1 | // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #ifndef RUNTIME_VM_HASH_TABLE_H_ |
6 | #define RUNTIME_VM_HASH_TABLE_H_ |
7 | |
8 | #include "platform/assert.h" |
9 | #include "vm/object.h" |
10 | |
11 | namespace dart { |
12 | |
13 | // Storage traits control how memory is allocated for HashTable. |
14 | // Default ArrayStorageTraits use an Array to store HashTable contents. |
15 | struct ArrayStorageTraits { |
16 | using ArrayHandle = Array; |
17 | using ArrayPtr = dart::ArrayPtr; |
18 | static constexpr intptr_t ArrayCid = kArrayCid; |
19 | |
20 | static ArrayHandle& PtrToHandle(ArrayPtr ptr) { return Array::Handle(ptr); } |
21 | |
22 | static void SetHandle(ArrayHandle& dst, const ArrayHandle& src) { // NOLINT |
23 | dst = src.ptr(); |
24 | } |
25 | |
26 | static void ClearHandle(ArrayHandle& handle) { // NOLINT |
27 | handle = Array::null(); |
28 | } |
29 | |
30 | static ArrayPtr New(Zone* zone, intptr_t length, Heap::Space space) { |
31 | return Array::New(len: length, space); |
32 | } |
33 | |
34 | static bool IsImmutable(const ArrayHandle& handle) { |
35 | return handle.ptr()->untag()->InVMIsolateHeap(); |
36 | } |
37 | |
38 | static ObjectPtr At(ArrayHandle* array, intptr_t index) { |
39 | return array->At(index); |
40 | } |
41 | |
42 | static void SetAt(ArrayHandle* array, intptr_t index, const Object& value) { |
43 | array->SetAt(index, value); |
44 | } |
45 | }; |
46 | |
47 | struct WeakArrayStorageTraits { |
48 | using ArrayHandle = WeakArray; |
49 | using ArrayPtr = dart::WeakArrayPtr; |
50 | static constexpr intptr_t ArrayCid = kWeakArrayCid; |
51 | |
52 | static ArrayHandle& PtrToHandle(ArrayPtr ptr) { |
53 | return WeakArray::Handle(ptr); |
54 | } |
55 | |
56 | static void SetHandle(ArrayHandle& dst, const ArrayHandle& src) { // NOLINT |
57 | dst = src.ptr(); |
58 | } |
59 | |
60 | static void ClearHandle(ArrayHandle& handle) { // NOLINT |
61 | handle = WeakArray::null(); |
62 | } |
63 | |
64 | static ArrayPtr New(Zone* zone, intptr_t length, Heap::Space space) { |
65 | return WeakArray::New(length, space); |
66 | } |
67 | |
68 | static bool IsImmutable(const ArrayHandle& handle) { |
69 | return handle.ptr()->untag()->InVMIsolateHeap(); |
70 | } |
71 | |
72 | static ObjectPtr At(ArrayHandle* array, intptr_t index) { |
73 | return array->At(index); |
74 | } |
75 | |
76 | static void SetAt(ArrayHandle* array, intptr_t index, const Object& value) { |
77 | array->SetAt(index, value); |
78 | } |
79 | }; |
80 | |
81 | struct AcqRelStorageTraits : ArrayStorageTraits { |
82 | static ObjectPtr At(ArrayHandle* array, intptr_t index) { |
83 | return array->AtAcquire(index); |
84 | } |
85 | |
86 | static void SetAt(ArrayHandle* array, intptr_t index, const Object& value) { |
87 | array->SetAtRelease(index, value); |
88 | } |
89 | }; |
90 | |
91 | struct WeakAcqRelStorageTraits : WeakArrayStorageTraits { |
92 | static ObjectPtr At(ArrayHandle* array, intptr_t index) { |
93 | return array->AtAcquire(index); |
94 | } |
95 | |
96 | static void SetAt(ArrayHandle* array, intptr_t index, const Object& value) { |
97 | array->SetAtRelease(index, value); |
98 | } |
99 | }; |
100 | |
101 | class HashTableBase : public ValueObject { |
102 | public: |
103 | static const Object& UnusedMarker() { return Object::transition_sentinel(); } |
104 | static const Object& DeletedMarker() { return Object::null_object(); } |
105 | }; |
106 | |
107 | // OVERVIEW: |
108 | // |
109 | // Hash maps and hash sets all use RawArray as backing storage. At the lowest |
110 | // level is a generic open-addressing table that supports deletion. |
111 | // - HashTable |
112 | // The next layer provides ordering and iteration functionality: |
113 | // - UnorderedHashTable |
114 | // - LinkedListHashTable (TODO(koda): Implement.) |
115 | // The utility class HashTables handles growth and conversion. |
116 | // The next layer fixes the payload size and provides a natural interface: |
117 | // - HashMap |
118 | // - HashSet |
119 | // Combining either of these with an iteration strategy, we get the templates |
120 | // intended for use outside this file: |
121 | // - UnorderedHashMap |
122 | // - LinkedListHashMap |
123 | // - UnorderedHashSet |
124 | // - LinkedListHashSet |
125 | // Each of these can be finally specialized with KeyTraits to support any set of |
126 | // lookup key types (e.g., look up a char* in a set of String objects), and |
127 | // any equality and hash code computation. |
128 | // |
129 | // The classes all wrap an Array handle, and methods like HashSet::Insert can |
130 | // trigger growth into a new RawArray, updating the handle. Debug mode asserts |
131 | // that 'Release' was called once to access the final array before destruction. |
132 | // NOTE: The handle returned by 'Release' is cleared by ~HashTable. |
133 | // |
134 | // Example use: |
135 | // typedef UnorderedHashMap<FooTraits> FooMap; |
136 | // ... |
137 | // FooMap cache(get_foo_cache()); |
138 | // cache.UpdateOrInsert(name0, obj0); |
139 | // cache.UpdateOrInsert(name1, obj1); |
140 | // ... |
141 | // set_foo_cache(cache.Release()); |
142 | // |
143 | // If you *know* that no mutating operations were called, you can optimize: |
144 | // ... |
145 | // obj ^= cache.GetOrNull(name); |
146 | // ASSERT(cache.Release().ptr() == get_foo_cache()); |
147 | // |
148 | // TODO(koda): When exposing these to Dart code, document and assert that |
149 | // KeyTraits methods must not run Dart code (since the C++ code doesn't check |
150 | // for concurrent modification). |
151 | |
152 | // Open-addressing hash table template using a RawArray as backing storage. |
153 | // |
154 | // The elements of the array are partitioned into entries: |
155 | // [ header | metadata | entry0 | entry1 | ... | entryN ] |
156 | // Each entry contains a key, followed by zero or more payload components, |
157 | // and has 3 possible states: unused, occupied, or deleted. |
158 | // The header tracks the number of entries in each state. |
159 | // Any object except the backing storage array and Object::transition_sentinel() |
160 | // may be stored as a key. Any object may be stored in a payload. |
161 | // |
162 | // Parameters |
163 | // KeyTraits: defines static methods |
164 | // bool IsMatch(const Key& key, const Object& obj) and |
165 | // uword Hash(const Key& key) for any number of desired lookup key types. |
166 | // kPayloadSize: number of components of the payload in each entry. |
167 | // kMetaDataSize: number of elements reserved (e.g., for iteration order data). |
168 | template <typename KeyTraits, |
169 | intptr_t kPayloadSize, |
170 | intptr_t kMetaDataSize, |
171 | typename StorageTraits = ArrayStorageTraits> |
172 | class HashTable : public HashTableBase { |
173 | public: |
174 | typedef KeyTraits Traits; |
175 | typedef StorageTraits Storage; |
176 | |
177 | // Uses the passed in handles for all handle operations. |
178 | // 'Release' must be called at the end to obtain the final table |
179 | // after potential growth/shrinkage. |
180 | HashTable(Object* key, Smi* index, typename StorageTraits::ArrayHandle* data) |
181 | : key_handle_(key), |
182 | smi_handle_(index), |
183 | data_(data), |
184 | released_data_(nullptr) {} |
185 | // Uses 'zone' for handle allocation. 'Release' must be called at the end |
186 | // to obtain the final table after potential growth/shrinkage. |
187 | HashTable(Zone* zone, typename StorageTraits::ArrayPtr data) |
188 | : key_handle_(&Object::Handle(zone)), |
189 | smi_handle_(&Smi::Handle(zone)), |
190 | data_(&StorageTraits::PtrToHandle(data)), |
191 | released_data_(nullptr) {} |
192 | |
193 | // Returns the final table. The handle is cleared when this HashTable is |
194 | // destroyed. |
195 | typename StorageTraits::ArrayHandle& Release() { |
196 | ASSERT(data_ != nullptr); |
197 | ASSERT(released_data_ == nullptr); |
198 | // Ensure that no methods are called after 'Release'. |
199 | released_data_ = data_; |
200 | data_ = nullptr; |
201 | return *released_data_; |
202 | } |
203 | |
204 | ~HashTable() { |
205 | // In DEBUG mode, calling 'Release' is mandatory. |
206 | ASSERT(data_ == nullptr); |
207 | if (released_data_ != nullptr) { |
208 | StorageTraits::ClearHandle(*released_data_); |
209 | } |
210 | } |
211 | |
212 | // Returns a backing storage size such that 'num_occupied' distinct keys can |
213 | // be inserted into the table. |
214 | static intptr_t ArrayLengthForNumOccupied(intptr_t num_occupied) { |
215 | // Because we use quadratic (actually triangle number) probing it is |
216 | // important that the size is a power of two (otherwise we could fail to |
217 | // find an empty slot). This is described in Knuth's The Art of Computer |
218 | // Programming Volume 2, Chapter 6.4, exercise 20 (solution in the |
219 | // appendix, 2nd edition). |
220 | intptr_t num_entries = Utils::RoundUpToPowerOfTwo(x: num_occupied + 1); |
221 | return kFirstKeyIndex + (kEntrySize * num_entries); |
222 | } |
223 | |
224 | // Initializes an empty table. |
225 | void Initialize() const { |
226 | ASSERT(data_->Length() >= ArrayLengthForNumOccupied(0)); |
227 | *smi_handle_ = Smi::New(value: 0); |
228 | StorageTraits::SetAt(data_, kOccupiedEntriesIndex, *smi_handle_); |
229 | StorageTraits::SetAt(data_, kDeletedEntriesIndex, *smi_handle_); |
230 | |
231 | #if !defined(PRODUCT) |
232 | StorageTraits::SetAt(data_, kNumGrowsIndex, *smi_handle_); |
233 | StorageTraits::SetAt(data_, kNumLT5LookupsIndex, *smi_handle_); |
234 | StorageTraits::SetAt(data_, kNumLT25LookupsIndex, *smi_handle_); |
235 | StorageTraits::SetAt(data_, kNumGT25LookupsIndex, *smi_handle_); |
236 | StorageTraits::SetAt(data_, kNumProbesIndex, *smi_handle_); |
237 | #endif // !defined(PRODUCT) |
238 | |
239 | for (intptr_t i = kHeaderSize; i < data_->Length(); ++i) { |
240 | StorageTraits::SetAt(data_, i, UnusedMarker()); |
241 | } |
242 | } |
243 | |
244 | // Returns whether 'key' matches any key in the table. |
245 | template <typename Key> |
246 | bool ContainsKey(const Key& key) const { |
247 | return FindKey(key) != -1; |
248 | } |
249 | |
250 | // Returns the entry that matches 'key', or -1 if none exists. |
251 | template <typename Key> |
252 | intptr_t FindKey(const Key& key) const { |
253 | const intptr_t num_entries = NumEntries(); |
254 | // TODO(koda): Add salt. |
255 | NOT_IN_PRODUCT(intptr_t collisions = 0;) |
256 | uword hash = KeyTraits::Hash(key); |
257 | ASSERT(Utils::IsPowerOfTwo(num_entries)); |
258 | intptr_t probe = hash & (num_entries - 1); |
259 | int probe_distance = 1; |
260 | while (true) { |
261 | if (IsUnused(entry: probe)) { |
262 | NOT_IN_PRODUCT(UpdateCollisions(collisions);) |
263 | return -1; |
264 | } else if (!IsDeleted(entry: probe)) { |
265 | *key_handle_ = GetKey(entry: probe); |
266 | if (KeyTraits::IsMatch(key, *key_handle_)) { |
267 | NOT_IN_PRODUCT(UpdateCollisions(collisions);) |
268 | return probe; |
269 | } |
270 | NOT_IN_PRODUCT(collisions += 1;) |
271 | } |
272 | // Advance probe. See ArrayLengthForNumOccupied comment for |
273 | // explanation of how we know this hits all slots. |
274 | probe = (probe + probe_distance) & (num_entries - 1); |
275 | probe_distance++; |
276 | } |
277 | UNREACHABLE(); |
278 | return -1; |
279 | } |
280 | |
281 | // Sets *entry to either: |
282 | // - an occupied entry matching 'key', and returns true, or |
283 | // - an unused/deleted entry where a matching key may be inserted, |
284 | // and returns false. |
285 | template <typename Key> |
286 | bool FindKeyOrDeletedOrUnused(const Key& key, intptr_t* entry) const { |
287 | const intptr_t num_entries = NumEntries(); |
288 | ASSERT(entry != nullptr); |
289 | NOT_IN_PRODUCT(intptr_t collisions = 0;) |
290 | uword hash = KeyTraits::Hash(key); |
291 | ASSERT(Utils::IsPowerOfTwo(num_entries)); |
292 | intptr_t probe = hash & (num_entries - 1); |
293 | int probe_distance = 1; |
294 | intptr_t deleted = -1; |
295 | while (true) { |
296 | if (IsUnused(entry: probe)) { |
297 | *entry = (deleted != -1) ? deleted : probe; |
298 | NOT_IN_PRODUCT(UpdateCollisions(collisions);) |
299 | return false; |
300 | } else if (IsDeleted(entry: probe)) { |
301 | if (deleted == -1) { |
302 | deleted = probe; |
303 | } |
304 | } else { |
305 | *key_handle_ = GetKey(entry: probe); |
306 | if (KeyTraits::IsMatch(key, *key_handle_)) { |
307 | *entry = probe; |
308 | NOT_IN_PRODUCT(UpdateCollisions(collisions);) |
309 | return true; |
310 | } |
311 | NOT_IN_PRODUCT(collisions += 1;) |
312 | } |
313 | // Advance probe. See ArrayLengthForNumOccupied comment for |
314 | // explanation of how we know this hits all slots. |
315 | probe = (probe + probe_distance) & (num_entries - 1); |
316 | probe_distance++; |
317 | } |
318 | UNREACHABLE(); |
319 | return false; |
320 | } |
321 | |
322 | // Sets the key of a previously unoccupied entry. This must not be the last |
323 | // unoccupied entry. |
324 | void InsertKey(intptr_t entry, const Object& key) const { |
325 | ASSERT(key.ptr() != UnusedMarker().ptr()); |
326 | ASSERT(key.ptr() != DeletedMarker().ptr()); |
327 | ASSERT(!IsOccupied(entry)); |
328 | AdjustSmiValueAt(index: kOccupiedEntriesIndex, delta: 1); |
329 | if (IsDeleted(entry)) { |
330 | AdjustSmiValueAt(index: kDeletedEntriesIndex, delta: -1); |
331 | } else { |
332 | ASSERT(IsUnused(entry)); |
333 | } |
334 | InternalSetKey(entry, key); |
335 | ASSERT(IsOccupied(entry)); |
336 | } |
337 | |
338 | bool IsUnused(intptr_t entry) const { |
339 | return InternalGetKey(entry) == UnusedMarker().ptr(); |
340 | } |
341 | bool IsOccupied(intptr_t entry) const { |
342 | return !IsUnused(entry) && !IsDeleted(entry); |
343 | } |
344 | bool IsDeleted(intptr_t entry) const { |
345 | return InternalGetKey(entry) == DeletedMarker().ptr(); |
346 | } |
347 | |
348 | ObjectPtr GetKey(intptr_t entry) const { |
349 | ASSERT(IsOccupied(entry)); |
350 | return InternalGetKey(entry); |
351 | } |
352 | ObjectPtr GetPayload(intptr_t entry, intptr_t component) const { |
353 | ASSERT(IsOccupied(entry)); |
354 | return WeakSerializationReference::Unwrap( |
355 | StorageTraits::At(data_, PayloadIndex(entry, component))); |
356 | } |
357 | void UpdatePayload(intptr_t entry, |
358 | intptr_t component, |
359 | const Object& value) const { |
360 | ASSERT(IsOccupied(entry)); |
361 | ASSERT(0 <= component && component < kPayloadSize); |
362 | StorageTraits::SetAt(data_, PayloadIndex(entry, component), value); |
363 | } |
364 | // Deletes both the key and payload of the specified entry. |
365 | void DeleteEntry(intptr_t entry) const { |
366 | ASSERT(IsOccupied(entry)); |
367 | for (intptr_t i = 0; i < kPayloadSize; ++i) { |
368 | UpdatePayload(entry, component: i, value: DeletedMarker()); |
369 | } |
370 | InternalSetKey(entry, key: DeletedMarker()); |
371 | AdjustSmiValueAt(index: kOccupiedEntriesIndex, delta: -1); |
372 | AdjustSmiValueAt(index: kDeletedEntriesIndex, delta: 1); |
373 | } |
374 | intptr_t NumEntries() const { |
375 | return (data_->Length() - kFirstKeyIndex) / kEntrySize; |
376 | } |
377 | intptr_t NumUnused() const { |
378 | return NumEntries() - NumOccupied() - NumDeleted(); |
379 | } |
380 | intptr_t NumOccupied() const { return GetSmiValueAt(index: kOccupiedEntriesIndex); } |
381 | intptr_t NumDeleted() const { return GetSmiValueAt(index: kDeletedEntriesIndex); } |
382 | Object& KeyHandle() const { return *key_handle_; } |
383 | Smi& SmiHandle() const { return *smi_handle_; } |
384 | |
385 | #if !defined(PRODUCT) |
386 | intptr_t NumGrows() const { return GetSmiValueAt(index: kNumGrowsIndex); } |
387 | intptr_t NumLT5Collisions() const { |
388 | return GetSmiValueAt(index: kNumLT5LookupsIndex); |
389 | } |
390 | intptr_t NumLT25Collisions() const { |
391 | return GetSmiValueAt(index: kNumLT25LookupsIndex); |
392 | } |
393 | intptr_t NumGT25Collisions() const { |
394 | return GetSmiValueAt(index: kNumGT25LookupsIndex); |
395 | } |
396 | intptr_t NumProbes() const { return GetSmiValueAt(index: kNumProbesIndex); } |
397 | void UpdateGrowth() const { |
398 | if (KeyTraits::ReportStats()) { |
399 | AdjustSmiValueAt(index: kNumGrowsIndex, delta: 1); |
400 | } |
401 | } |
402 | void UpdateCollisions(intptr_t collisions) const { |
403 | if (KeyTraits::ReportStats()) { |
404 | if (Storage::IsImmutable(*data_)) { |
405 | return; |
406 | } |
407 | AdjustSmiValueAt(index: kNumProbesIndex, delta: collisions + 1); |
408 | if (collisions < 5) { |
409 | AdjustSmiValueAt(index: kNumLT5LookupsIndex, delta: 1); |
410 | } else if (collisions < 25) { |
411 | AdjustSmiValueAt(index: kNumLT25LookupsIndex, delta: 1); |
412 | } else { |
413 | AdjustSmiValueAt(index: kNumGT25LookupsIndex, delta: 1); |
414 | } |
415 | } |
416 | } |
417 | void PrintStats() const { |
418 | if (!KeyTraits::ReportStats()) { |
419 | return; |
420 | } |
421 | const intptr_t num5 = NumLT5Collisions(); |
422 | const intptr_t num25 = NumLT25Collisions(); |
423 | const intptr_t num_more = NumGT25Collisions(); |
424 | // clang-format off |
425 | OS::PrintErr("Stats for %s table :\n" |
426 | " Size of table = %" Pd ",Number of Occupied entries = %" Pd "\n" |
427 | " Number of Grows = %" Pd "\n" |
428 | " Number of lookups with < 5 collisions = %" Pd "\n" |
429 | " Number of lookups with < 25 collisions = %" Pd "\n" |
430 | " Number of lookups with > 25 collisions = %" Pd "\n" |
431 | " Average number of probes = %g\n" , |
432 | KeyTraits::Name(), |
433 | NumEntries(), NumOccupied(), NumGrows(), |
434 | num5, num25, num_more, |
435 | static_cast<double>(NumProbes()) / (num5 + num25 + num_more)); |
436 | // clang-format on |
437 | } |
438 | #endif // !PRODUCT |
439 | |
440 | void UpdateWeakDeleted() const { |
441 | if (StorageTraits::ArrayCid != kWeakArrayCid) return; |
442 | |
443 | // As entries are deleted by GC, NumOccupied and NumDeleted become stale. |
444 | // Re-count before growing/rehashing to prevent table growth when the |
445 | // number of live entries is not increasing. |
446 | intptr_t num_occupied = 0; |
447 | intptr_t num_deleted = 0; |
448 | for (intptr_t i = 0, n = NumEntries(); i < n; i++) { |
449 | if (IsDeleted(entry: i)) { |
450 | num_deleted++; |
451 | } |
452 | if (IsOccupied(entry: i)) { |
453 | num_occupied++; |
454 | } |
455 | } |
456 | SetSmiValueAt(index: kOccupiedEntriesIndex, value: num_occupied); |
457 | SetSmiValueAt(index: kDeletedEntriesIndex, value: num_deleted); |
458 | } |
459 | |
460 | protected: |
461 | static constexpr intptr_t kOccupiedEntriesIndex = 0; |
462 | static constexpr intptr_t kDeletedEntriesIndex = 1; |
463 | #if defined(PRODUCT) |
464 | static constexpr intptr_t kHeaderSize = kDeletedEntriesIndex + 1; |
465 | #else |
466 | static constexpr intptr_t kNumGrowsIndex = 2; |
467 | static constexpr intptr_t kNumLT5LookupsIndex = 3; |
468 | static constexpr intptr_t kNumLT25LookupsIndex = 4; |
469 | static constexpr intptr_t kNumGT25LookupsIndex = 5; |
470 | static constexpr intptr_t kNumProbesIndex = 6; |
471 | static constexpr intptr_t = kNumProbesIndex + 1; |
472 | #endif |
473 | static constexpr intptr_t kMetaDataIndex = kHeaderSize; |
474 | static constexpr intptr_t kFirstKeyIndex = kHeaderSize + kMetaDataSize; |
475 | static constexpr intptr_t kEntrySize = 1 + kPayloadSize; |
476 | |
477 | intptr_t KeyIndex(intptr_t entry) const { |
478 | ASSERT(0 <= entry && entry < NumEntries()); |
479 | return kFirstKeyIndex + (kEntrySize * entry); |
480 | } |
481 | |
482 | intptr_t PayloadIndex(intptr_t entry, intptr_t component) const { |
483 | ASSERT(0 <= component && component < kPayloadSize); |
484 | return KeyIndex(entry) + 1 + component; |
485 | } |
486 | |
487 | ObjectPtr InternalGetKey(intptr_t entry) const { |
488 | return WeakSerializationReference::Unwrap( |
489 | StorageTraits::At(data_, KeyIndex(entry))); |
490 | } |
491 | |
492 | void InternalSetKey(intptr_t entry, const Object& key) const { |
493 | StorageTraits::SetAt(data_, KeyIndex(entry), key); |
494 | } |
495 | |
496 | intptr_t GetSmiValueAt(intptr_t index) const { |
497 | ASSERT(!data_->IsNull()); |
498 | if (StorageTraits::At(data_, index)->IsHeapObject()) { |
499 | Object::Handle(StorageTraits::At(data_, index)).Print(); |
500 | } |
501 | ASSERT(!StorageTraits::At(data_, index)->IsHeapObject()); |
502 | return Smi::Value(Smi::RawCast(raw: StorageTraits::At(data_, index))); |
503 | } |
504 | |
505 | void SetSmiValueAt(intptr_t index, intptr_t value) const { |
506 | *smi_handle_ = Smi::New(value); |
507 | StorageTraits::SetAt(data_, index, *smi_handle_); |
508 | } |
509 | |
510 | void AdjustSmiValueAt(intptr_t index, intptr_t delta) const { |
511 | SetSmiValueAt(index, value: (GetSmiValueAt(index) + delta)); |
512 | } |
513 | |
514 | Object* key_handle_; |
515 | Smi* smi_handle_; |
516 | // Exactly one of these is non-null, depending on whether Release was called. |
517 | typename StorageTraits::ArrayHandle* data_; |
518 | typename StorageTraits::ArrayHandle* released_data_; |
519 | |
520 | friend class HashTables; |
521 | template <typename Table, bool kAllCanonicalObjectsAreIncludedIntoSet> |
522 | friend class CanonicalSetDeserializationCluster; |
523 | template <typename Table, |
524 | typename HandleType, |
525 | typename PointerType, |
526 | bool kAllCanonicalObjectsAreIncludedIntoSet> |
527 | friend class CanonicalSetSerializationCluster; |
528 | }; |
529 | |
530 | // Table with unspecified iteration order. No payload overhead or metadata. |
531 | template <typename KeyTraits, |
532 | intptr_t kUserPayloadSize, |
533 | typename StorageTraits = ArrayStorageTraits> |
534 | class UnorderedHashTable |
535 | : public HashTable<KeyTraits, kUserPayloadSize, 0, StorageTraits> { |
536 | public: |
537 | typedef HashTable<KeyTraits, kUserPayloadSize, 0, StorageTraits> BaseTable; |
538 | typedef typename StorageTraits::ArrayPtr ArrayPtr; |
539 | typedef typename StorageTraits::ArrayHandle ArrayHandle; |
540 | static constexpr intptr_t kPayloadSize = kUserPayloadSize; |
541 | explicit UnorderedHashTable(ArrayPtr data) |
542 | : BaseTable(Thread::Current()->zone(), data) {} |
543 | UnorderedHashTable(Zone* zone, ArrayPtr data) : BaseTable(zone, data) {} |
544 | UnorderedHashTable(Object* key, Smi* value, ArrayHandle* data) |
545 | : BaseTable(key, value, data) {} |
546 | // Note: Does not check for concurrent modification. |
547 | class Iterator { |
548 | public: |
549 | explicit Iterator(const UnorderedHashTable* table) |
550 | : table_(table), entry_(-1) {} |
551 | bool MoveNext() { |
552 | while (entry_ < (table_->NumEntries() - 1)) { |
553 | ++entry_; |
554 | if (table_->IsOccupied(entry_)) { |
555 | return true; |
556 | } |
557 | } |
558 | return false; |
559 | } |
560 | intptr_t Current() { return entry_; } |
561 | |
562 | private: |
563 | const UnorderedHashTable* table_; |
564 | intptr_t entry_; |
565 | }; |
566 | |
567 | // No extra book-keeping needed for Initialize, InsertKey, DeleteEntry. |
568 | }; |
569 | |
570 | class HashTables : public AllStatic { |
571 | public: |
572 | // Allocates and initializes a table. |
573 | template <typename Table> |
574 | static typename Table::Storage::ArrayPtr New(intptr_t initial_capacity, |
575 | Heap::Space space = Heap::kNew) { |
576 | auto zone = Thread::Current()->zone(); |
577 | Table table( |
578 | zone, |
579 | Table::Storage::New( |
580 | zone, Table::ArrayLengthForNumOccupied(initial_capacity), space)); |
581 | table.Initialize(); |
582 | return table.Release().ptr(); |
583 | } |
584 | |
585 | template <typename Table> |
586 | static typename Table::Storage::ArrayPtr New( |
587 | const typename Table::Storage::ArrayHandle& array) { |
588 | Table table(Thread::Current()->zone(), array.ptr()); |
589 | table.Initialize(); |
590 | return table.Release().ptr(); |
591 | } |
592 | |
593 | // Clears 'to' and inserts all elements from 'from', in iteration order. |
594 | // The tables must have the same user payload size. |
595 | template <typename From, typename To> |
596 | static void Copy(const From& from, const To& to) { |
597 | COMPILE_ASSERT(From::kPayloadSize == To::kPayloadSize); |
598 | to.Initialize(); |
599 | ASSERT(from.NumOccupied() < to.NumEntries()); |
600 | typename From::Iterator it(&from); |
601 | Object& obj = Object::Handle(); |
602 | while (it.MoveNext()) { |
603 | intptr_t from_entry = it.Current(); |
604 | obj = from.GetKey(from_entry); |
605 | intptr_t to_entry = -1; |
606 | const Object& key = obj; |
607 | bool present = to.FindKeyOrDeletedOrUnused(key, &to_entry); |
608 | ASSERT(!present); |
609 | to.InsertKey(to_entry, obj); |
610 | for (intptr_t i = 0; i < From::kPayloadSize; ++i) { |
611 | obj = from.GetPayload(from_entry, i); |
612 | to.UpdatePayload(to_entry, i, obj); |
613 | } |
614 | } |
615 | } |
616 | |
617 | static constexpr double kMaxLoadFactor = 0.71; |
618 | |
619 | template <typename Table> |
620 | static void EnsureLoadFactor(double high, const Table& table) { |
621 | // We count deleted elements because they take up space just |
622 | // like occupied slots in order to cause a rehashing. |
623 | const double current = (1 + table.NumOccupied() + table.NumDeleted()) / |
624 | static_cast<double>(table.NumEntries()); |
625 | const bool too_many_deleted = table.NumOccupied() <= table.NumDeleted(); |
626 | if (current < high && !too_many_deleted) { |
627 | return; |
628 | } |
629 | |
630 | table.UpdateWeakDeleted(); |
631 | |
632 | // Normally we double the size here, but if less than half are occupied |
633 | // then it won't grow (this would imply that there were quite a lot of |
634 | // deleted slots). We don't want to constantly rehash if we are adding |
635 | // and deleting entries at just under the load factor limit, so we may |
636 | // double the size even though the number of occupied slots would not |
637 | // necessarily justify it. For example if the max load factor is 71% and |
638 | // the table is 70% full we will double the size to avoid a rehash every |
639 | // time 1% has been added and deleted. |
640 | const intptr_t new_capacity = table.NumOccupied() * 2 + 1; |
641 | ASSERT(table.NumOccupied() == 0 || |
642 | ((1.0 + table.NumOccupied()) / |
643 | Utils::RoundUpToPowerOfTwo(new_capacity)) <= high); |
644 | Table new_table(New<Table>(new_capacity, // Is rounded up to power of 2. |
645 | table.data_->IsOld() ? Heap::kOld : Heap::kNew)); |
646 | Copy(table, new_table); |
647 | Table::Storage::SetHandle(*table.data_, new_table.Release()); |
648 | NOT_IN_PRODUCT(table.UpdateGrowth(); table.PrintStats();) |
649 | } |
650 | |
651 | // Serializes a table by concatenating its entries as an array. |
652 | template <typename Table> |
653 | static ArrayPtr ToArray(const Table& table, bool include_payload) { |
654 | const intptr_t entry_size = include_payload ? (1 + Table::kPayloadSize) : 1; |
655 | Array& result = Array::Handle(Array::New(table.NumOccupied() * entry_size)); |
656 | typename Table::Iterator it(&table); |
657 | Object& obj = Object::Handle(); |
658 | intptr_t result_index = 0; |
659 | while (it.MoveNext()) { |
660 | intptr_t entry = it.Current(); |
661 | obj = table.GetKey(entry); |
662 | result.SetAt(result_index++, obj); |
663 | if (include_payload) { |
664 | for (intptr_t i = 0; i < Table::kPayloadSize; ++i) { |
665 | obj = table.GetPayload(entry, i); |
666 | result.SetAt(result_index++, obj); |
667 | } |
668 | } |
669 | } |
670 | return result.ptr(); |
671 | } |
672 | |
673 | #if defined(DART_PRECOMPILER) |
674 | // Replace elements of this set with WeakSerializationReferences. |
675 | static void Weaken(const Array& table) { |
676 | if (!table.IsNull()) { |
677 | Object& element = Object::Handle(); |
678 | for (intptr_t i = 0; i < table.Length(); i++) { |
679 | element = table.At(i); |
680 | if (!element.IsSmi()) { |
681 | element = WeakSerializationReference::New( |
682 | element, HashTableBase::DeletedMarker()); |
683 | table.SetAt(i, element); |
684 | } |
685 | } |
686 | } |
687 | } |
688 | #endif |
689 | }; |
690 | |
691 | template <typename BaseIterTable> |
692 | class HashMap : public BaseIterTable { |
693 | public: |
694 | explicit HashMap(ArrayPtr data) |
695 | : BaseIterTable(Thread::Current()->zone(), data) {} |
696 | HashMap(Zone* zone, ArrayPtr data) : BaseIterTable(zone, data) {} |
697 | HashMap(Object* key, Smi* value, Array* data) |
698 | : BaseIterTable(key, value, data) {} |
699 | template <typename Key> |
700 | ObjectPtr GetOrNull(const Key& key, bool* present = nullptr) const { |
701 | intptr_t entry = BaseIterTable::FindKey(key); |
702 | if (present != nullptr) { |
703 | *present = (entry != -1); |
704 | } |
705 | return (entry == -1) ? Object::null() : BaseIterTable::GetPayload(entry, 0); |
706 | } |
707 | template <typename Key> |
708 | ObjectPtr GetOrDie(const Key& key) const { |
709 | intptr_t entry = BaseIterTable::FindKey(key); |
710 | if (entry == -1) UNREACHABLE(); |
711 | return BaseIterTable::GetPayload(entry, 0); |
712 | } |
713 | bool UpdateOrInsert(const Object& key, const Object& value) const { |
714 | EnsureCapacity(); |
715 | intptr_t entry = -1; |
716 | bool present = BaseIterTable::FindKeyOrDeletedOrUnused(key, &entry); |
717 | if (!present) { |
718 | BaseIterTable::InsertKey(entry, key); |
719 | } |
720 | BaseIterTable::UpdatePayload(entry, 0, value); |
721 | return present; |
722 | } |
723 | // Update the value of an existing key. Note that 'key' need not be an Object. |
724 | template <typename Key> |
725 | void UpdateValue(const Key& key, const Object& value) const { |
726 | intptr_t entry = BaseIterTable::FindKey(key); |
727 | ASSERT(entry != -1); |
728 | BaseIterTable::UpdatePayload(entry, 0, value); |
729 | } |
730 | // If 'key' is not present, maps it to 'value_if_absent'. Returns the final |
731 | // value in the map. |
732 | ObjectPtr InsertOrGetValue(const Object& key, |
733 | const Object& value_if_absent) const { |
734 | EnsureCapacity(); |
735 | intptr_t entry = -1; |
736 | if (!BaseIterTable::FindKeyOrDeletedOrUnused(key, &entry)) { |
737 | BaseIterTable::InsertKey(entry, key); |
738 | BaseIterTable::UpdatePayload(entry, 0, value_if_absent); |
739 | return value_if_absent.ptr(); |
740 | } else { |
741 | return BaseIterTable::GetPayload(entry, 0); |
742 | } |
743 | } |
744 | // Like InsertOrGetValue, but calls NewKey to allocate a key object if needed. |
745 | template <typename Key> |
746 | ObjectPtr InsertNewOrGetValue(const Key& key, |
747 | const Object& value_if_absent) const { |
748 | EnsureCapacity(); |
749 | intptr_t entry = -1; |
750 | if (!BaseIterTable::FindKeyOrDeletedOrUnused(key, &entry)) { |
751 | BaseIterTable::KeyHandle() = |
752 | BaseIterTable::BaseTable::Traits::NewKey(key); |
753 | BaseIterTable::InsertKey(entry, BaseIterTable::KeyHandle()); |
754 | BaseIterTable::UpdatePayload(entry, 0, value_if_absent); |
755 | return value_if_absent.ptr(); |
756 | } else { |
757 | return BaseIterTable::GetPayload(entry, 0); |
758 | } |
759 | } |
760 | |
761 | template <typename Key> |
762 | bool Remove(const Key& key) const { |
763 | intptr_t entry = BaseIterTable::FindKey(key); |
764 | if (entry == -1) { |
765 | return false; |
766 | } else { |
767 | BaseIterTable::DeleteEntry(entry); |
768 | return true; |
769 | } |
770 | } |
771 | |
772 | void Clear() const { BaseIterTable::Initialize(); } |
773 | |
774 | protected: |
775 | void EnsureCapacity() const { |
776 | HashTables::EnsureLoadFactor(HashTables::kMaxLoadFactor, *this); |
777 | } |
778 | }; |
779 | |
780 | template <typename KeyTraits> |
781 | class UnorderedHashMap : public HashMap<UnorderedHashTable<KeyTraits, 1> > { |
782 | public: |
783 | typedef HashMap<UnorderedHashTable<KeyTraits, 1> > BaseMap; |
784 | explicit UnorderedHashMap(ArrayPtr data) |
785 | : BaseMap(Thread::Current()->zone(), data) {} |
786 | UnorderedHashMap(Zone* zone, ArrayPtr data) : BaseMap(zone, data) {} |
787 | UnorderedHashMap(Object* key, Smi* value, Array* data) |
788 | : BaseMap(key, value, data) {} |
789 | }; |
790 | |
791 | template <typename BaseIterTable, typename StorageTraits> |
792 | class HashSet : public BaseIterTable { |
793 | public: |
794 | typedef typename StorageTraits::ArrayPtr ArrayPtr; |
795 | typedef typename StorageTraits::ArrayHandle ArrayHandle; |
796 | explicit HashSet(ArrayPtr data) |
797 | : BaseIterTable(Thread::Current()->zone(), data) {} |
798 | HashSet(Zone* zone, ArrayPtr data) : BaseIterTable(zone, data) {} |
799 | HashSet(Object* key, Smi* value, ArrayHandle* data) |
800 | : BaseIterTable(key, value, data) {} |
801 | bool Insert(const Object& key) { |
802 | EnsureCapacity(); |
803 | intptr_t entry = -1; |
804 | bool present = BaseIterTable::FindKeyOrDeletedOrUnused(key, &entry); |
805 | if (!present) { |
806 | BaseIterTable::InsertKey(entry, key); |
807 | } |
808 | return present; |
809 | } |
810 | |
811 | // If 'key' is not present, insert and return it. Else, return the existing |
812 | // key in the set (useful for canonicalization). |
813 | ObjectPtr InsertOrGet(const Object& key) const { |
814 | EnsureCapacity(); |
815 | intptr_t entry = -1; |
816 | if (!BaseIterTable::FindKeyOrDeletedOrUnused(key, &entry)) { |
817 | BaseIterTable::InsertKey(entry, key); |
818 | return key.ptr(); |
819 | } else { |
820 | return BaseIterTable::GetKey(entry); |
821 | } |
822 | } |
823 | |
824 | // Like InsertOrGet, but calls NewKey to allocate a key object if needed. |
825 | template <typename Key> |
826 | ObjectPtr InsertNewOrGet(const Key& key) const { |
827 | EnsureCapacity(); |
828 | intptr_t entry = -1; |
829 | if (!BaseIterTable::FindKeyOrDeletedOrUnused(key, &entry)) { |
830 | BaseIterTable::KeyHandle() = |
831 | BaseIterTable::BaseTable::Traits::NewKey(key); |
832 | BaseIterTable::InsertKey(entry, BaseIterTable::KeyHandle()); |
833 | return BaseIterTable::KeyHandle().ptr(); |
834 | } else { |
835 | return BaseIterTable::GetKey(entry); |
836 | } |
837 | } |
838 | |
839 | template <typename Key> |
840 | ObjectPtr GetOrNull(const Key& key, bool* present = nullptr) const { |
841 | intptr_t entry = BaseIterTable::FindKey(key); |
842 | if (present != nullptr) { |
843 | *present = (entry != -1); |
844 | } |
845 | return (entry == -1) ? Object::null() : BaseIterTable::GetKey(entry); |
846 | } |
847 | |
848 | template <typename Key> |
849 | bool Remove(const Key& key) const { |
850 | intptr_t entry = BaseIterTable::FindKey(key); |
851 | if (entry == -1) { |
852 | return false; |
853 | } else { |
854 | BaseIterTable::DeleteEntry(entry); |
855 | return true; |
856 | } |
857 | } |
858 | |
859 | void Clear() const { BaseIterTable::Initialize(); } |
860 | |
861 | protected: |
862 | void EnsureCapacity() const { |
863 | HashTables::EnsureLoadFactor(HashTables::kMaxLoadFactor, *this); |
864 | } |
865 | }; |
866 | |
867 | template <typename KeyTraits, typename TableStorageTraits = ArrayStorageTraits> |
868 | class UnorderedHashSet |
869 | : public HashSet<UnorderedHashTable<KeyTraits, 0, TableStorageTraits>, |
870 | TableStorageTraits> { |
871 | using UnderlyingTable = UnorderedHashTable<KeyTraits, 0, TableStorageTraits>; |
872 | |
873 | public: |
874 | typedef HashSet<UnderlyingTable, TableStorageTraits> BaseSet; |
875 | typedef typename TableStorageTraits::ArrayPtr ArrayPtr; |
876 | typedef typename TableStorageTraits::ArrayHandle ArrayHandle; |
877 | explicit UnorderedHashSet(ArrayPtr data) |
878 | : BaseSet(Thread::Current()->zone(), data) { |
879 | ASSERT(data != Object::null()); |
880 | } |
881 | UnorderedHashSet(Zone* zone, ArrayPtr data) : BaseSet(zone, data) {} |
882 | UnorderedHashSet(Object* key, Smi* value, ArrayHandle* data) |
883 | : BaseSet(key, value, data) {} |
884 | |
885 | void Dump() const { |
886 | Object& entry = Object::Handle(); |
887 | for (intptr_t i = 0; i < this->data_->Length(); i++) { |
888 | entry = WeakSerializationReference::Unwrap( |
889 | TableStorageTraits::At(this->data_, i)); |
890 | if (entry.ptr() == BaseSet::UnusedMarker().ptr() || |
891 | entry.ptr() == BaseSet::DeletedMarker().ptr() || entry.IsSmi()) { |
892 | // empty, deleted, num_used/num_deleted |
893 | OS::PrintErr("%" Pd ": %s\n" , i, entry.ToCString()); |
894 | } else { |
895 | intptr_t hash = KeyTraits::Hash(entry); |
896 | OS::PrintErr("%" Pd ": %" Pd ", %s\n" , i, hash, entry.ToCString()); |
897 | } |
898 | } |
899 | } |
900 | }; |
901 | |
902 | typedef UnorderedHashMap<SmiTraits> IntHashMap; |
903 | |
904 | } // namespace dart |
905 | |
906 | #endif // RUNTIME_VM_HASH_TABLE_H_ |
907 | |