| 1 | // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #ifndef RUNTIME_VM_HEAP_WEAK_TABLE_H_ |
| 6 | #define RUNTIME_VM_HEAP_WEAK_TABLE_H_ |
| 7 | |
| 8 | #include "vm/globals.h" |
| 9 | |
| 10 | #include "platform/assert.h" |
| 11 | #include "vm/lockers.h" |
| 12 | #include "vm/raw_object.h" |
| 13 | |
| 14 | namespace dart { |
| 15 | |
| 16 | class WeakTable { |
| 17 | public: |
| 18 | static constexpr intptr_t kNoValue = 0; |
| 19 | |
| 20 | WeakTable() : WeakTable(kMinSize) {} |
| 21 | explicit WeakTable(intptr_t size) : used_(0), count_(0) { |
| 22 | ASSERT(size >= 0); |
| 23 | ASSERT(Utils::IsPowerOfTwo(kMinSize)); |
| 24 | if (size < kMinSize) { |
| 25 | size = kMinSize; |
| 26 | } |
| 27 | // Get a max size that avoids overflows. |
| 28 | const intptr_t kMaxSize = |
| 29 | (kIntptrOne << (kBitsPerWord - 2)) / (kEntrySize * kWordSize); |
| 30 | ASSERT(Utils::IsPowerOfTwo(kMaxSize)); |
| 31 | if (size > kMaxSize) { |
| 32 | size = kMaxSize; |
| 33 | } |
| 34 | size_ = size; |
| 35 | ASSERT(Utils::IsPowerOfTwo(size_)); |
| 36 | data_ = reinterpret_cast<intptr_t*>(malloc(size: size_ * kEntrySize * kWordSize)); |
| 37 | for (intptr_t i = 0; i < size_; i++) { |
| 38 | data_[ObjectIndex(i)] = kNoEntry; |
| 39 | data_[ValueIndex(i)] = kNoValue; |
| 40 | } |
| 41 | } |
| 42 | |
| 43 | ~WeakTable() { free(data_); } |
| 44 | |
| 45 | static WeakTable* NewFrom(WeakTable* original) { |
| 46 | return new WeakTable(SizeFor(count: original->count(), size: original->size())); |
| 47 | } |
| 48 | |
| 49 | intptr_t size() const { return size_; } |
| 50 | intptr_t used() const { return used_; } |
| 51 | intptr_t count() const { return count_; } |
| 52 | |
| 53 | // The following methods can be called concurrently and are guarded by a lock. |
| 54 | |
| 55 | intptr_t GetValue(ObjectPtr key) { |
| 56 | MutexLocker ml(&mutex_); |
| 57 | return GetValueExclusive(key); |
| 58 | } |
| 59 | |
| 60 | void SetValue(ObjectPtr key, intptr_t val) { |
| 61 | MutexLocker ml(&mutex_); |
| 62 | return SetValueExclusive(key, val); |
| 63 | } |
| 64 | |
| 65 | intptr_t SetValueIfNonExistent(ObjectPtr key, intptr_t val) { |
| 66 | MutexLocker ml(&mutex_); |
| 67 | const auto old_value = GetValueExclusive(key); |
| 68 | if (old_value == kNoValue) { |
| 69 | SetValueExclusive(key, val); |
| 70 | return val; |
| 71 | } |
| 72 | return old_value; |
| 73 | } |
| 74 | |
| 75 | // The following "exclusive" methods must only be called from call sites |
| 76 | // which are known to have exclusive access to the weak table. |
| 77 | // |
| 78 | // This is mostly limited to GC related code (e.g. scavenger, marker, ...) |
| 79 | |
| 80 | bool IsValidEntryAtExclusive(intptr_t i) const { |
| 81 | ASSERT((ValueAtExclusive(i) == 0 && |
| 82 | (data_[ObjectIndex(i)] == kNoEntry || |
| 83 | data_[ObjectIndex(i)] == kDeletedEntry)) || |
| 84 | (ValueAtExclusive(i) != 0 && data_[ObjectIndex(i)] != kNoEntry && |
| 85 | data_[ObjectIndex(i)] != kDeletedEntry)); |
| 86 | return (data_[ValueIndex(i)] != 0); |
| 87 | } |
| 88 | |
| 89 | void InvalidateAtExclusive(intptr_t i) { |
| 90 | ASSERT(IsValidEntryAtExclusive(i)); |
| 91 | SetValueAt(i, val: 0); |
| 92 | } |
| 93 | |
| 94 | ObjectPtr ObjectAtExclusive(intptr_t i) const { |
| 95 | ASSERT(i >= 0); |
| 96 | ASSERT(i < size()); |
| 97 | return static_cast<ObjectPtr>(data_[ObjectIndex(i)]); |
| 98 | } |
| 99 | |
| 100 | intptr_t ValueAtExclusive(intptr_t i) const { |
| 101 | ASSERT(i >= 0); |
| 102 | ASSERT(i < size()); |
| 103 | return data_[ValueIndex(i)]; |
| 104 | } |
| 105 | |
| 106 | void SetValueExclusive(ObjectPtr key, intptr_t val); |
| 107 | bool MarkValueExclusive(ObjectPtr key, intptr_t val); |
| 108 | |
| 109 | intptr_t GetValueExclusive(ObjectPtr key) const { |
| 110 | intptr_t mask = size() - 1; |
| 111 | intptr_t idx = Hash(key) & mask; |
| 112 | ObjectPtr obj = ObjectAtExclusive(i: idx); |
| 113 | while (obj != static_cast<ObjectPtr>(kNoEntry)) { |
| 114 | if (obj == key) { |
| 115 | return ValueAtExclusive(i: idx); |
| 116 | } |
| 117 | idx = (idx + 1) & mask; |
| 118 | obj = ObjectAtExclusive(i: idx); |
| 119 | } |
| 120 | ASSERT(ValueAtExclusive(idx) == 0); |
| 121 | return kNoValue; |
| 122 | } |
| 123 | |
| 124 | // Removes and returns the value associated with |key|. Returns 0 if there is |
| 125 | // no value associated with |key|. |
| 126 | intptr_t RemoveValueExclusive(ObjectPtr key) { |
| 127 | intptr_t mask = size() - 1; |
| 128 | intptr_t idx = Hash(key) & mask; |
| 129 | ObjectPtr obj = ObjectAtExclusive(i: idx); |
| 130 | while (obj != static_cast<ObjectPtr>(kNoEntry)) { |
| 131 | if (obj == key) { |
| 132 | intptr_t result = ValueAtExclusive(i: idx); |
| 133 | InvalidateAtExclusive(i: idx); |
| 134 | return result; |
| 135 | } |
| 136 | idx = (idx + 1) & mask; |
| 137 | obj = ObjectAtExclusive(i: idx); |
| 138 | } |
| 139 | ASSERT(ValueAtExclusive(idx) == 0); |
| 140 | return kNoValue; |
| 141 | } |
| 142 | |
| 143 | void Forward(ObjectPointerVisitor* visitor); |
| 144 | void ReportSurvivingAllocations(Dart_HeapSamplingReportCallback callback, |
| 145 | void* context); |
| 146 | void CleanupValues(Dart_HeapSamplingDeleteCallback cleanup); |
| 147 | |
| 148 | void Reset(); |
| 149 | |
| 150 | private: |
| 151 | enum { |
| 152 | kObjectOffset = 0, |
| 153 | kValueOffset, |
| 154 | kEntrySize, |
| 155 | }; |
| 156 | |
| 157 | static constexpr intptr_t kNoEntry = 1; // Not a valid OOP. |
| 158 | static constexpr intptr_t kDeletedEntry = 3; // Not a valid OOP. |
| 159 | static constexpr intptr_t kMinSize = 8; |
| 160 | |
| 161 | static intptr_t SizeFor(intptr_t count, intptr_t size); |
| 162 | static intptr_t LimitFor(intptr_t size) { |
| 163 | // Maintain a maximum of 75% fill rate. |
| 164 | return 3 * (size / 4); |
| 165 | } |
| 166 | intptr_t limit() const { return LimitFor(size: size()); } |
| 167 | |
| 168 | intptr_t index(intptr_t i) const { return i * kEntrySize; } |
| 169 | |
| 170 | void set_used(intptr_t val) { |
| 171 | ASSERT(val <= limit()); |
| 172 | used_ = val; |
| 173 | } |
| 174 | |
| 175 | void set_count(intptr_t val) { |
| 176 | ASSERT(val <= limit()); |
| 177 | ASSERT(val <= used()); |
| 178 | count_ = val; |
| 179 | } |
| 180 | |
| 181 | intptr_t ObjectIndex(intptr_t i) const { return index(i) + kObjectOffset; } |
| 182 | |
| 183 | intptr_t ValueIndex(intptr_t i) const { return index(i) + kValueOffset; } |
| 184 | |
| 185 | ObjectPtr* ObjectPointerAt(intptr_t i) const { |
| 186 | ASSERT(i >= 0); |
| 187 | ASSERT(i < size()); |
| 188 | return reinterpret_cast<ObjectPtr*>(&data_[ObjectIndex(i)]); |
| 189 | } |
| 190 | |
| 191 | void SetObjectAt(intptr_t i, ObjectPtr key) { |
| 192 | ASSERT(i >= 0); |
| 193 | ASSERT(i < size()); |
| 194 | data_[ObjectIndex(i)] = static_cast<intptr_t>(key); |
| 195 | } |
| 196 | |
| 197 | void SetValueAt(intptr_t i, intptr_t val) { |
| 198 | ASSERT(i >= 0); |
| 199 | ASSERT(i < size()); |
| 200 | // Setting a value of 0 is equivalent to invalidating the entry. |
| 201 | if (val == 0) { |
| 202 | data_[ObjectIndex(i)] = kDeletedEntry; |
| 203 | set_count(count() - 1); |
| 204 | } |
| 205 | data_[ValueIndex(i)] = val; |
| 206 | } |
| 207 | |
| 208 | void Rehash(); |
| 209 | |
| 210 | static uword Hash(ObjectPtr key) { |
| 211 | return (static_cast<uword>(key) * 92821) ^ (static_cast<uword>(key) >> 8); |
| 212 | } |
| 213 | |
| 214 | Mutex mutex_; |
| 215 | |
| 216 | // data_ contains size_ tuples of key/value. |
| 217 | intptr_t* data_; |
| 218 | // size_ keeps the number of entries in data_. used_ maintains the number of |
| 219 | // non-NULL entries and will trigger rehashing if needed. count_ stores the |
| 220 | // number valid entries, and will determine the size_ after rehashing. |
| 221 | intptr_t size_; |
| 222 | intptr_t used_; |
| 223 | intptr_t count_; |
| 224 | |
| 225 | DISALLOW_COPY_AND_ASSIGN(WeakTable); |
| 226 | }; |
| 227 | |
| 228 | } // namespace dart |
| 229 | |
| 230 | #endif // RUNTIME_VM_HEAP_WEAK_TABLE_H_ |
| 231 | |