| 1 | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| 2 | * project 1999. |
| 3 | */ |
| 4 | /* ==================================================================== |
| 5 | * Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions |
| 9 | * are met: |
| 10 | * |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * |
| 14 | * 2. Redistributions in binary form must reproduce the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer in |
| 16 | * the documentation and/or other materials provided with the |
| 17 | * distribution. |
| 18 | * |
| 19 | * 3. All advertising materials mentioning features or use of this |
| 20 | * software must display the following acknowledgment: |
| 21 | * "This product includes software developed by the OpenSSL Project |
| 22 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| 23 | * |
| 24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 25 | * endorse or promote products derived from this software without |
| 26 | * prior written permission. For written permission, please contact |
| 27 | * licensing@OpenSSL.org. |
| 28 | * |
| 29 | * 5. Products derived from this software may not be called "OpenSSL" |
| 30 | * nor may "OpenSSL" appear in their names without prior written |
| 31 | * permission of the OpenSSL Project. |
| 32 | * |
| 33 | * 6. Redistributions of any form whatsoever must retain the following |
| 34 | * acknowledgment: |
| 35 | * "This product includes software developed by the OpenSSL Project |
| 36 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| 37 | * |
| 38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 49 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 50 | * ==================================================================== |
| 51 | * |
| 52 | * This product includes cryptographic software written by Eric Young |
| 53 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 54 | * Hudson (tjh@cryptsoft.com). */ |
| 55 | |
| 56 | #include <openssl/pkcs8.h> |
| 57 | |
| 58 | #include <limits.h> |
| 59 | |
| 60 | #include <openssl/asn1t.h> |
| 61 | #include <openssl/asn1.h> |
| 62 | #include <openssl/bio.h> |
| 63 | #include <openssl/buf.h> |
| 64 | #include <openssl/bytestring.h> |
| 65 | #include <openssl/err.h> |
| 66 | #include <openssl/evp.h> |
| 67 | #include <openssl/digest.h> |
| 68 | #include <openssl/hmac.h> |
| 69 | #include <openssl/mem.h> |
| 70 | #include <openssl/rand.h> |
| 71 | #include <openssl/x509.h> |
| 72 | |
| 73 | #include "internal.h" |
| 74 | #include "../bytestring/internal.h" |
| 75 | #include "../internal.h" |
| 76 | |
| 77 | |
| 78 | int pkcs12_iterations_acceptable(uint64_t iterations) { |
| 79 | #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| 80 | static const uint64_t kIterationsLimit = 2048; |
| 81 | #else |
| 82 | // Windows imposes a limit of 600K. Mozilla say: “so them increasing |
| 83 | // maximum to something like 100M or 1G (to have few decades of breathing |
| 84 | // room) would be very welcome”[1]. So here we set the limit to 100M. |
| 85 | // |
| 86 | // [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1436873#c14 |
| 87 | static const uint64_t kIterationsLimit = 100 * 1000000; |
| 88 | #endif |
| 89 | |
| 90 | return 0 < iterations && iterations <= kIterationsLimit; |
| 91 | } |
| 92 | |
| 93 | ASN1_SEQUENCE(PKCS8_PRIV_KEY_INFO) = { |
| 94 | ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER), |
| 95 | ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR), |
| 96 | ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_OCTET_STRING), |
| 97 | ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0), |
| 98 | } ASN1_SEQUENCE_END(PKCS8_PRIV_KEY_INFO) |
| 99 | |
| 100 | IMPLEMENT_ASN1_FUNCTIONS_const(PKCS8_PRIV_KEY_INFO) |
| 101 | |
| 102 | EVP_PKEY *EVP_PKCS82PKEY(const PKCS8_PRIV_KEY_INFO *p8) { |
| 103 | uint8_t *der = NULL; |
| 104 | int der_len = i2d_PKCS8_PRIV_KEY_INFO(a: p8, out: &der); |
| 105 | if (der_len < 0) { |
| 106 | return NULL; |
| 107 | } |
| 108 | |
| 109 | CBS cbs; |
| 110 | CBS_init(cbs: &cbs, data: der, len: (size_t)der_len); |
| 111 | EVP_PKEY *ret = EVP_parse_private_key(cbs: &cbs); |
| 112 | if (ret == NULL || CBS_len(cbs: &cbs) != 0) { |
| 113 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| 114 | EVP_PKEY_free(pkey: ret); |
| 115 | OPENSSL_free(ptr: der); |
| 116 | return NULL; |
| 117 | } |
| 118 | |
| 119 | OPENSSL_free(ptr: der); |
| 120 | return ret; |
| 121 | } |
| 122 | |
| 123 | PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(const EVP_PKEY *pkey) { |
| 124 | CBB cbb; |
| 125 | uint8_t *der = NULL; |
| 126 | size_t der_len; |
| 127 | if (!CBB_init(cbb: &cbb, initial_capacity: 0) || |
| 128 | !EVP_marshal_private_key(cbb: &cbb, key: pkey) || |
| 129 | !CBB_finish(cbb: &cbb, out_data: &der, out_len: &der_len) || |
| 130 | der_len > LONG_MAX) { |
| 131 | CBB_cleanup(cbb: &cbb); |
| 132 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR); |
| 133 | goto err; |
| 134 | } |
| 135 | |
| 136 | const uint8_t *p = der; |
| 137 | PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, in: &p, len: (long)der_len); |
| 138 | if (p8 == NULL || p != der + der_len) { |
| 139 | PKCS8_PRIV_KEY_INFO_free(a: p8); |
| 140 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| 141 | goto err; |
| 142 | } |
| 143 | |
| 144 | OPENSSL_free(ptr: der); |
| 145 | return p8; |
| 146 | |
| 147 | err: |
| 148 | OPENSSL_free(ptr: der); |
| 149 | return NULL; |
| 150 | } |
| 151 | |
| 152 | PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, |
| 153 | int pass_len_in) { |
| 154 | size_t pass_len; |
| 155 | if (pass_len_in == -1 && pass != NULL) { |
| 156 | pass_len = strlen(pass); |
| 157 | } else { |
| 158 | pass_len = (size_t)pass_len_in; |
| 159 | } |
| 160 | |
| 161 | PKCS8_PRIV_KEY_INFO *ret = NULL; |
| 162 | EVP_PKEY *pkey = NULL; |
| 163 | uint8_t *in = NULL; |
| 164 | |
| 165 | // Convert the legacy ASN.1 object to a byte string. |
| 166 | int in_len = i2d_X509_SIG(a: pkcs8, out: &in); |
| 167 | if (in_len < 0) { |
| 168 | goto err; |
| 169 | } |
| 170 | |
| 171 | CBS cbs; |
| 172 | CBS_init(cbs: &cbs, data: in, len: in_len); |
| 173 | pkey = PKCS8_parse_encrypted_private_key(cbs: &cbs, pass, pass_len); |
| 174 | if (pkey == NULL || CBS_len(cbs: &cbs) != 0) { |
| 175 | goto err; |
| 176 | } |
| 177 | |
| 178 | ret = EVP_PKEY2PKCS8(pkey); |
| 179 | |
| 180 | err: |
| 181 | OPENSSL_free(ptr: in); |
| 182 | EVP_PKEY_free(pkey); |
| 183 | return ret; |
| 184 | } |
| 185 | |
| 186 | X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, |
| 187 | int pass_len_in, const uint8_t *salt, size_t salt_len, |
| 188 | int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { |
| 189 | size_t pass_len; |
| 190 | if (pass_len_in == -1 && pass != NULL) { |
| 191 | pass_len = strlen(pass); |
| 192 | } else { |
| 193 | pass_len = (size_t)pass_len_in; |
| 194 | } |
| 195 | |
| 196 | // Parse out the private key. |
| 197 | EVP_PKEY *pkey = EVP_PKCS82PKEY(p8: p8inf); |
| 198 | if (pkey == NULL) { |
| 199 | return NULL; |
| 200 | } |
| 201 | |
| 202 | X509_SIG *ret = NULL; |
| 203 | uint8_t *der = NULL; |
| 204 | size_t der_len; |
| 205 | CBB cbb; |
| 206 | if (!CBB_init(cbb: &cbb, initial_capacity: 128) || |
| 207 | !PKCS8_marshal_encrypted_private_key(out: &cbb, pbe_nid, cipher, pass, |
| 208 | pass_len, salt, salt_len, iterations, |
| 209 | pkey) || |
| 210 | !CBB_finish(cbb: &cbb, out_data: &der, out_len: &der_len)) { |
| 211 | CBB_cleanup(cbb: &cbb); |
| 212 | goto err; |
| 213 | } |
| 214 | |
| 215 | // Convert back to legacy ASN.1 objects. |
| 216 | const uint8_t *ptr = der; |
| 217 | ret = d2i_X509_SIG(NULL, in: &ptr, len: der_len); |
| 218 | if (ret == NULL || ptr != der + der_len) { |
| 219 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR); |
| 220 | X509_SIG_free(a: ret); |
| 221 | ret = NULL; |
| 222 | } |
| 223 | |
| 224 | err: |
| 225 | OPENSSL_free(ptr: der); |
| 226 | EVP_PKEY_free(pkey); |
| 227 | return ret; |
| 228 | } |
| 229 | |
| 230 | struct pkcs12_context { |
| 231 | EVP_PKEY **out_key; |
| 232 | STACK_OF(X509) *out_certs; |
| 233 | const char *password; |
| 234 | size_t password_len; |
| 235 | }; |
| 236 | |
| 237 | // PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12 |
| 238 | // structure. |
| 239 | static int PKCS12_handle_sequence( |
| 240 | CBS *sequence, struct pkcs12_context *ctx, |
| 241 | int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) { |
| 242 | uint8_t *storage = NULL; |
| 243 | CBS in; |
| 244 | int ret = 0; |
| 245 | |
| 246 | // Although a BER->DER conversion is done at the beginning of |PKCS12_parse|, |
| 247 | // the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the |
| 248 | // conversion cannot see through those wrappings. So each time we step |
| 249 | // through one we need to convert to DER again. |
| 250 | if (!CBS_asn1_ber_to_der(in: sequence, out: &in, out_storage: &storage)) { |
| 251 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 252 | return 0; |
| 253 | } |
| 254 | |
| 255 | CBS child; |
| 256 | if (!CBS_get_asn1(cbs: &in, out: &child, CBS_ASN1_SEQUENCE) || |
| 257 | CBS_len(cbs: &in) != 0) { |
| 258 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 259 | goto err; |
| 260 | } |
| 261 | |
| 262 | while (CBS_len(cbs: &child) > 0) { |
| 263 | CBS element; |
| 264 | if (!CBS_get_asn1(cbs: &child, out: &element, CBS_ASN1_SEQUENCE)) { |
| 265 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 266 | goto err; |
| 267 | } |
| 268 | |
| 269 | if (!handle_element(&element, ctx)) { |
| 270 | goto err; |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | ret = 1; |
| 275 | |
| 276 | err: |
| 277 | OPENSSL_free(ptr: storage); |
| 278 | return ret; |
| 279 | } |
| 280 | |
| 281 | // 1.2.840.113549.1.12.10.1.1 |
| 282 | static const uint8_t kKeyBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
| 283 | 0x01, 0x0c, 0x0a, 0x01, 0x01}; |
| 284 | |
| 285 | // 1.2.840.113549.1.12.10.1.2 |
| 286 | static const uint8_t kPKCS8ShroudedKeyBag[] = { |
| 287 | 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02}; |
| 288 | |
| 289 | // 1.2.840.113549.1.12.10.1.3 |
| 290 | static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
| 291 | 0x01, 0x0c, 0x0a, 0x01, 0x03}; |
| 292 | |
| 293 | // 1.2.840.113549.1.9.20 |
| 294 | static const uint8_t kFriendlyName[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 295 | 0x0d, 0x01, 0x09, 0x14}; |
| 296 | |
| 297 | // 1.2.840.113549.1.9.21 |
| 298 | static const uint8_t kLocalKeyID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 299 | 0x0d, 0x01, 0x09, 0x15}; |
| 300 | |
| 301 | // 1.2.840.113549.1.9.22.1 |
| 302 | static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 303 | 0x0d, 0x01, 0x09, 0x16, 0x01}; |
| 304 | |
| 305 | // parse_bag_attributes parses the bagAttributes field of a SafeBag structure. |
| 306 | // It sets |*out_friendly_name| to a newly-allocated copy of the friendly name, |
| 307 | // encoded as a UTF-8 string, or NULL if there is none. It returns one on |
| 308 | // success and zero on error. |
| 309 | static int parse_bag_attributes(CBS *attrs, uint8_t **out_friendly_name, |
| 310 | size_t *out_friendly_name_len) { |
| 311 | *out_friendly_name = NULL; |
| 312 | *out_friendly_name_len = 0; |
| 313 | |
| 314 | // See https://tools.ietf.org/html/rfc7292#section-4.2. |
| 315 | while (CBS_len(cbs: attrs) != 0) { |
| 316 | CBS attr, oid, values; |
| 317 | if (!CBS_get_asn1(cbs: attrs, out: &attr, CBS_ASN1_SEQUENCE) || |
| 318 | !CBS_get_asn1(cbs: &attr, out: &oid, CBS_ASN1_OBJECT) || |
| 319 | !CBS_get_asn1(cbs: &attr, out: &values, CBS_ASN1_SET) || |
| 320 | CBS_len(cbs: &attr) != 0) { |
| 321 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 322 | goto err; |
| 323 | } |
| 324 | if (CBS_mem_equal(cbs: &oid, data: kFriendlyName, len: sizeof(kFriendlyName))) { |
| 325 | // See https://tools.ietf.org/html/rfc2985, section 5.5.1. |
| 326 | CBS value; |
| 327 | if (*out_friendly_name != NULL || |
| 328 | !CBS_get_asn1(cbs: &values, out: &value, CBS_ASN1_BMPSTRING) || |
| 329 | CBS_len(cbs: &values) != 0 || |
| 330 | CBS_len(cbs: &value) == 0) { |
| 331 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 332 | goto err; |
| 333 | } |
| 334 | // Convert the friendly name to UTF-8. |
| 335 | CBB cbb; |
| 336 | if (!CBB_init(cbb: &cbb, initial_capacity: CBS_len(cbs: &value))) { |
| 337 | goto err; |
| 338 | } |
| 339 | while (CBS_len(cbs: &value) != 0) { |
| 340 | uint32_t c; |
| 341 | if (!cbs_get_ucs2_be(cbs: &value, out: &c) || |
| 342 | !cbb_add_utf8(cbb: &cbb, u: c)) { |
| 343 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); |
| 344 | CBB_cleanup(cbb: &cbb); |
| 345 | goto err; |
| 346 | } |
| 347 | } |
| 348 | if (!CBB_finish(cbb: &cbb, out_data: out_friendly_name, out_len: out_friendly_name_len)) { |
| 349 | CBB_cleanup(cbb: &cbb); |
| 350 | goto err; |
| 351 | } |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | return 1; |
| 356 | |
| 357 | err: |
| 358 | OPENSSL_free(ptr: *out_friendly_name); |
| 359 | *out_friendly_name = NULL; |
| 360 | *out_friendly_name_len = 0; |
| 361 | return 0; |
| 362 | } |
| 363 | |
| 364 | // PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12 |
| 365 | // structure. |
| 366 | static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) { |
| 367 | CBS bag_id, wrapped_value, bag_attrs; |
| 368 | if (!CBS_get_asn1(cbs: safe_bag, out: &bag_id, CBS_ASN1_OBJECT) || |
| 369 | !CBS_get_asn1(cbs: safe_bag, out: &wrapped_value, |
| 370 | CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { |
| 371 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 372 | return 0; |
| 373 | } |
| 374 | if (CBS_len(cbs: safe_bag) == 0) { |
| 375 | CBS_init(cbs: &bag_attrs, NULL, len: 0); |
| 376 | } else if (!CBS_get_asn1(cbs: safe_bag, out: &bag_attrs, CBS_ASN1_SET) || |
| 377 | CBS_len(cbs: safe_bag) != 0) { |
| 378 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 379 | return 0; |
| 380 | } |
| 381 | |
| 382 | const int is_key_bag = CBS_mem_equal(cbs: &bag_id, data: kKeyBag, len: sizeof(kKeyBag)); |
| 383 | const int is_shrouded_key_bag = CBS_mem_equal(cbs: &bag_id, data: kPKCS8ShroudedKeyBag, |
| 384 | len: sizeof(kPKCS8ShroudedKeyBag)); |
| 385 | if (is_key_bag || is_shrouded_key_bag) { |
| 386 | // See RFC 7292, section 4.2.1 and 4.2.2. |
| 387 | if (*ctx->out_key) { |
| 388 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12); |
| 389 | return 0; |
| 390 | } |
| 391 | |
| 392 | EVP_PKEY *pkey = |
| 393 | is_key_bag ? EVP_parse_private_key(cbs: &wrapped_value) |
| 394 | : PKCS8_parse_encrypted_private_key( |
| 395 | cbs: &wrapped_value, pass: ctx->password, pass_len: ctx->password_len); |
| 396 | if (pkey == NULL) { |
| 397 | return 0; |
| 398 | } |
| 399 | |
| 400 | if (CBS_len(cbs: &wrapped_value) != 0) { |
| 401 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 402 | EVP_PKEY_free(pkey); |
| 403 | return 0; |
| 404 | } |
| 405 | |
| 406 | *ctx->out_key = pkey; |
| 407 | return 1; |
| 408 | } |
| 409 | |
| 410 | if (CBS_mem_equal(cbs: &bag_id, data: kCertBag, len: sizeof(kCertBag))) { |
| 411 | // See RFC 7292, section 4.2.3. |
| 412 | CBS cert_bag, cert_type, wrapped_cert, cert; |
| 413 | if (!CBS_get_asn1(cbs: &wrapped_value, out: &cert_bag, CBS_ASN1_SEQUENCE) || |
| 414 | !CBS_get_asn1(cbs: &cert_bag, out: &cert_type, CBS_ASN1_OBJECT) || |
| 415 | !CBS_get_asn1(cbs: &cert_bag, out: &wrapped_cert, |
| 416 | CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || |
| 417 | !CBS_get_asn1(cbs: &wrapped_cert, out: &cert, CBS_ASN1_OCTETSTRING)) { |
| 418 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 419 | return 0; |
| 420 | } |
| 421 | |
| 422 | // Skip unknown certificate types. |
| 423 | if (!CBS_mem_equal(cbs: &cert_type, data: kX509Certificate, |
| 424 | len: sizeof(kX509Certificate))) { |
| 425 | return 1; |
| 426 | } |
| 427 | |
| 428 | if (CBS_len(cbs: &cert) > LONG_MAX) { |
| 429 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 430 | return 0; |
| 431 | } |
| 432 | |
| 433 | const uint8_t *inp = CBS_data(cbs: &cert); |
| 434 | X509 *x509 = d2i_X509(NULL, inp: &inp, len: (long)CBS_len(cbs: &cert)); |
| 435 | if (!x509) { |
| 436 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 437 | return 0; |
| 438 | } |
| 439 | |
| 440 | if (inp != CBS_data(cbs: &cert) + CBS_len(cbs: &cert)) { |
| 441 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 442 | X509_free(x509); |
| 443 | return 0; |
| 444 | } |
| 445 | |
| 446 | uint8_t *friendly_name; |
| 447 | size_t friendly_name_len; |
| 448 | if (!parse_bag_attributes(attrs: &bag_attrs, out_friendly_name: &friendly_name, out_friendly_name_len: &friendly_name_len)) { |
| 449 | X509_free(x509); |
| 450 | return 0; |
| 451 | } |
| 452 | int ok = friendly_name_len == 0 || |
| 453 | X509_alias_set1(x509, name: friendly_name, len: friendly_name_len); |
| 454 | OPENSSL_free(ptr: friendly_name); |
| 455 | if (!ok || |
| 456 | 0 == sk_X509_push(sk: ctx->out_certs, p: x509)) { |
| 457 | X509_free(x509); |
| 458 | return 0; |
| 459 | } |
| 460 | |
| 461 | return 1; |
| 462 | } |
| 463 | |
| 464 | // Unknown element type - ignore it. |
| 465 | return 1; |
| 466 | } |
| 467 | |
| 468 | // 1.2.840.113549.1.7.1 |
| 469 | static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 470 | 0x0d, 0x01, 0x07, 0x01}; |
| 471 | |
| 472 | // 1.2.840.113549.1.7.6 |
| 473 | static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 474 | 0x0d, 0x01, 0x07, 0x06}; |
| 475 | |
| 476 | // PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a |
| 477 | // PKCS#12 structure. |
| 478 | static int PKCS12_handle_content_info(CBS *content_info, |
| 479 | struct pkcs12_context *ctx) { |
| 480 | CBS content_type, wrapped_contents, contents; |
| 481 | int ret = 0; |
| 482 | uint8_t *storage = NULL; |
| 483 | |
| 484 | if (!CBS_get_asn1(cbs: content_info, out: &content_type, CBS_ASN1_OBJECT) || |
| 485 | !CBS_get_asn1(cbs: content_info, out: &wrapped_contents, |
| 486 | CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || |
| 487 | CBS_len(cbs: content_info) != 0) { |
| 488 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 489 | goto err; |
| 490 | } |
| 491 | |
| 492 | if (CBS_mem_equal(cbs: &content_type, data: kPKCS7EncryptedData, |
| 493 | len: sizeof(kPKCS7EncryptedData))) { |
| 494 | // See https://tools.ietf.org/html/rfc2315#section-13. |
| 495 | // |
| 496 | // PKCS#7 encrypted data inside a PKCS#12 structure is generally an |
| 497 | // encrypted certificate bag and it's generally encrypted with 40-bit |
| 498 | // RC2-CBC. |
| 499 | CBS version_bytes, eci, contents_type, ai, encrypted_contents; |
| 500 | uint8_t *out; |
| 501 | size_t out_len; |
| 502 | |
| 503 | if (!CBS_get_asn1(cbs: &wrapped_contents, out: &contents, CBS_ASN1_SEQUENCE) || |
| 504 | !CBS_get_asn1(cbs: &contents, out: &version_bytes, CBS_ASN1_INTEGER) || |
| 505 | // EncryptedContentInfo, see |
| 506 | // https://tools.ietf.org/html/rfc2315#section-10.1 |
| 507 | !CBS_get_asn1(cbs: &contents, out: &eci, CBS_ASN1_SEQUENCE) || |
| 508 | !CBS_get_asn1(cbs: &eci, out: &contents_type, CBS_ASN1_OBJECT) || |
| 509 | // AlgorithmIdentifier, see |
| 510 | // https://tools.ietf.org/html/rfc5280#section-4.1.1.2 |
| 511 | !CBS_get_asn1(cbs: &eci, out: &ai, CBS_ASN1_SEQUENCE) || |
| 512 | !CBS_get_asn1_implicit_string( |
| 513 | in: &eci, out: &encrypted_contents, out_storage: &storage, |
| 514 | CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) { |
| 515 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 516 | goto err; |
| 517 | } |
| 518 | |
| 519 | if (!CBS_mem_equal(cbs: &contents_type, data: kPKCS7Data, len: sizeof(kPKCS7Data))) { |
| 520 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 521 | goto err; |
| 522 | } |
| 523 | |
| 524 | if (!pkcs8_pbe_decrypt(out: &out, out_len: &out_len, algorithm: &ai, pass: ctx->password, |
| 525 | pass_len: ctx->password_len, in: CBS_data(cbs: &encrypted_contents), |
| 526 | in_len: CBS_len(cbs: &encrypted_contents))) { |
| 527 | goto err; |
| 528 | } |
| 529 | |
| 530 | CBS safe_contents; |
| 531 | CBS_init(cbs: &safe_contents, data: out, len: out_len); |
| 532 | ret = PKCS12_handle_sequence(sequence: &safe_contents, ctx, handle_element: PKCS12_handle_safe_bag); |
| 533 | OPENSSL_free(ptr: out); |
| 534 | } else if (CBS_mem_equal(cbs: &content_type, data: kPKCS7Data, len: sizeof(kPKCS7Data))) { |
| 535 | CBS octet_string_contents; |
| 536 | |
| 537 | if (!CBS_get_asn1(cbs: &wrapped_contents, out: &octet_string_contents, |
| 538 | CBS_ASN1_OCTETSTRING)) { |
| 539 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 540 | goto err; |
| 541 | } |
| 542 | |
| 543 | ret = PKCS12_handle_sequence(sequence: &octet_string_contents, ctx, |
| 544 | handle_element: PKCS12_handle_safe_bag); |
| 545 | } else { |
| 546 | // Unknown element type - ignore it. |
| 547 | ret = 1; |
| 548 | } |
| 549 | |
| 550 | err: |
| 551 | OPENSSL_free(ptr: storage); |
| 552 | return ret; |
| 553 | } |
| 554 | |
| 555 | static int pkcs12_check_mac(int *out_mac_ok, const char *password, |
| 556 | size_t password_len, const CBS *salt, |
| 557 | unsigned iterations, const EVP_MD *md, |
| 558 | const CBS *authsafes, const CBS *expected_mac) { |
| 559 | int ret = 0; |
| 560 | uint8_t hmac_key[EVP_MAX_MD_SIZE]; |
| 561 | if (!pkcs12_key_gen(pass: password, pass_len: password_len, salt: CBS_data(cbs: salt), salt_len: CBS_len(cbs: salt), |
| 562 | PKCS12_MAC_ID, iterations, out_len: EVP_MD_size(md), out: hmac_key, |
| 563 | md)) { |
| 564 | goto err; |
| 565 | } |
| 566 | |
| 567 | uint8_t hmac[EVP_MAX_MD_SIZE]; |
| 568 | unsigned hmac_len; |
| 569 | if (NULL == HMAC(evp_md: md, key: hmac_key, key_len: EVP_MD_size(md), data: CBS_data(cbs: authsafes), |
| 570 | data_len: CBS_len(cbs: authsafes), out: hmac, out_len: &hmac_len)) { |
| 571 | goto err; |
| 572 | } |
| 573 | |
| 574 | *out_mac_ok = CBS_mem_equal(cbs: expected_mac, data: hmac, len: hmac_len); |
| 575 | #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| 576 | *out_mac_ok = 1; |
| 577 | #endif |
| 578 | ret = 1; |
| 579 | |
| 580 | err: |
| 581 | OPENSSL_cleanse(ptr: hmac_key, len: sizeof(hmac_key)); |
| 582 | return ret; |
| 583 | } |
| 584 | |
| 585 | |
| 586 | int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs, |
| 587 | CBS *ber_in, const char *password) { |
| 588 | uint8_t *storage = NULL; |
| 589 | CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes; |
| 590 | uint64_t version; |
| 591 | int ret = 0; |
| 592 | struct pkcs12_context ctx; |
| 593 | const size_t original_out_certs_len = sk_X509_num(sk: out_certs); |
| 594 | |
| 595 | // The input may be in BER format. |
| 596 | if (!CBS_asn1_ber_to_der(in: ber_in, out: &in, out_storage: &storage)) { |
| 597 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 598 | return 0; |
| 599 | } |
| 600 | |
| 601 | *out_key = NULL; |
| 602 | OPENSSL_memset(dst: &ctx, c: 0, n: sizeof(ctx)); |
| 603 | |
| 604 | // See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section |
| 605 | // four. |
| 606 | if (!CBS_get_asn1(cbs: &in, out: &pfx, CBS_ASN1_SEQUENCE) || |
| 607 | CBS_len(cbs: &in) != 0 || |
| 608 | !CBS_get_asn1_uint64(cbs: &pfx, out: &version)) { |
| 609 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 610 | goto err; |
| 611 | } |
| 612 | |
| 613 | if (version < 3) { |
| 614 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION); |
| 615 | goto err; |
| 616 | } |
| 617 | |
| 618 | if (!CBS_get_asn1(cbs: &pfx, out: &authsafe, CBS_ASN1_SEQUENCE)) { |
| 619 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 620 | goto err; |
| 621 | } |
| 622 | |
| 623 | if (CBS_len(cbs: &pfx) == 0) { |
| 624 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC); |
| 625 | goto err; |
| 626 | } |
| 627 | |
| 628 | if (!CBS_get_asn1(cbs: &pfx, out: &mac_data, CBS_ASN1_SEQUENCE)) { |
| 629 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 630 | goto err; |
| 631 | } |
| 632 | |
| 633 | // authsafe is a PKCS#7 ContentInfo. See |
| 634 | // https://tools.ietf.org/html/rfc2315#section-7. |
| 635 | if (!CBS_get_asn1(cbs: &authsafe, out: &content_type, CBS_ASN1_OBJECT) || |
| 636 | !CBS_get_asn1(cbs: &authsafe, out: &wrapped_authsafes, |
| 637 | CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { |
| 638 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 639 | goto err; |
| 640 | } |
| 641 | |
| 642 | // The content type can either be data or signedData. The latter indicates |
| 643 | // that it's signed by a public key, which isn't supported. |
| 644 | if (!CBS_mem_equal(cbs: &content_type, data: kPKCS7Data, len: sizeof(kPKCS7Data))) { |
| 645 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED); |
| 646 | goto err; |
| 647 | } |
| 648 | |
| 649 | if (!CBS_get_asn1(cbs: &wrapped_authsafes, out: &authsafes, CBS_ASN1_OCTETSTRING)) { |
| 650 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 651 | goto err; |
| 652 | } |
| 653 | |
| 654 | ctx.out_key = out_key; |
| 655 | ctx.out_certs = out_certs; |
| 656 | ctx.password = password; |
| 657 | ctx.password_len = password != NULL ? strlen(password) : 0; |
| 658 | |
| 659 | // Verify the MAC. |
| 660 | { |
| 661 | CBS mac, salt, expected_mac; |
| 662 | if (!CBS_get_asn1(cbs: &mac_data, out: &mac, CBS_ASN1_SEQUENCE)) { |
| 663 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 664 | goto err; |
| 665 | } |
| 666 | |
| 667 | const EVP_MD *md = EVP_parse_digest_algorithm(cbs: &mac); |
| 668 | if (md == NULL) { |
| 669 | goto err; |
| 670 | } |
| 671 | |
| 672 | if (!CBS_get_asn1(cbs: &mac, out: &expected_mac, CBS_ASN1_OCTETSTRING) || |
| 673 | !CBS_get_asn1(cbs: &mac_data, out: &salt, CBS_ASN1_OCTETSTRING)) { |
| 674 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 675 | goto err; |
| 676 | } |
| 677 | |
| 678 | // The iteration count is optional and the default is one. |
| 679 | uint64_t iterations = 1; |
| 680 | if (CBS_len(cbs: &mac_data) > 0) { |
| 681 | if (!CBS_get_asn1_uint64(cbs: &mac_data, out: &iterations) || |
| 682 | !pkcs12_iterations_acceptable(iterations)) { |
| 683 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 684 | goto err; |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | int mac_ok; |
| 689 | if (!pkcs12_check_mac(out_mac_ok: &mac_ok, password: ctx.password, password_len: ctx.password_len, salt: &salt, |
| 690 | iterations, md, authsafes: &authsafes, expected_mac: &expected_mac)) { |
| 691 | goto err; |
| 692 | } |
| 693 | if (!mac_ok && ctx.password_len == 0) { |
| 694 | // PKCS#12 encodes passwords as NUL-terminated UCS-2, so the empty |
| 695 | // password is encoded as {0, 0}. Some implementations use the empty byte |
| 696 | // array for "no password". OpenSSL considers a non-NULL password as {0, |
| 697 | // 0} and a NULL password as {}. It then, in high-level PKCS#12 parsing |
| 698 | // code, tries both options. We match this behavior. |
| 699 | ctx.password = ctx.password != NULL ? NULL : "" ; |
| 700 | if (!pkcs12_check_mac(out_mac_ok: &mac_ok, password: ctx.password, password_len: ctx.password_len, salt: &salt, |
| 701 | iterations, md, authsafes: &authsafes, expected_mac: &expected_mac)) { |
| 702 | goto err; |
| 703 | } |
| 704 | } |
| 705 | if (!mac_ok) { |
| 706 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD); |
| 707 | goto err; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | // authsafes contains a series of PKCS#7 ContentInfos. |
| 712 | if (!PKCS12_handle_sequence(sequence: &authsafes, ctx: &ctx, handle_element: PKCS12_handle_content_info)) { |
| 713 | goto err; |
| 714 | } |
| 715 | |
| 716 | ret = 1; |
| 717 | |
| 718 | err: |
| 719 | OPENSSL_free(ptr: storage); |
| 720 | if (!ret) { |
| 721 | EVP_PKEY_free(pkey: *out_key); |
| 722 | *out_key = NULL; |
| 723 | while (sk_X509_num(sk: out_certs) > original_out_certs_len) { |
| 724 | X509 *x509 = sk_X509_pop(sk: out_certs); |
| 725 | X509_free(x509); |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | return ret; |
| 730 | } |
| 731 | |
| 732 | void PKCS12_PBE_add(void) {} |
| 733 | |
| 734 | struct pkcs12_st { |
| 735 | uint8_t *ber_bytes; |
| 736 | size_t ber_len; |
| 737 | }; |
| 738 | |
| 739 | PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes, |
| 740 | size_t ber_len) { |
| 741 | PKCS12 *p12; |
| 742 | |
| 743 | p12 = OPENSSL_malloc(size: sizeof(PKCS12)); |
| 744 | if (!p12) { |
| 745 | return NULL; |
| 746 | } |
| 747 | |
| 748 | p12->ber_bytes = OPENSSL_malloc(size: ber_len); |
| 749 | if (!p12->ber_bytes) { |
| 750 | OPENSSL_free(ptr: p12); |
| 751 | return NULL; |
| 752 | } |
| 753 | |
| 754 | OPENSSL_memcpy(dst: p12->ber_bytes, src: *ber_bytes, n: ber_len); |
| 755 | p12->ber_len = ber_len; |
| 756 | *ber_bytes += ber_len; |
| 757 | |
| 758 | if (out_p12) { |
| 759 | PKCS12_free(p12: *out_p12); |
| 760 | |
| 761 | *out_p12 = p12; |
| 762 | } |
| 763 | |
| 764 | return p12; |
| 765 | } |
| 766 | |
| 767 | PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) { |
| 768 | size_t used = 0; |
| 769 | BUF_MEM *buf; |
| 770 | const uint8_t *dummy; |
| 771 | static const size_t kMaxSize = 256 * 1024; |
| 772 | PKCS12 *ret = NULL; |
| 773 | |
| 774 | buf = BUF_MEM_new(); |
| 775 | if (buf == NULL) { |
| 776 | return NULL; |
| 777 | } |
| 778 | if (BUF_MEM_grow(buf, len: 8192) == 0) { |
| 779 | goto out; |
| 780 | } |
| 781 | |
| 782 | for (;;) { |
| 783 | size_t max_read = buf->length - used; |
| 784 | int n = BIO_read(bio, data: &buf->data[used], |
| 785 | len: max_read > INT_MAX ? INT_MAX : (int)max_read); |
| 786 | if (n < 0) { |
| 787 | if (used == 0) { |
| 788 | goto out; |
| 789 | } |
| 790 | // Workaround a bug in node.js. It uses a memory BIO for this in the wrong |
| 791 | // mode. |
| 792 | n = 0; |
| 793 | } |
| 794 | |
| 795 | if (n == 0) { |
| 796 | break; |
| 797 | } |
| 798 | used += n; |
| 799 | |
| 800 | if (used < buf->length) { |
| 801 | continue; |
| 802 | } |
| 803 | |
| 804 | if (buf->length > kMaxSize || |
| 805 | BUF_MEM_grow(buf, len: buf->length * 2) == 0) { |
| 806 | goto out; |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | dummy = (uint8_t*) buf->data; |
| 811 | ret = d2i_PKCS12(out_p12, ber_bytes: &dummy, ber_len: used); |
| 812 | |
| 813 | out: |
| 814 | BUF_MEM_free(buf); |
| 815 | return ret; |
| 816 | } |
| 817 | |
| 818 | PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) { |
| 819 | BIO *bio; |
| 820 | PKCS12 *ret; |
| 821 | |
| 822 | bio = BIO_new_fp(fp, 0 /* don't take ownership */); |
| 823 | if (!bio) { |
| 824 | return NULL; |
| 825 | } |
| 826 | |
| 827 | ret = d2i_PKCS12_bio(bio, out_p12); |
| 828 | BIO_free(bio); |
| 829 | return ret; |
| 830 | } |
| 831 | |
| 832 | int i2d_PKCS12(const PKCS12 *p12, uint8_t **out) { |
| 833 | if (p12->ber_len > INT_MAX) { |
| 834 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
| 835 | return -1; |
| 836 | } |
| 837 | |
| 838 | if (out == NULL) { |
| 839 | return (int)p12->ber_len; |
| 840 | } |
| 841 | |
| 842 | if (*out == NULL) { |
| 843 | *out = OPENSSL_malloc(size: p12->ber_len); |
| 844 | if (*out == NULL) { |
| 845 | return -1; |
| 846 | } |
| 847 | OPENSSL_memcpy(dst: *out, src: p12->ber_bytes, n: p12->ber_len); |
| 848 | } else { |
| 849 | OPENSSL_memcpy(dst: *out, src: p12->ber_bytes, n: p12->ber_len); |
| 850 | *out += p12->ber_len; |
| 851 | } |
| 852 | return (int)p12->ber_len; |
| 853 | } |
| 854 | |
| 855 | int i2d_PKCS12_bio(BIO *bio, const PKCS12 *p12) { |
| 856 | return BIO_write_all(bio, data: p12->ber_bytes, len: p12->ber_len); |
| 857 | } |
| 858 | |
| 859 | int i2d_PKCS12_fp(FILE *fp, const PKCS12 *p12) { |
| 860 | BIO *bio = BIO_new_fp(fp, 0 /* don't take ownership */); |
| 861 | if (bio == NULL) { |
| 862 | return 0; |
| 863 | } |
| 864 | |
| 865 | int ret = i2d_PKCS12_bio(bio, p12); |
| 866 | BIO_free(bio); |
| 867 | return ret; |
| 868 | } |
| 869 | |
| 870 | int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey, |
| 871 | X509 **out_cert, STACK_OF(X509) **out_ca_certs) { |
| 872 | CBS ber_bytes; |
| 873 | STACK_OF(X509) *ca_certs = NULL; |
| 874 | char ca_certs_alloced = 0; |
| 875 | |
| 876 | if (out_ca_certs != NULL && *out_ca_certs != NULL) { |
| 877 | ca_certs = *out_ca_certs; |
| 878 | } |
| 879 | |
| 880 | if (!ca_certs) { |
| 881 | ca_certs = sk_X509_new_null(); |
| 882 | if (ca_certs == NULL) { |
| 883 | return 0; |
| 884 | } |
| 885 | ca_certs_alloced = 1; |
| 886 | } |
| 887 | |
| 888 | CBS_init(cbs: &ber_bytes, data: p12->ber_bytes, len: p12->ber_len); |
| 889 | if (!PKCS12_get_key_and_certs(out_key: out_pkey, out_certs: ca_certs, ber_in: &ber_bytes, password)) { |
| 890 | if (ca_certs_alloced) { |
| 891 | sk_X509_free(sk: ca_certs); |
| 892 | } |
| 893 | return 0; |
| 894 | } |
| 895 | |
| 896 | // OpenSSL selects the last certificate which matches the private key as |
| 897 | // |out_cert|. |
| 898 | *out_cert = NULL; |
| 899 | size_t num_certs = sk_X509_num(sk: ca_certs); |
| 900 | if (*out_pkey != NULL && num_certs > 0) { |
| 901 | for (size_t i = num_certs - 1; i < num_certs; i--) { |
| 902 | X509 *cert = sk_X509_value(sk: ca_certs, i); |
| 903 | if (X509_check_private_key(x509: cert, pkey: *out_pkey)) { |
| 904 | *out_cert = cert; |
| 905 | sk_X509_delete(sk: ca_certs, where: i); |
| 906 | break; |
| 907 | } |
| 908 | ERR_clear_error(); |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | if (out_ca_certs) { |
| 913 | *out_ca_certs = ca_certs; |
| 914 | } else { |
| 915 | sk_X509_pop_free(sk: ca_certs, free_func: X509_free); |
| 916 | } |
| 917 | |
| 918 | return 1; |
| 919 | } |
| 920 | |
| 921 | int PKCS12_verify_mac(const PKCS12 *p12, const char *password, |
| 922 | int password_len) { |
| 923 | if (password == NULL) { |
| 924 | if (password_len != 0) { |
| 925 | return 0; |
| 926 | } |
| 927 | } else if (password_len != -1 && |
| 928 | (password[password_len] != 0 || |
| 929 | OPENSSL_memchr(s: password, c: 0, n: password_len) != NULL)) { |
| 930 | return 0; |
| 931 | } |
| 932 | |
| 933 | EVP_PKEY *pkey = NULL; |
| 934 | X509 *cert = NULL; |
| 935 | if (!PKCS12_parse(p12, password, out_pkey: &pkey, out_cert: &cert, NULL)) { |
| 936 | ERR_clear_error(); |
| 937 | return 0; |
| 938 | } |
| 939 | |
| 940 | EVP_PKEY_free(pkey); |
| 941 | X509_free(x509: cert); |
| 942 | |
| 943 | return 1; |
| 944 | } |
| 945 | |
| 946 | // add_bag_attributes adds the bagAttributes field of a SafeBag structure, |
| 947 | // containing the specified friendlyName and localKeyId attributes. |
| 948 | static int add_bag_attributes(CBB *bag, const char *name, size_t name_len, |
| 949 | const uint8_t *key_id, size_t key_id_len) { |
| 950 | if (name == NULL && key_id_len == 0) { |
| 951 | return 1; // Omit the OPTIONAL SET. |
| 952 | } |
| 953 | // See https://tools.ietf.org/html/rfc7292#section-4.2. |
| 954 | CBB attrs, attr, oid, values, value; |
| 955 | if (!CBB_add_asn1(cbb: bag, out_contents: &attrs, CBS_ASN1_SET)) { |
| 956 | return 0; |
| 957 | } |
| 958 | if (name_len != 0) { |
| 959 | // See https://tools.ietf.org/html/rfc2985, section 5.5.1. |
| 960 | if (!CBB_add_asn1(cbb: &attrs, out_contents: &attr, CBS_ASN1_SEQUENCE) || |
| 961 | !CBB_add_asn1(cbb: &attr, out_contents: &oid, CBS_ASN1_OBJECT) || |
| 962 | !CBB_add_bytes(cbb: &oid, data: kFriendlyName, len: sizeof(kFriendlyName)) || |
| 963 | !CBB_add_asn1(cbb: &attr, out_contents: &values, CBS_ASN1_SET) || |
| 964 | !CBB_add_asn1(cbb: &values, out_contents: &value, CBS_ASN1_BMPSTRING)) { |
| 965 | return 0; |
| 966 | } |
| 967 | // Convert the friendly name to a BMPString. |
| 968 | CBS name_cbs; |
| 969 | CBS_init(cbs: &name_cbs, data: (const uint8_t *)name, len: name_len); |
| 970 | while (CBS_len(cbs: &name_cbs) != 0) { |
| 971 | uint32_t c; |
| 972 | if (!cbs_get_utf8(cbs: &name_cbs, out: &c) || |
| 973 | !cbb_add_ucs2_be(cbb: &value, u: c)) { |
| 974 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); |
| 975 | return 0; |
| 976 | } |
| 977 | } |
| 978 | } |
| 979 | if (key_id_len != 0) { |
| 980 | // See https://tools.ietf.org/html/rfc2985, section 5.5.2. |
| 981 | if (!CBB_add_asn1(cbb: &attrs, out_contents: &attr, CBS_ASN1_SEQUENCE) || |
| 982 | !CBB_add_asn1(cbb: &attr, out_contents: &oid, CBS_ASN1_OBJECT) || |
| 983 | !CBB_add_bytes(cbb: &oid, data: kLocalKeyID, len: sizeof(kLocalKeyID)) || |
| 984 | !CBB_add_asn1(cbb: &attr, out_contents: &values, CBS_ASN1_SET) || |
| 985 | !CBB_add_asn1(cbb: &values, out_contents: &value, CBS_ASN1_OCTETSTRING) || |
| 986 | !CBB_add_bytes(cbb: &value, data: key_id, len: key_id_len)) { |
| 987 | return 0; |
| 988 | } |
| 989 | } |
| 990 | return CBB_flush_asn1_set_of(cbb: &attrs) && |
| 991 | CBB_flush(cbb: bag); |
| 992 | } |
| 993 | |
| 994 | static int add_cert_bag(CBB *cbb, X509 *cert, const char *name, |
| 995 | const uint8_t *key_id, size_t key_id_len) { |
| 996 | CBB bag, bag_oid, bag_contents, cert_bag, cert_type, wrapped_cert, cert_value; |
| 997 | if (// See https://tools.ietf.org/html/rfc7292#section-4.2. |
| 998 | !CBB_add_asn1(cbb, out_contents: &bag, CBS_ASN1_SEQUENCE) || |
| 999 | !CBB_add_asn1(cbb: &bag, out_contents: &bag_oid, CBS_ASN1_OBJECT) || |
| 1000 | !CBB_add_bytes(cbb: &bag_oid, data: kCertBag, len: sizeof(kCertBag)) || |
| 1001 | !CBB_add_asn1(cbb: &bag, out_contents: &bag_contents, |
| 1002 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1003 | // See https://tools.ietf.org/html/rfc7292#section-4.2.3. |
| 1004 | !CBB_add_asn1(cbb: &bag_contents, out_contents: &cert_bag, CBS_ASN1_SEQUENCE) || |
| 1005 | !CBB_add_asn1(cbb: &cert_bag, out_contents: &cert_type, CBS_ASN1_OBJECT) || |
| 1006 | !CBB_add_bytes(cbb: &cert_type, data: kX509Certificate, len: sizeof(kX509Certificate)) || |
| 1007 | !CBB_add_asn1(cbb: &cert_bag, out_contents: &wrapped_cert, |
| 1008 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1009 | !CBB_add_asn1(cbb: &wrapped_cert, out_contents: &cert_value, CBS_ASN1_OCTETSTRING)) { |
| 1010 | return 0; |
| 1011 | } |
| 1012 | uint8_t *buf; |
| 1013 | int len = i2d_X509(x509: cert, NULL); |
| 1014 | |
| 1015 | int int_name_len = 0; |
| 1016 | const char *cert_name = (const char *)X509_alias_get0(x509: cert, out_len: &int_name_len); |
| 1017 | size_t name_len = int_name_len; |
| 1018 | if (name) { |
| 1019 | if (name_len != 0) { |
| 1020 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_AMBIGUOUS_FRIENDLY_NAME); |
| 1021 | return 0; |
| 1022 | } |
| 1023 | name_len = strlen(name); |
| 1024 | } else { |
| 1025 | name = cert_name; |
| 1026 | } |
| 1027 | |
| 1028 | if (len < 0 || |
| 1029 | !CBB_add_space(cbb: &cert_value, out_data: &buf, len: (size_t)len) || |
| 1030 | i2d_X509(x509: cert, outp: &buf) < 0 || |
| 1031 | !add_bag_attributes(bag: &bag, name, name_len, key_id, key_id_len) || |
| 1032 | !CBB_flush(cbb)) { |
| 1033 | return 0; |
| 1034 | } |
| 1035 | return 1; |
| 1036 | } |
| 1037 | |
| 1038 | static int add_cert_safe_contents(CBB *cbb, X509 *cert, |
| 1039 | const STACK_OF(X509) *chain, const char *name, |
| 1040 | const uint8_t *key_id, size_t key_id_len) { |
| 1041 | CBB safe_contents; |
| 1042 | if (!CBB_add_asn1(cbb, out_contents: &safe_contents, CBS_ASN1_SEQUENCE) || |
| 1043 | (cert != NULL && |
| 1044 | !add_cert_bag(cbb: &safe_contents, cert, name, key_id, key_id_len))) { |
| 1045 | return 0; |
| 1046 | } |
| 1047 | |
| 1048 | for (size_t i = 0; i < sk_X509_num(sk: chain); i++) { |
| 1049 | // Only the leaf certificate gets attributes. |
| 1050 | if (!add_cert_bag(cbb: &safe_contents, cert: sk_X509_value(sk: chain, i), NULL, NULL, key_id_len: 0)) { |
| 1051 | return 0; |
| 1052 | } |
| 1053 | } |
| 1054 | |
| 1055 | return CBB_flush(cbb); |
| 1056 | } |
| 1057 | |
| 1058 | static int add_encrypted_data(CBB *out, int pbe_nid, const char *password, |
| 1059 | size_t password_len, unsigned iterations, |
| 1060 | const uint8_t *in, size_t in_len) { |
| 1061 | uint8_t salt[PKCS5_SALT_LEN]; |
| 1062 | if (!RAND_bytes(buf: salt, len: sizeof(salt))) { |
| 1063 | return 0; |
| 1064 | } |
| 1065 | |
| 1066 | int ret = 0; |
| 1067 | EVP_CIPHER_CTX ctx; |
| 1068 | EVP_CIPHER_CTX_init(ctx: &ctx); |
| 1069 | CBB content_info, type, wrapper, encrypted_data, encrypted_content_info, |
| 1070 | inner_type, encrypted_content; |
| 1071 | if (// Add the ContentInfo wrapping. |
| 1072 | !CBB_add_asn1(cbb: out, out_contents: &content_info, CBS_ASN1_SEQUENCE) || |
| 1073 | !CBB_add_asn1(cbb: &content_info, out_contents: &type, CBS_ASN1_OBJECT) || |
| 1074 | !CBB_add_bytes(cbb: &type, data: kPKCS7EncryptedData, len: sizeof(kPKCS7EncryptedData)) || |
| 1075 | !CBB_add_asn1(cbb: &content_info, out_contents: &wrapper, |
| 1076 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1077 | // See https://tools.ietf.org/html/rfc2315#section-13. |
| 1078 | !CBB_add_asn1(cbb: &wrapper, out_contents: &encrypted_data, CBS_ASN1_SEQUENCE) || |
| 1079 | !CBB_add_asn1_uint64(cbb: &encrypted_data, value: 0 /* version */) || |
| 1080 | // See https://tools.ietf.org/html/rfc2315#section-10.1. |
| 1081 | !CBB_add_asn1(cbb: &encrypted_data, out_contents: &encrypted_content_info, |
| 1082 | CBS_ASN1_SEQUENCE) || |
| 1083 | !CBB_add_asn1(cbb: &encrypted_content_info, out_contents: &inner_type, CBS_ASN1_OBJECT) || |
| 1084 | !CBB_add_bytes(cbb: &inner_type, data: kPKCS7Data, len: sizeof(kPKCS7Data)) || |
| 1085 | // Set up encryption and fill in contentEncryptionAlgorithm. |
| 1086 | !pkcs12_pbe_encrypt_init(out: &encrypted_content_info, ctx: &ctx, alg: pbe_nid, |
| 1087 | iterations, pass: password, pass_len: password_len, salt, |
| 1088 | salt_len: sizeof(salt)) || |
| 1089 | // Note this tag is primitive. It is an implicitly-tagged OCTET_STRING, so |
| 1090 | // it inherits the inner tag's constructed bit. |
| 1091 | !CBB_add_asn1(cbb: &encrypted_content_info, out_contents: &encrypted_content, |
| 1092 | CBS_ASN1_CONTEXT_SPECIFIC | 0)) { |
| 1093 | goto err; |
| 1094 | } |
| 1095 | |
| 1096 | size_t max_out = in_len + EVP_CIPHER_CTX_block_size(ctx: &ctx); |
| 1097 | if (max_out < in_len) { |
| 1098 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); |
| 1099 | goto err; |
| 1100 | } |
| 1101 | |
| 1102 | uint8_t *ptr; |
| 1103 | int n1, n2; |
| 1104 | if (!CBB_reserve(cbb: &encrypted_content, out_data: &ptr, len: max_out) || |
| 1105 | !EVP_CipherUpdate(ctx: &ctx, out: ptr, out_len: &n1, in, in_len) || |
| 1106 | !EVP_CipherFinal_ex(ctx: &ctx, out: ptr + n1, out_len: &n2) || |
| 1107 | !CBB_did_write(cbb: &encrypted_content, len: n1 + n2) || |
| 1108 | !CBB_flush(cbb: out)) { |
| 1109 | goto err; |
| 1110 | } |
| 1111 | |
| 1112 | ret = 1; |
| 1113 | |
| 1114 | err: |
| 1115 | EVP_CIPHER_CTX_cleanup(ctx: &ctx); |
| 1116 | return ret; |
| 1117 | } |
| 1118 | |
| 1119 | PKCS12 *PKCS12_create(const char *password, const char *name, |
| 1120 | const EVP_PKEY *pkey, X509 *cert, |
| 1121 | const STACK_OF(X509)* chain, int key_nid, int cert_nid, |
| 1122 | int iterations, int mac_iterations, int key_type) { |
| 1123 | if (key_nid == 0) { |
| 1124 | key_nid = NID_pbe_WithSHA1And3_Key_TripleDES_CBC; |
| 1125 | } |
| 1126 | if (cert_nid == 0) { |
| 1127 | cert_nid = NID_pbe_WithSHA1And40BitRC2_CBC; |
| 1128 | } |
| 1129 | if (iterations == 0) { |
| 1130 | iterations = PKCS12_DEFAULT_ITER; |
| 1131 | } |
| 1132 | if (mac_iterations == 0) { |
| 1133 | mac_iterations = 1; |
| 1134 | } |
| 1135 | if (// In OpenSSL, this specifies a non-standard Microsoft key usage extension |
| 1136 | // which we do not currently support. |
| 1137 | key_type != 0 || |
| 1138 | // In OpenSSL, -1 here means to omit the MAC, which we do not |
| 1139 | // currently support. Omitting it is also invalid for a password-based |
| 1140 | // PKCS#12 file. |
| 1141 | mac_iterations < 0 || |
| 1142 | // Don't encode empty objects. |
| 1143 | (pkey == NULL && cert == NULL && sk_X509_num(sk: chain) == 0)) { |
| 1144 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_OPTIONS); |
| 1145 | return 0; |
| 1146 | } |
| 1147 | |
| 1148 | // PKCS#12 is a very confusing recursive data format, built out of another |
| 1149 | // recursive data format. Section 5.1 of RFC 7292 describes the encoding |
| 1150 | // algorithm, but there is no clear overview. A quick summary: |
| 1151 | // |
| 1152 | // PKCS#7 defines a ContentInfo structure, which is a overgeneralized typed |
| 1153 | // combinator structure for applying cryptography. We care about two types. A |
| 1154 | // data ContentInfo contains an OCTET STRING and is a leaf node of the |
| 1155 | // combinator tree. An encrypted-data ContentInfo contains encryption |
| 1156 | // parameters (key derivation and encryption) and wraps another ContentInfo, |
| 1157 | // usually data. |
| 1158 | // |
| 1159 | // A PKCS#12 file is a PFX structure (section 4), which contains a single data |
| 1160 | // ContentInfo and a MAC over it. This root ContentInfo is the |
| 1161 | // AuthenticatedSafe and its payload is a SEQUENCE of other ContentInfos, so |
| 1162 | // that different parts of the PKCS#12 file can by differently protected. |
| 1163 | // |
| 1164 | // Each ContentInfo in the AuthenticatedSafe, after undoing all the PKCS#7 |
| 1165 | // combinators, has SafeContents payload. A SafeContents is a SEQUENCE of |
| 1166 | // SafeBag. SafeBag is PKCS#12's typed structure, with subtypes such as KeyBag |
| 1167 | // and CertBag. Confusingly, there is a SafeContents bag type which itself |
| 1168 | // recursively contains more SafeBags, but we do not implement this. Bags also |
| 1169 | // can have attributes. |
| 1170 | // |
| 1171 | // The grouping of SafeBags into intermediate ContentInfos does not appear to |
| 1172 | // be significant, except that all SafeBags sharing a ContentInfo have the |
| 1173 | // same level of protection. Additionally, while keys may be encrypted by |
| 1174 | // placing a KeyBag in an encrypted-data ContentInfo, PKCS#12 also defines a |
| 1175 | // key-specific encryption container, PKCS8ShroudedKeyBag, which is used |
| 1176 | // instead. |
| 1177 | |
| 1178 | // Note that |password| may be NULL to specify no password, rather than the |
| 1179 | // empty string. They are encoded differently in PKCS#12. (One is the empty |
| 1180 | // byte array and the other is NUL-terminated UCS-2.) |
| 1181 | size_t password_len = password != NULL ? strlen(password) : 0; |
| 1182 | |
| 1183 | uint8_t key_id[EVP_MAX_MD_SIZE]; |
| 1184 | unsigned key_id_len = 0; |
| 1185 | if (cert != NULL && pkey != NULL) { |
| 1186 | if (!X509_check_private_key(x509: cert, pkey) || |
| 1187 | // Matching OpenSSL, use the SHA-1 hash of the certificate as the local |
| 1188 | // key ID. Some PKCS#12 consumers require one to connect the private key |
| 1189 | // and certificate. |
| 1190 | !X509_digest(x509: cert, md: EVP_sha1(), out: key_id, out_len: &key_id_len)) { |
| 1191 | return 0; |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | // See https://tools.ietf.org/html/rfc7292#section-4. |
| 1196 | PKCS12 *ret = NULL; |
| 1197 | CBB cbb, pfx, auth_safe, auth_safe_oid, auth_safe_wrapper, auth_safe_data, |
| 1198 | content_infos; |
| 1199 | uint8_t mac_key[EVP_MAX_MD_SIZE]; |
| 1200 | if (!CBB_init(cbb: &cbb, initial_capacity: 0) || |
| 1201 | !CBB_add_asn1(cbb: &cbb, out_contents: &pfx, CBS_ASN1_SEQUENCE) || |
| 1202 | !CBB_add_asn1_uint64(cbb: &pfx, value: 3) || |
| 1203 | // auth_safe is a data ContentInfo. |
| 1204 | !CBB_add_asn1(cbb: &pfx, out_contents: &auth_safe, CBS_ASN1_SEQUENCE) || |
| 1205 | !CBB_add_asn1(cbb: &auth_safe, out_contents: &auth_safe_oid, CBS_ASN1_OBJECT) || |
| 1206 | !CBB_add_bytes(cbb: &auth_safe_oid, data: kPKCS7Data, len: sizeof(kPKCS7Data)) || |
| 1207 | !CBB_add_asn1(cbb: &auth_safe, out_contents: &auth_safe_wrapper, |
| 1208 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1209 | !CBB_add_asn1(cbb: &auth_safe_wrapper, out_contents: &auth_safe_data, |
| 1210 | CBS_ASN1_OCTETSTRING) || |
| 1211 | // See https://tools.ietf.org/html/rfc7292#section-4.1. |auth_safe|'s |
| 1212 | // contains a SEQUENCE of ContentInfos. |
| 1213 | !CBB_add_asn1(cbb: &auth_safe_data, out_contents: &content_infos, CBS_ASN1_SEQUENCE)) { |
| 1214 | goto err; |
| 1215 | } |
| 1216 | |
| 1217 | // If there are any certificates, place them in CertBags wrapped in a single |
| 1218 | // encrypted ContentInfo. |
| 1219 | if (cert != NULL || sk_X509_num(sk: chain) > 0) { |
| 1220 | if (cert_nid < 0) { |
| 1221 | // Place the certificates in an unencrypted ContentInfo. This could be |
| 1222 | // more compactly-encoded by reusing the same ContentInfo as the key, but |
| 1223 | // OpenSSL does not do this. We keep them separate for consistency. (Keys, |
| 1224 | // even when encrypted, are always placed in unencrypted ContentInfos. |
| 1225 | // PKCS#12 defines bag-level encryption for keys.) |
| 1226 | CBB content_info, oid, wrapper, data; |
| 1227 | if (!CBB_add_asn1(cbb: &content_infos, out_contents: &content_info, CBS_ASN1_SEQUENCE) || |
| 1228 | !CBB_add_asn1(cbb: &content_info, out_contents: &oid, CBS_ASN1_OBJECT) || |
| 1229 | !CBB_add_bytes(cbb: &oid, data: kPKCS7Data, len: sizeof(kPKCS7Data)) || |
| 1230 | !CBB_add_asn1(cbb: &content_info, out_contents: &wrapper, |
| 1231 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1232 | !CBB_add_asn1(cbb: &wrapper, out_contents: &data, CBS_ASN1_OCTETSTRING) || |
| 1233 | !add_cert_safe_contents(cbb: &data, cert, chain, name, key_id, |
| 1234 | key_id_len) || |
| 1235 | !CBB_flush(cbb: &content_infos)) { |
| 1236 | goto err; |
| 1237 | } |
| 1238 | } else { |
| 1239 | CBB plaintext_cbb; |
| 1240 | int ok = CBB_init(cbb: &plaintext_cbb, initial_capacity: 0) && |
| 1241 | add_cert_safe_contents(cbb: &plaintext_cbb, cert, chain, name, key_id, |
| 1242 | key_id_len) && |
| 1243 | add_encrypted_data( |
| 1244 | out: &content_infos, pbe_nid: cert_nid, password, password_len, iterations, |
| 1245 | in: CBB_data(cbb: &plaintext_cbb), in_len: CBB_len(cbb: &plaintext_cbb)); |
| 1246 | CBB_cleanup(cbb: &plaintext_cbb); |
| 1247 | if (!ok) { |
| 1248 | goto err; |
| 1249 | } |
| 1250 | } |
| 1251 | } |
| 1252 | |
| 1253 | // If there is a key, place it in a single KeyBag or PKCS8ShroudedKeyBag |
| 1254 | // wrapped in an unencrypted ContentInfo. (One could also place it in a KeyBag |
| 1255 | // inside an encrypted ContentInfo, but OpenSSL does not do this and some |
| 1256 | // PKCS#12 consumers do not support KeyBags.) |
| 1257 | if (pkey != NULL) { |
| 1258 | CBB content_info, oid, wrapper, data, safe_contents, bag, bag_oid, |
| 1259 | bag_contents; |
| 1260 | if (// Add another data ContentInfo. |
| 1261 | !CBB_add_asn1(cbb: &content_infos, out_contents: &content_info, CBS_ASN1_SEQUENCE) || |
| 1262 | !CBB_add_asn1(cbb: &content_info, out_contents: &oid, CBS_ASN1_OBJECT) || |
| 1263 | !CBB_add_bytes(cbb: &oid, data: kPKCS7Data, len: sizeof(kPKCS7Data)) || |
| 1264 | !CBB_add_asn1(cbb: &content_info, out_contents: &wrapper, |
| 1265 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1266 | !CBB_add_asn1(cbb: &wrapper, out_contents: &data, CBS_ASN1_OCTETSTRING) || |
| 1267 | !CBB_add_asn1(cbb: &data, out_contents: &safe_contents, CBS_ASN1_SEQUENCE) || |
| 1268 | // Add a SafeBag containing a PKCS8ShroudedKeyBag. |
| 1269 | !CBB_add_asn1(cbb: &safe_contents, out_contents: &bag, CBS_ASN1_SEQUENCE) || |
| 1270 | !CBB_add_asn1(cbb: &bag, out_contents: &bag_oid, CBS_ASN1_OBJECT)) { |
| 1271 | goto err; |
| 1272 | } |
| 1273 | if (key_nid < 0) { |
| 1274 | if (!CBB_add_bytes(cbb: &bag_oid, data: kKeyBag, len: sizeof(kKeyBag)) || |
| 1275 | !CBB_add_asn1(cbb: &bag, out_contents: &bag_contents, |
| 1276 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1277 | !EVP_marshal_private_key(cbb: &bag_contents, key: pkey)) { |
| 1278 | goto err; |
| 1279 | } |
| 1280 | } else { |
| 1281 | if (!CBB_add_bytes(cbb: &bag_oid, data: kPKCS8ShroudedKeyBag, |
| 1282 | len: sizeof(kPKCS8ShroudedKeyBag)) || |
| 1283 | !CBB_add_asn1(cbb: &bag, out_contents: &bag_contents, |
| 1284 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1285 | !PKCS8_marshal_encrypted_private_key( |
| 1286 | out: &bag_contents, pbe_nid: key_nid, NULL, pass: password, pass_len: password_len, |
| 1287 | NULL /* generate a random salt */, |
| 1288 | salt_len: 0 /* use default salt length */, iterations, pkey)) { |
| 1289 | goto err; |
| 1290 | } |
| 1291 | } |
| 1292 | size_t name_len = 0; |
| 1293 | if (name) { |
| 1294 | name_len = strlen(name); |
| 1295 | } |
| 1296 | if (!add_bag_attributes(bag: &bag, name, name_len, key_id, key_id_len) || |
| 1297 | !CBB_flush(cbb: &content_infos)) { |
| 1298 | goto err; |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | // Compute the MAC. Match OpenSSL in using SHA-1 as the hash function. The MAC |
| 1303 | // covers |auth_safe_data|. |
| 1304 | const EVP_MD *mac_md = EVP_sha1(); |
| 1305 | uint8_t mac_salt[PKCS5_SALT_LEN]; |
| 1306 | uint8_t mac[EVP_MAX_MD_SIZE]; |
| 1307 | unsigned mac_len; |
| 1308 | if (!CBB_flush(cbb: &auth_safe_data) || |
| 1309 | !RAND_bytes(buf: mac_salt, len: sizeof(mac_salt)) || |
| 1310 | !pkcs12_key_gen(pass: password, pass_len: password_len, salt: mac_salt, salt_len: sizeof(mac_salt), |
| 1311 | PKCS12_MAC_ID, iterations: mac_iterations, out_len: EVP_MD_size(md: mac_md), |
| 1312 | out: mac_key, md: mac_md) || |
| 1313 | !HMAC(evp_md: mac_md, key: mac_key, key_len: EVP_MD_size(md: mac_md), data: CBB_data(cbb: &auth_safe_data), |
| 1314 | data_len: CBB_len(cbb: &auth_safe_data), out: mac, out_len: &mac_len)) { |
| 1315 | goto err; |
| 1316 | } |
| 1317 | |
| 1318 | CBB mac_data, digest_info, mac_cbb, mac_salt_cbb; |
| 1319 | if (!CBB_add_asn1(cbb: &pfx, out_contents: &mac_data, CBS_ASN1_SEQUENCE) || |
| 1320 | !CBB_add_asn1(cbb: &mac_data, out_contents: &digest_info, CBS_ASN1_SEQUENCE) || |
| 1321 | !EVP_marshal_digest_algorithm(cbb: &digest_info, md: mac_md) || |
| 1322 | !CBB_add_asn1(cbb: &digest_info, out_contents: &mac_cbb, CBS_ASN1_OCTETSTRING) || |
| 1323 | !CBB_add_bytes(cbb: &mac_cbb, data: mac, len: mac_len) || |
| 1324 | !CBB_add_asn1(cbb: &mac_data, out_contents: &mac_salt_cbb, CBS_ASN1_OCTETSTRING) || |
| 1325 | !CBB_add_bytes(cbb: &mac_salt_cbb, data: mac_salt, len: sizeof(mac_salt)) || |
| 1326 | // The iteration count has a DEFAULT of 1, but RFC 7292 says "The default |
| 1327 | // is for historical reasons and its use is deprecated." Thus we |
| 1328 | // explicitly encode the iteration count, though it is not valid DER. |
| 1329 | !CBB_add_asn1_uint64(cbb: &mac_data, value: mac_iterations)) { |
| 1330 | goto err; |
| 1331 | } |
| 1332 | |
| 1333 | ret = OPENSSL_malloc(size: sizeof(PKCS12)); |
| 1334 | if (ret == NULL || |
| 1335 | !CBB_finish(cbb: &cbb, out_data: &ret->ber_bytes, out_len: &ret->ber_len)) { |
| 1336 | OPENSSL_free(ptr: ret); |
| 1337 | ret = NULL; |
| 1338 | goto err; |
| 1339 | } |
| 1340 | |
| 1341 | err: |
| 1342 | OPENSSL_cleanse(ptr: mac_key, len: sizeof(mac_key)); |
| 1343 | CBB_cleanup(cbb: &cbb); |
| 1344 | return ret; |
| 1345 | } |
| 1346 | |
| 1347 | void PKCS12_free(PKCS12 *p12) { |
| 1348 | if (p12 == NULL) { |
| 1349 | return; |
| 1350 | } |
| 1351 | OPENSSL_free(ptr: p12->ber_bytes); |
| 1352 | OPENSSL_free(ptr: p12); |
| 1353 | } |
| 1354 | |