr == nullptr) { |
| 2833 | // Instruction was merged already. |
| 2834 | continue; |
| 2835 | } |
| 2836 | ASSERT((curr_instr->op_kind() == Token::kTRUNCDIV) || |
| 2837 | (curr_instr->op_kind() == Token::kMOD)); |
| 2838 | // Check if there is kMOD/kTRUNDIV binop with same inputs. |
| 2839 | const Token::Kind other_kind = (curr_instr->op_kind() == Token::kTRUNCDIV) |
| 2840 | ? Token::kMOD |
| 2841 | : Token::kTRUNCDIV; |
| 2842 | Definition* left_def = curr_instr->left()->definition(); |
| 2843 | Definition* right_def = curr_instr->right()->definition(); |
| 2844 | for (intptr_t k = i + 1; k < merge_candidates->length(); k++) { |
| 2845 | BinarySmiOpInstr* other_binop = (*merge_candidates)[k]; |
| 2846 | // 'other_binop' can be nullptr if it was already merged. |
| 2847 | if ((other_binop != nullptr) && (other_binop->op_kind() == other_kind) && |
| 2848 | (other_binop->left()->definition() == left_def) && |
| 2849 | (other_binop->right()->definition() == right_def)) { |
| 2850 | (*merge_candidates)[k] = nullptr; // Clear it. |
| 2851 | ASSERT(curr_instr->HasUses()); |
| 2852 | AppendExtractNthOutputForMerged( |
| 2853 | instr: curr_instr, ix: TruncDivModInstr::OutputIndexOf(token: curr_instr->op_kind()), |
| 2854 | rep: kTagged, cid: kSmiCid); |
| 2855 | ASSERT(other_binop->HasUses()); |
| 2856 | AppendExtractNthOutputForMerged( |
| 2857 | instr: other_binop, |
| 2858 | ix: TruncDivModInstr::OutputIndexOf(token: other_binop->op_kind()), rep: kTagged, |
| 2859 | cid: kSmiCid); |
| 2860 | |
| 2861 | // Replace with TruncDivMod. |
| 2862 | TruncDivModInstr* div_mod = new (Z) TruncDivModInstr( |
| 2863 | curr_instr->left()->CopyWithType(), |
| 2864 | curr_instr->right()->CopyWithType(), curr_instr->deopt_id()); |
| 2865 | curr_instr->ReplaceWith(other: div_mod, iterator: nullptr); |
| 2866 | other_binop->ReplaceUsesWith(other: div_mod); |
| 2867 | other_binop->RemoveFromGraph(); |
| 2868 | // Only one merge possible. Because canonicalization happens later, |
| 2869 | // more candidates are possible. |
| 2870 | // TODO(srdjan): Allow merging of trunc-div/mod into truncDivMod. |
| 2871 | break; |
| 2872 | } |
| 2873 | } |
| 2874 | } |
| 2875 | } |
| 2876 | |
| 2877 | void FlowGraph::(Definition* instr, |
| 2878 | intptr_t index, |
| 2879 | Representation rep, |
| 2880 | intptr_t cid) { |
| 2881 | ExtractNthOutputInstr* = |
| 2882 | new (Z) ExtractNthOutputInstr(new (Z) Value(instr), index, rep, cid); |
| 2883 | instr->ReplaceUsesWith(other: extract); |
| 2884 | InsertAfter(prev: instr, instr: extract, env: nullptr, use_kind: FlowGraph::kValue); |
| 2885 | } |
| 2886 | |
| 2887 | // |
| 2888 | // Static helpers for the flow graph utilities. |
| 2889 | // |
| 2890 | |
| 2891 | static TargetEntryInstr* NewTarget(FlowGraph* graph, Instruction* inherit) { |
| 2892 | TargetEntryInstr* target = new (graph->zone()) |
| 2893 | TargetEntryInstr(graph->allocate_block_id(), |
| 2894 | inherit->GetBlock()->try_index(), DeoptId::kNone); |
| 2895 | target->InheritDeoptTarget(graph->zone(), inherit); |
| 2896 | return target; |
| 2897 | } |
| 2898 | |
| 2899 | static JoinEntryInstr* NewJoin(FlowGraph* graph, Instruction* inherit) { |
| 2900 | JoinEntryInstr* join = new (graph->zone()) |
| 2901 | JoinEntryInstr(graph->allocate_block_id(), |
| 2902 | inherit->GetBlock()->try_index(), DeoptId::kNone); |
| 2903 | join->InheritDeoptTarget(graph->zone(), inherit); |
| 2904 | return join; |
| 2905 | } |
| 2906 | |
| 2907 | static GotoInstr* NewGoto(FlowGraph* graph, |
| 2908 | JoinEntryInstr* target, |
| 2909 | Instruction* inherit) { |
| 2910 | GotoInstr* got = new (graph->zone()) GotoInstr(target, DeoptId::kNone); |
| 2911 | got->InheritDeoptTarget(zone: graph->zone(), other: inherit); |
| 2912 | return got; |
| 2913 | } |
| 2914 | |
| 2915 | static BranchInstr* NewBranch(FlowGraph* graph, |
| 2916 | ComparisonInstr* cmp, |
| 2917 | Instruction* inherit) { |
| 2918 | BranchInstr* bra = new (graph->zone()) BranchInstr(cmp, DeoptId::kNone); |
| 2919 | bra->InheritDeoptTarget(zone: graph->zone(), other: inherit); |
| 2920 | return bra; |
| 2921 | } |
| 2922 | |
| 2923 | // |
| 2924 | // Flow graph utilities. |
| 2925 | // |
| 2926 | |
| 2927 | // Constructs new diamond decision at the given instruction. |
| 2928 | // |
| 2929 | // ENTRY |
| 2930 | // instruction |
| 2931 | // if (compare) |
| 2932 | // / \ |
| 2933 | // B_TRUE B_FALSE |
| 2934 | // \ / |
| 2935 | // JOIN |
| 2936 | // |
| 2937 | JoinEntryInstr* FlowGraph::NewDiamond(Instruction* instruction, |
| 2938 | Instruction* inherit, |
| 2939 | ComparisonInstr* compare, |
| 2940 | TargetEntryInstr** b_true, |
| 2941 | TargetEntryInstr** b_false) { |
| 2942 | BlockEntryInstr* entry = instruction->GetBlock(); |
| 2943 | |
| 2944 | TargetEntryInstr* bt = NewTarget(graph: this, inherit); |
| 2945 | TargetEntryInstr* bf = NewTarget(graph: this, inherit); |
| 2946 | JoinEntryInstr* join = NewJoin(graph: this, inherit); |
| 2947 | GotoInstr* gotot = NewGoto(graph: this, target: join, inherit); |
| 2948 | GotoInstr* gotof = NewGoto(graph: this, target: join, inherit); |
| 2949 | BranchInstr* bra = NewBranch(graph: this, cmp: compare, inherit); |
| 2950 | |
| 2951 | instruction->AppendInstruction(tail: bra); |
| 2952 | entry->set_last_instruction(bra); |
| 2953 | |
| 2954 | *bra->true_successor_address() = bt; |
| 2955 | *bra->false_successor_address() = bf; |
| 2956 | |
| 2957 | bt->AppendInstruction(gotot); |
| 2958 | bt->set_last_instruction(gotot); |
| 2959 | |
| 2960 | bf->AppendInstruction(gotof); |
| 2961 | bf->set_last_instruction(gotof); |
| 2962 | |
| 2963 | // Update dominance relation incrementally. |
| 2964 | for (intptr_t i = 0, n = entry->dominated_blocks().length(); i < n; ++i) { |
| 2965 | join->AddDominatedBlock(entry->dominated_blocks()[i]); |
| 2966 | } |
| 2967 | entry->ClearDominatedBlocks(); |
| 2968 | entry->AddDominatedBlock(bt); |
| 2969 | entry->AddDominatedBlock(bf); |
| 2970 | entry->AddDominatedBlock(join); |
| 2971 | |
| 2972 | // TODO(ajcbik): update pred/succ/ordering incrementally too. |
| 2973 | |
| 2974 | // Return new blocks. |
| 2975 | *b_true = bt; |
| 2976 | *b_false = bf; |
| 2977 | return join; |
| 2978 | } |
| 2979 | |
| 2980 | JoinEntryInstr* FlowGraph::NewDiamond(Instruction* instruction, |
| 2981 | Instruction* inherit, |
| 2982 | const LogicalAnd& condition, |
| 2983 | TargetEntryInstr** b_true, |
| 2984 | TargetEntryInstr** b_false) { |
| 2985 | // First diamond for first comparison. |
| 2986 | TargetEntryInstr* bt = nullptr; |
| 2987 | TargetEntryInstr* bf = nullptr; |
| 2988 | JoinEntryInstr* mid_point = |
| 2989 | NewDiamond(instruction, inherit, compare: condition.oper1, b_true: &bt, b_false: &bf); |
| 2990 | |
| 2991 | // Short-circuit second comparison and connect through phi. |
| 2992 | condition.oper2->InsertAfter(bt); |
| 2993 | AllocateSSAIndex(def: condition.oper2); |
| 2994 | condition.oper2->InheritDeoptTarget(zone: zone(), other: inherit); // must inherit |
| 2995 | PhiInstr* phi = |
| 2996 | AddPhi(join: mid_point, d1: condition.oper2, d2: GetConstant(object: Bool::False())); |
| 2997 | StrictCompareInstr* circuit = new (zone()) StrictCompareInstr( |
| 2998 | inherit->source(), Token::kEQ_STRICT, new (zone()) Value(phi), |
| 2999 | new (zone()) Value(GetConstant(Bool::True())), false, |
| 3000 | DeoptId::kNone); // don't inherit |
| 3001 | |
| 3002 | // Return new blocks through the second diamond. |
| 3003 | return NewDiamond(mid_point, inherit, circuit, b_true, b_false); |
| 3004 | } |
| 3005 | |
| 3006 | PhiInstr* FlowGraph::AddPhi(JoinEntryInstr* join, |
| 3007 | Definition* d1, |
| 3008 | Definition* d2) { |
| 3009 | PhiInstr* phi = new (zone()) PhiInstr(join, 2); |
| 3010 | Value* v1 = new (zone()) Value(d1); |
| 3011 | Value* v2 = new (zone()) Value(d2); |
| 3012 | |
| 3013 | AllocateSSAIndex(phi); |
| 3014 | |
| 3015 | phi->mark_alive(); |
| 3016 | phi->SetInputAt(0, v1); |
| 3017 | phi->SetInputAt(1, v2); |
| 3018 | d1->AddInputUse(value: v1); |
| 3019 | d2->AddInputUse(value: v2); |
| 3020 | join->InsertPhi(phi); |
| 3021 | |
| 3022 | return phi; |
| 3023 | } |
| 3024 | |
| 3025 | void FlowGraph::InsertMoveArguments() { |
| 3026 | intptr_t max_argument_slot_count = 0; |
| 3027 | for (BlockIterator block_it = reverse_postorder_iterator(); !block_it.Done(); |
| 3028 | block_it.Advance()) { |
| 3029 | thread()->CheckForSafepoint(); |
| 3030 | for (ForwardInstructionIterator instr_it(block_it.Current()); |
| 3031 | !instr_it.Done(); instr_it.Advance()) { |
| 3032 | Instruction* instruction = instr_it.Current(); |
| 3033 | const intptr_t arg_count = instruction->ArgumentCount(); |
| 3034 | if (arg_count == 0) { |
| 3035 | continue; |
| 3036 | } |
| 3037 | MoveArgumentsArray* arguments = |
| 3038 | new (Z) MoveArgumentsArray(zone(), arg_count); |
| 3039 | arguments->EnsureLength(new_length: arg_count, default_value: nullptr); |
| 3040 | |
| 3041 | intptr_t sp_relative_index = 0; |
| 3042 | for (intptr_t i = arg_count - 1; i >= 0; --i) { |
| 3043 | Value* arg = instruction->ArgumentValueAt(index: i); |
| 3044 | const auto rep = instruction->RequiredInputRepresentation(idx: i); |
| 3045 | (*arguments)[i] = new (Z) |
| 3046 | MoveArgumentInstr(arg->CopyWithType(Z), rep, sp_relative_index); |
| 3047 | |
| 3048 | static_assert(compiler::target::kIntSpillFactor == |
| 3049 | compiler::target::kDoubleSpillFactor, |
| 3050 | "double and int are expected to be of the same size" ); |
| 3051 | RELEASE_ASSERT(rep == kTagged || rep == kUnboxedDouble || |
| 3052 | rep == kUnboxedInt64); |
| 3053 | sp_relative_index += |
| 3054 | (rep == kTagged) ? 1 : compiler::target::kIntSpillFactor; |
| 3055 | } |
| 3056 | max_argument_slot_count = |
| 3057 | Utils::Maximum(x: max_argument_slot_count, y: sp_relative_index); |
| 3058 | |
| 3059 | for (auto move_arg : *arguments) { |
| 3060 | // Insert all MoveArgument instructions immediately before call. |
| 3061 | // MoveArgumentInstr::EmitNativeCode may generate more efficient |
| 3062 | // code for subsequent MoveArgument instructions (ARM, ARM64). |
| 3063 | InsertBefore(next: instruction, instr: move_arg, /*env=*/nullptr, use_kind: kEffect); |
| 3064 | } |
| 3065 | instruction->ReplaceInputsWithMoveArguments(move_arguments: arguments); |
| 3066 | if (instruction->env() != nullptr) { |
| 3067 | instruction->RepairArgumentUsesInEnvironment(); |
| 3068 | } |
| 3069 | } |
| 3070 | } |
| 3071 | set_max_argument_slot_count(max_argument_slot_count); |
| 3072 | } |
| 3073 | |
| 3074 | void FlowGraph::Print(const char* phase) { |
| 3075 | FlowGraphPrinter::PrintGraph(phase, flow_graph: this); |
| 3076 | } |
| 3077 | |
| 3078 | class SSACompactor : public ValueObject { |
| 3079 | public: |
| 3080 | SSACompactor(intptr_t num_blocks, |
| 3081 | intptr_t num_ssa_vars, |
| 3082 | ZoneGrowableArray<Definition*>* detached_defs) |
| 3083 | : block_num_(num_blocks), |
| 3084 | ssa_num_(num_ssa_vars), |
| 3085 | detached_defs_(detached_defs) { |
| 3086 | block_num_.EnsureLength(num_blocks, -1); |
| 3087 | ssa_num_.EnsureLength(num_ssa_vars, -1); |
| 3088 | } |
| 3089 | |
| 3090 | void RenumberGraph(FlowGraph* graph) { |
| 3091 | for (auto block : graph->reverse_postorder()) { |
| 3092 | block_num_[block->block_id()] = 1; |
| 3093 | CollectDetachedMaterializations(block->env()); |
| 3094 | |
| 3095 | if (auto* block_with_idefs = block->AsBlockEntryWithInitialDefs()) { |
| 3096 | for (Definition* def : *block_with_idefs->initial_definitions()) { |
| 3097 | RenumberDefinition(def); |
| 3098 | CollectDetachedMaterializations(def->env()); |
| 3099 | } |
| 3100 | } |
| 3101 | if (auto* join = block->AsJoinEntry()) { |
| 3102 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 3103 | RenumberDefinition(it.Current()); |
| 3104 | } |
| 3105 | } |
| 3106 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 3107 | Instruction* instr = it.Current(); |
| 3108 | if (Definition* def = instr->AsDefinition()) { |
| 3109 | RenumberDefinition(def); |
| 3110 | } |
| 3111 | CollectDetachedMaterializations(instr->env()); |
| 3112 | } |
| 3113 | } |
| 3114 | for (auto* def : (*detached_defs_)) { |
| 3115 | RenumberDefinition(def); |
| 3116 | } |
| 3117 | graph->set_current_ssa_temp_index(current_ssa_index_); |
| 3118 | |
| 3119 | // Preserve order between block ids to as predecessors are sorted |
| 3120 | // by block ids. |
| 3121 | intptr_t current_block_index = 0; |
| 3122 | for (intptr_t i = 0, n = block_num_.length(); i < n; ++i) { |
| 3123 | if (block_num_[i] >= 0) { |
| 3124 | block_num_[i] = current_block_index++; |
| 3125 | } |
| 3126 | } |
| 3127 | for (auto block : graph->reverse_postorder()) { |
| 3128 | block->set_block_id(block_num_[block->block_id()]); |
| 3129 | } |
| 3130 | graph->set_max_block_id(current_block_index - 1); |
| 3131 | } |
| 3132 | |
| 3133 | private: |
| 3134 | void RenumberDefinition(Definition* def) { |
| 3135 | if (def->HasSSATemp()) { |
| 3136 | const intptr_t old_index = def->ssa_temp_index(); |
| 3137 | intptr_t new_index = ssa_num_[old_index]; |
| 3138 | if (new_index < 0) { |
| 3139 | ssa_num_[old_index] = new_index = current_ssa_index_++; |
| 3140 | } |
| 3141 | def->set_ssa_temp_index(new_index); |
| 3142 | } |
| 3143 | } |
| 3144 | |
| 3145 | bool IsDetachedDefinition(Definition* def) { |
| 3146 | return def->IsMaterializeObject() && (def->next() == nullptr); |
| 3147 | } |
| 3148 | |
| 3149 | void AddDetachedDefinition(Definition* def) { |
| 3150 | for (intptr_t i = 0, n = detached_defs_->length(); i < n; ++i) { |
| 3151 | if ((*detached_defs_)[i] == def) { |
| 3152 | return; |
| 3153 | } |
| 3154 | } |
| 3155 | detached_defs_->Add(value: def); |
| 3156 | // Follow inputs as detached definitions can reference other |
| 3157 | // detached definitions. |
| 3158 | for (intptr_t i = 0, n = def->InputCount(); i < n; ++i) { |
| 3159 | Definition* input = def->InputAt(i)->definition(); |
| 3160 | if (IsDetachedDefinition(def: input)) { |
| 3161 | AddDetachedDefinition(def: input); |
| 3162 | } |
| 3163 | } |
| 3164 | ASSERT(def->env() == nullptr); |
| 3165 | } |
| 3166 | |
| 3167 | void CollectDetachedMaterializations(Environment* env) { |
| 3168 | if (env == nullptr) { |
| 3169 | return; |
| 3170 | } |
| 3171 | for (Environment::DeepIterator it(env); !it.Done(); it.Advance()) { |
| 3172 | Definition* def = it.CurrentValue()->definition(); |
| 3173 | if (IsDetachedDefinition(def)) { |
| 3174 | AddDetachedDefinition(def); |
| 3175 | } |
| 3176 | } |
| 3177 | } |
| 3178 | |
| 3179 | GrowableArray<intptr_t> block_num_; |
| 3180 | GrowableArray<intptr_t> ssa_num_; |
| 3181 | intptr_t current_ssa_index_ = 0; |
| 3182 | ZoneGrowableArray<Definition*>* detached_defs_; |
| 3183 | }; |
| 3184 | |
| 3185 | void FlowGraph::CompactSSA(ZoneGrowableArray<Definition*>* detached_defs) { |
| 3186 | if (detached_defs == nullptr) { |
| 3187 | detached_defs = new (Z) ZoneGrowableArray<Definition*>(Z, 0); |
| 3188 | } |
| 3189 | SSACompactor compactor(max_block_id() + 1, current_ssa_temp_index(), |
| 3190 | detached_defs); |
| 3191 | compactor.RenumberGraph(graph: this); |
| 3192 | } |
| 3193 | |
| 3194 | } // namespace dart |
| 3195 | |