| 1 | // Copyright 2013 The Flutter Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | // Provides a smart pointer class for intrusively reference-counted objects. |
| 6 | |
| 7 | #ifndef FLUTTER_FML_MEMORY_REF_PTR_H_ |
| 8 | #define FLUTTER_FML_MEMORY_REF_PTR_H_ |
| 9 | |
| 10 | #include <cstddef> |
| 11 | #include <functional> |
| 12 | #include <utility> |
| 13 | |
| 14 | #include "flutter/fml/logging.h" |
| 15 | #include "flutter/fml/macros.h" |
| 16 | #include "flutter/fml/memory/ref_ptr_internal.h" |
| 17 | |
| 18 | namespace fml { |
| 19 | |
| 20 | // A smart pointer class for intrusively reference-counted objects (e.g., those |
| 21 | // subclassing |RefCountedThreadSafe| -- see ref_counted.h). |
| 22 | // |
| 23 | // Such objects require *adoption* to obtain the first |RefPtr|, which is |
| 24 | // accomplished using |AdoptRef| (see below). (This is due to such objects being |
| 25 | // constructed with a reference count of 1. The adoption requirement is |
| 26 | // enforced, at least in Debug builds, by assertions.) |
| 27 | // |
| 28 | // E.g., if |Foo| is an intrusively reference-counted class: |
| 29 | // |
| 30 | // // The |AdoptRef| may be put in a static factory method (e.g., if |Foo|'s |
| 31 | // // constructor is private). |
| 32 | // RefPtr<Foo> my_foo_ptr(AdoptRef(new Foo())); |
| 33 | // |
| 34 | // // Now OK, since "my Foo" has been adopted ... |
| 35 | // RefPtr<Foo> another_ptr_to_my_foo(my_foo_ptr.get()); |
| 36 | // |
| 37 | // // ... though this would preferable in this situation. |
| 38 | // RefPtr<Foo> yet_another_ptr_to_my_foo(my_foo_ptr); |
| 39 | // |
| 40 | // Unlike Chromium's |scoped_refptr|, |RefPtr| is only explicitly constructible |
| 41 | // from a plain pointer (and not assignable). It is however implicitly |
| 42 | // constructible from |nullptr|. So: |
| 43 | // |
| 44 | // RefPtr<Foo> foo(plain_ptr_to_adopted_foo); // OK. |
| 45 | // foo = plain_ptr_to_adopted_foo; // Not OK (doesn't compile). |
| 46 | // foo = RefPtr<Foo>(plain_ptr_to_adopted_foo); // OK. |
| 47 | // foo = nullptr; // OK. |
| 48 | // |
| 49 | // And if we have |void MyFunction(RefPtr<Foo> foo)|, calling it using |
| 50 | // |MyFunction(nullptr)| is also valid. |
| 51 | // |
| 52 | // Implementation note: For copy/move constructors/operator=s, we often have |
| 53 | // templated versions, so that the operation can be done on a |RefPtr<U>|, where |
| 54 | // |U| is a subclass of |T|. However, we also have non-templated versions with |
| 55 | // |U = T|, since the templated versions don't count as copy/move |
| 56 | // constructors/operator=s for the purposes of causing the default copy |
| 57 | // constructor/operator= to be deleted. E.g., if we didn't declare any |
| 58 | // non-templated versions, we'd get the default copy constructor/operator= (we'd |
| 59 | // only not get the default move constructor/operator= by virtue of having a |
| 60 | // destructor)! (In fact, it'd suffice to only declare a non-templated move |
| 61 | // constructor or move operator=, which would cause the copy |
| 62 | // constructor/operator= to be deleted, but for clarity we include explicit |
| 63 | // non-templated versions of everything.) |
| 64 | template <typename T> |
| 65 | class RefPtr final { |
| 66 | public: |
| 67 | RefPtr() : ptr_(nullptr) {} |
| 68 | RefPtr(std::nullptr_t) // NOLINT(google-explicit-constructor) |
| 69 | : ptr_(nullptr) {} |
| 70 | |
| 71 | // Explicit constructor from a plain pointer (to an object that must have |
| 72 | // already been adopted). (Note that in |T::T()|, references to |this| cannot |
| 73 | // be taken, since the object being constructed will not have been adopted |
| 74 | // yet.) |
| 75 | template <typename U> |
| 76 | explicit RefPtr(U* p) : ptr_(p) { |
| 77 | if (ptr_) { |
| 78 | ptr_->AddRef(); |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | // Copy constructor. |
| 83 | RefPtr(const RefPtr<T>& r) // NOLINT(google-explicit-constructor) |
| 84 | : ptr_(r.ptr_) { |
| 85 | if (ptr_) { |
| 86 | ptr_->AddRef(); |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | template <typename U> |
| 91 | RefPtr(const RefPtr<U>& r) // NOLINT(google-explicit-constructor) |
| 92 | : ptr_(r.ptr_) { |
| 93 | if (ptr_) { |
| 94 | ptr_->AddRef(); |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | // Move constructor. |
| 99 | RefPtr(RefPtr<T>&& r) : ptr_(r.ptr_) { // NOLINT(google-explicit-constructor) |
| 100 | r.ptr_ = nullptr; |
| 101 | } |
| 102 | |
| 103 | template <typename U> |
| 104 | RefPtr(RefPtr<U>&& r) : ptr_(r.ptr_) { // NOLINT(google-explicit-constructor) |
| 105 | r.ptr_ = nullptr; |
| 106 | } |
| 107 | |
| 108 | // Destructor. |
| 109 | ~RefPtr() { |
| 110 | if (ptr_) { |
| 111 | ptr_->Release(); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | T* get() const { return ptr_; } |
| 116 | |
| 117 | T& operator*() const { |
| 118 | FML_DCHECK(ptr_); |
| 119 | return *ptr_; |
| 120 | } |
| 121 | |
| 122 | T* operator->() const { |
| 123 | FML_DCHECK(ptr_); |
| 124 | return ptr_; |
| 125 | } |
| 126 | |
| 127 | // Copy assignment. |
| 128 | RefPtr<T>& operator=(const RefPtr<T>& r) { |
| 129 | // Handle self-assignment. |
| 130 | if (r.ptr_ == ptr_) { |
| 131 | return *this; |
| 132 | } |
| 133 | if (r.ptr_) { |
| 134 | r.ptr_->AddRef(); |
| 135 | } |
| 136 | T* old_ptr = ptr_; |
| 137 | ptr_ = r.ptr_; |
| 138 | if (old_ptr) { |
| 139 | old_ptr->Release(); |
| 140 | } |
| 141 | return *this; |
| 142 | } |
| 143 | |
| 144 | template <typename U> |
| 145 | RefPtr<T>& operator=(const RefPtr<U>& r) { |
| 146 | if (reinterpret_cast<T*>(r.ptr_) == ptr_) { |
| 147 | return *this; |
| 148 | } |
| 149 | if (r.ptr_) { |
| 150 | r.ptr_->AddRef(); |
| 151 | } |
| 152 | T* old_ptr = ptr_; |
| 153 | ptr_ = r.ptr_; |
| 154 | if (old_ptr) { |
| 155 | old_ptr->Release(); |
| 156 | } |
| 157 | return *this; |
| 158 | } |
| 159 | |
| 160 | // Move assignment. |
| 161 | // Note: Like |std::shared_ptr|, we support self-move and move assignment is |
| 162 | // equivalent to |RefPtr<T>(std::move(r)).swap(*this)|. |
| 163 | RefPtr<T>& operator=(RefPtr<T>&& r) { |
| 164 | RefPtr<T>(std::move(r)).swap(*this); |
| 165 | return *this; |
| 166 | } |
| 167 | |
| 168 | template <typename U> |
| 169 | RefPtr<T>& operator=(RefPtr<U>&& r) { |
| 170 | RefPtr<T>(std::move(r)).swap(*this); |
| 171 | return *this; |
| 172 | } |
| 173 | |
| 174 | void swap(RefPtr<T>& r) { |
| 175 | T* p = ptr_; |
| 176 | ptr_ = r.ptr_; |
| 177 | r.ptr_ = p; |
| 178 | } |
| 179 | |
| 180 | // Returns a new |RefPtr<T>| with the same contents as this pointer. Useful |
| 181 | // when a function takes a |RefPtr<T>&&| argument and the caller wants to |
| 182 | // retain its reference (rather than moving it). |
| 183 | RefPtr<T> Clone() const { return *this; } |
| 184 | |
| 185 | explicit operator bool() const { return !!ptr_; } |
| 186 | |
| 187 | template <typename U> |
| 188 | bool operator==(const RefPtr<U>& rhs) const { |
| 189 | return ptr_ == rhs.ptr_; |
| 190 | } |
| 191 | |
| 192 | template <typename U> |
| 193 | bool operator!=(const RefPtr<U>& rhs) const { |
| 194 | return !operator==(rhs); |
| 195 | } |
| 196 | |
| 197 | template <typename U> |
| 198 | bool operator<(const RefPtr<U>& rhs) const { |
| 199 | return ptr_ < rhs.ptr_; |
| 200 | } |
| 201 | |
| 202 | private: |
| 203 | template <typename U> |
| 204 | friend class RefPtr; |
| 205 | |
| 206 | friend RefPtr<T> AdoptRef<T>(T*); |
| 207 | |
| 208 | enum AdoptTag { ADOPT }; |
| 209 | RefPtr(T* ptr, AdoptTag) : ptr_(ptr) { FML_DCHECK(ptr_); } |
| 210 | |
| 211 | T* ptr_; |
| 212 | }; |
| 213 | |
| 214 | // Adopts a newly-created |T|. Typically used in a static factory method, like: |
| 215 | // |
| 216 | // // static |
| 217 | // RefPtr<Foo> Foo::Create() { |
| 218 | // return AdoptRef(new Foo()); |
| 219 | // } |
| 220 | template <typename T> |
| 221 | inline RefPtr<T> AdoptRef(T* ptr) { |
| 222 | #ifndef NDEBUG |
| 223 | ptr->Adopt(); |
| 224 | #endif |
| 225 | return RefPtr<T>(ptr, RefPtr<T>::ADOPT); |
| 226 | } |
| 227 | |
| 228 | // Constructs a |RefPtr<T>| from a plain pointer (to an object that must |
| 229 | // have already been adoped). Avoids having to spell out the full type name. |
| 230 | // |
| 231 | // Foo* foo = ...; |
| 232 | // auto foo_ref = Ref(foo); |
| 233 | // |
| 234 | // (|foo_ref| will be of type |RefPtr<Foo>|.) |
| 235 | template <typename T> |
| 236 | inline RefPtr<T> Ref(T* ptr) { |
| 237 | return RefPtr<T>(ptr); |
| 238 | } |
| 239 | |
| 240 | // Creates an intrusively reference counted |T|, producing a |RefPtr<T>| (and |
| 241 | // performing the required adoption). Use like: |
| 242 | // |
| 243 | // auto my_foo = MakeRefCounted<Foo>(ctor_arg1, ctor_arg2); |
| 244 | // |
| 245 | // (|my_foo| will be of type |RefPtr<Foo>|.) |
| 246 | template <typename T, typename... Args> |
| 247 | RefPtr<T> MakeRefCounted(Args&&... args) { |
| 248 | return internal::MakeRefCountedHelper<T>::MakeRefCounted( |
| 249 | std::forward<Args>(args)...); |
| 250 | } |
| 251 | |
| 252 | } // namespace fml |
| 253 | |
| 254 | // Inject custom std::hash<> function object for |RefPtr<T>|. |
| 255 | namespace std { |
| 256 | template <typename T> |
| 257 | struct hash<fml::RefPtr<T>> { |
| 258 | using argument_type = fml::RefPtr<T>; |
| 259 | using result_type = std::size_t; |
| 260 | |
| 261 | result_type operator()(const argument_type& ptr) const { |
| 262 | return std::hash<T*>()(ptr.get()); |
| 263 | } |
| 264 | }; |
| 265 | } // namespace std |
| 266 | |
| 267 | #endif // FLUTTER_FML_MEMORY_REF_PTR_H_ |
| 268 | |