1 | // Copyright 2013 The Flutter Authors. All rights reserved. |
2 | // Use of this source code is governed by a BSD-style license that can be |
3 | // found in the LICENSE file. |
4 | |
5 | // Provides a smart pointer class for intrusively reference-counted objects. |
6 | |
7 | #ifndef FLUTTER_FML_MEMORY_REF_PTR_H_ |
8 | #define FLUTTER_FML_MEMORY_REF_PTR_H_ |
9 | |
10 | #include <cstddef> |
11 | #include <functional> |
12 | #include <utility> |
13 | |
14 | #include "flutter/fml/logging.h" |
15 | #include "flutter/fml/macros.h" |
16 | #include "flutter/fml/memory/ref_ptr_internal.h" |
17 | |
18 | namespace fml { |
19 | |
20 | // A smart pointer class for intrusively reference-counted objects (e.g., those |
21 | // subclassing |RefCountedThreadSafe| -- see ref_counted.h). |
22 | // |
23 | // Such objects require *adoption* to obtain the first |RefPtr|, which is |
24 | // accomplished using |AdoptRef| (see below). (This is due to such objects being |
25 | // constructed with a reference count of 1. The adoption requirement is |
26 | // enforced, at least in Debug builds, by assertions.) |
27 | // |
28 | // E.g., if |Foo| is an intrusively reference-counted class: |
29 | // |
30 | // // The |AdoptRef| may be put in a static factory method (e.g., if |Foo|'s |
31 | // // constructor is private). |
32 | // RefPtr<Foo> my_foo_ptr(AdoptRef(new Foo())); |
33 | // |
34 | // // Now OK, since "my Foo" has been adopted ... |
35 | // RefPtr<Foo> another_ptr_to_my_foo(my_foo_ptr.get()); |
36 | // |
37 | // // ... though this would preferable in this situation. |
38 | // RefPtr<Foo> yet_another_ptr_to_my_foo(my_foo_ptr); |
39 | // |
40 | // Unlike Chromium's |scoped_refptr|, |RefPtr| is only explicitly constructible |
41 | // from a plain pointer (and not assignable). It is however implicitly |
42 | // constructible from |nullptr|. So: |
43 | // |
44 | // RefPtr<Foo> foo(plain_ptr_to_adopted_foo); // OK. |
45 | // foo = plain_ptr_to_adopted_foo; // Not OK (doesn't compile). |
46 | // foo = RefPtr<Foo>(plain_ptr_to_adopted_foo); // OK. |
47 | // foo = nullptr; // OK. |
48 | // |
49 | // And if we have |void MyFunction(RefPtr<Foo> foo)|, calling it using |
50 | // |MyFunction(nullptr)| is also valid. |
51 | // |
52 | // Implementation note: For copy/move constructors/operator=s, we often have |
53 | // templated versions, so that the operation can be done on a |RefPtr<U>|, where |
54 | // |U| is a subclass of |T|. However, we also have non-templated versions with |
55 | // |U = T|, since the templated versions don't count as copy/move |
56 | // constructors/operator=s for the purposes of causing the default copy |
57 | // constructor/operator= to be deleted. E.g., if we didn't declare any |
58 | // non-templated versions, we'd get the default copy constructor/operator= (we'd |
59 | // only not get the default move constructor/operator= by virtue of having a |
60 | // destructor)! (In fact, it'd suffice to only declare a non-templated move |
61 | // constructor or move operator=, which would cause the copy |
62 | // constructor/operator= to be deleted, but for clarity we include explicit |
63 | // non-templated versions of everything.) |
64 | template <typename T> |
65 | class RefPtr final { |
66 | public: |
67 | RefPtr() : ptr_(nullptr) {} |
68 | RefPtr(std::nullptr_t) // NOLINT(google-explicit-constructor) |
69 | : ptr_(nullptr) {} |
70 | |
71 | // Explicit constructor from a plain pointer (to an object that must have |
72 | // already been adopted). (Note that in |T::T()|, references to |this| cannot |
73 | // be taken, since the object being constructed will not have been adopted |
74 | // yet.) |
75 | template <typename U> |
76 | explicit RefPtr(U* p) : ptr_(p) { |
77 | if (ptr_) { |
78 | ptr_->AddRef(); |
79 | } |
80 | } |
81 | |
82 | // Copy constructor. |
83 | RefPtr(const RefPtr<T>& r) // NOLINT(google-explicit-constructor) |
84 | : ptr_(r.ptr_) { |
85 | if (ptr_) { |
86 | ptr_->AddRef(); |
87 | } |
88 | } |
89 | |
90 | template <typename U> |
91 | RefPtr(const RefPtr<U>& r) // NOLINT(google-explicit-constructor) |
92 | : ptr_(r.ptr_) { |
93 | if (ptr_) { |
94 | ptr_->AddRef(); |
95 | } |
96 | } |
97 | |
98 | // Move constructor. |
99 | RefPtr(RefPtr<T>&& r) : ptr_(r.ptr_) { // NOLINT(google-explicit-constructor) |
100 | r.ptr_ = nullptr; |
101 | } |
102 | |
103 | template <typename U> |
104 | RefPtr(RefPtr<U>&& r) : ptr_(r.ptr_) { // NOLINT(google-explicit-constructor) |
105 | r.ptr_ = nullptr; |
106 | } |
107 | |
108 | // Destructor. |
109 | ~RefPtr() { |
110 | if (ptr_) { |
111 | ptr_->Release(); |
112 | } |
113 | } |
114 | |
115 | T* get() const { return ptr_; } |
116 | |
117 | T& operator*() const { |
118 | FML_DCHECK(ptr_); |
119 | return *ptr_; |
120 | } |
121 | |
122 | T* operator->() const { |
123 | FML_DCHECK(ptr_); |
124 | return ptr_; |
125 | } |
126 | |
127 | // Copy assignment. |
128 | RefPtr<T>& operator=(const RefPtr<T>& r) { |
129 | // Handle self-assignment. |
130 | if (r.ptr_ == ptr_) { |
131 | return *this; |
132 | } |
133 | if (r.ptr_) { |
134 | r.ptr_->AddRef(); |
135 | } |
136 | T* old_ptr = ptr_; |
137 | ptr_ = r.ptr_; |
138 | if (old_ptr) { |
139 | old_ptr->Release(); |
140 | } |
141 | return *this; |
142 | } |
143 | |
144 | template <typename U> |
145 | RefPtr<T>& operator=(const RefPtr<U>& r) { |
146 | if (reinterpret_cast<T*>(r.ptr_) == ptr_) { |
147 | return *this; |
148 | } |
149 | if (r.ptr_) { |
150 | r.ptr_->AddRef(); |
151 | } |
152 | T* old_ptr = ptr_; |
153 | ptr_ = r.ptr_; |
154 | if (old_ptr) { |
155 | old_ptr->Release(); |
156 | } |
157 | return *this; |
158 | } |
159 | |
160 | // Move assignment. |
161 | // Note: Like |std::shared_ptr|, we support self-move and move assignment is |
162 | // equivalent to |RefPtr<T>(std::move(r)).swap(*this)|. |
163 | RefPtr<T>& operator=(RefPtr<T>&& r) { |
164 | RefPtr<T>(std::move(r)).swap(*this); |
165 | return *this; |
166 | } |
167 | |
168 | template <typename U> |
169 | RefPtr<T>& operator=(RefPtr<U>&& r) { |
170 | RefPtr<T>(std::move(r)).swap(*this); |
171 | return *this; |
172 | } |
173 | |
174 | void swap(RefPtr<T>& r) { |
175 | T* p = ptr_; |
176 | ptr_ = r.ptr_; |
177 | r.ptr_ = p; |
178 | } |
179 | |
180 | // Returns a new |RefPtr<T>| with the same contents as this pointer. Useful |
181 | // when a function takes a |RefPtr<T>&&| argument and the caller wants to |
182 | // retain its reference (rather than moving it). |
183 | RefPtr<T> Clone() const { return *this; } |
184 | |
185 | explicit operator bool() const { return !!ptr_; } |
186 | |
187 | template <typename U> |
188 | bool operator==(const RefPtr<U>& rhs) const { |
189 | return ptr_ == rhs.ptr_; |
190 | } |
191 | |
192 | template <typename U> |
193 | bool operator!=(const RefPtr<U>& rhs) const { |
194 | return !operator==(rhs); |
195 | } |
196 | |
197 | template <typename U> |
198 | bool operator<(const RefPtr<U>& rhs) const { |
199 | return ptr_ < rhs.ptr_; |
200 | } |
201 | |
202 | private: |
203 | template <typename U> |
204 | friend class RefPtr; |
205 | |
206 | friend RefPtr<T> AdoptRef<T>(T*); |
207 | |
208 | enum AdoptTag { ADOPT }; |
209 | RefPtr(T* ptr, AdoptTag) : ptr_(ptr) { FML_DCHECK(ptr_); } |
210 | |
211 | T* ptr_; |
212 | }; |
213 | |
214 | // Adopts a newly-created |T|. Typically used in a static factory method, like: |
215 | // |
216 | // // static |
217 | // RefPtr<Foo> Foo::Create() { |
218 | // return AdoptRef(new Foo()); |
219 | // } |
220 | template <typename T> |
221 | inline RefPtr<T> AdoptRef(T* ptr) { |
222 | #ifndef NDEBUG |
223 | ptr->Adopt(); |
224 | #endif |
225 | return RefPtr<T>(ptr, RefPtr<T>::ADOPT); |
226 | } |
227 | |
228 | // Constructs a |RefPtr<T>| from a plain pointer (to an object that must |
229 | // have already been adoped). Avoids having to spell out the full type name. |
230 | // |
231 | // Foo* foo = ...; |
232 | // auto foo_ref = Ref(foo); |
233 | // |
234 | // (|foo_ref| will be of type |RefPtr<Foo>|.) |
235 | template <typename T> |
236 | inline RefPtr<T> Ref(T* ptr) { |
237 | return RefPtr<T>(ptr); |
238 | } |
239 | |
240 | // Creates an intrusively reference counted |T|, producing a |RefPtr<T>| (and |
241 | // performing the required adoption). Use like: |
242 | // |
243 | // auto my_foo = MakeRefCounted<Foo>(ctor_arg1, ctor_arg2); |
244 | // |
245 | // (|my_foo| will be of type |RefPtr<Foo>|.) |
246 | template <typename T, typename... Args> |
247 | RefPtr<T> MakeRefCounted(Args&&... args) { |
248 | return internal::MakeRefCountedHelper<T>::MakeRefCounted( |
249 | std::forward<Args>(args)...); |
250 | } |
251 | |
252 | } // namespace fml |
253 | |
254 | // Inject custom std::hash<> function object for |RefPtr<T>|. |
255 | namespace std { |
256 | template <typename T> |
257 | struct hash<fml::RefPtr<T>> { |
258 | using argument_type = fml::RefPtr<T>; |
259 | using result_type = std::size_t; |
260 | |
261 | result_type operator()(const argument_type& ptr) const { |
262 | return std::hash<T*>()(ptr.get()); |
263 | } |
264 | }; |
265 | } // namespace std |
266 | |
267 | #endif // FLUTTER_FML_MEMORY_REF_PTR_H_ |
268 | |