| 1 | /* Measure strstr functions. |
| 2 | Copyright (C) 2013-2024 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #define MIN_PAGE_SIZE 131072 |
| 20 | #define TEST_MAIN |
| 21 | #define TEST_NAME "strstr" |
| 22 | #include "bench-string.h" |
| 23 | |
| 24 | #include "json-lib.h" |
| 25 | |
| 26 | static const char input[] = |
| 27 | "This manual is written with the assumption that you are at least " |
| 28 | "somewhat familiar with the C programming language and basic programming " |
| 29 | "concepts. Specifically, familiarity with ISO standard C (*note ISO " |
| 30 | "C::), rather than “traditional” pre-ISO C dialects, is assumed.\n" |
| 31 | |
| 32 | " The GNU C Library includes several “header files”, each of which " |
| 33 | "provides definitions and declarations for a group of related facilities; " |
| 34 | "this information is used by the C compiler when processing your program. " |
| 35 | "For example, the header file ‘stdio.h’ declares facilities for " |
| 36 | "performing input and output, and the header file ‘string.h’ declares " |
| 37 | "string processing utilities. The organization of this manual generally " |
| 38 | "follows the same division as the header files.\n" |
| 39 | |
| 40 | " If you are reading this manual for the first time, you should read " |
| 41 | "all of the introductory material and skim the remaining chapters. There " |
| 42 | "are a _lot_ of functions in the GNU C Library and it’s not realistic to " |
| 43 | "expect that you will be able to remember exactly _how_ to use each and " |
| 44 | "every one of them. It’s more important to become generally familiar " |
| 45 | "with the kinds of facilities that the library provides, so that when you " |
| 46 | "are writing your programs you can recognize _when_ to make use of " |
| 47 | "library functions, and _where_ in this manual you can find more specific " |
| 48 | "information about them.\n" ; |
| 49 | |
| 50 | /* Simple yet efficient strstr - for needles < 32 bytes it is 2-4 times |
| 51 | faster than the optimized twoway_strstr. */ |
| 52 | static char * |
| 53 | basic_strstr (const char *s1, const char *s2) |
| 54 | { |
| 55 | size_t i; |
| 56 | int c = s2[0]; |
| 57 | |
| 58 | if (c == 0) |
| 59 | return (char*)s1; |
| 60 | |
| 61 | for ( ; s1[0] != '\0'; s1++) |
| 62 | { |
| 63 | if (s1[0] != c) |
| 64 | continue; |
| 65 | for (i = 1; s2[i] != 0; i++) |
| 66 | if (s1[i] != s2[i]) |
| 67 | break; |
| 68 | if (s2[i] == '\0') |
| 69 | return (char*)s1; |
| 70 | } |
| 71 | |
| 72 | return NULL; |
| 73 | } |
| 74 | |
| 75 | #define RETURN_TYPE char * |
| 76 | #define AVAILABLE(h, h_l, j, n_l) \ |
| 77 | (((j) + (n_l) <= (h_l)) \ |
| 78 | || ((h_l) += __strnlen ((void*)((h) + (h_l)), (n_l) + 512), \ |
| 79 | (j) + (n_l) <= (h_l))) |
| 80 | #define CHECK_EOL (1) |
| 81 | #define RET0_IF_0(a) if (!a) goto ret0 |
| 82 | #define FASTSEARCH(S,C,N) (void*) strchr ((void*)(S), (C)) |
| 83 | #define LONG_NEEDLE_THRESHOLD 32U |
| 84 | #define __strnlen strnlen |
| 85 | #include "string/str-two-way.h" |
| 86 | |
| 87 | /* Optimized Two-way implementation from GLIBC 2.29. */ |
| 88 | static char * |
| 89 | twoway_strstr (const char *haystack, const char *needle) |
| 90 | { |
| 91 | size_t needle_len; /* Length of NEEDLE. */ |
| 92 | size_t haystack_len; /* Known minimum length of HAYSTACK. */ |
| 93 | |
| 94 | /* Handle empty NEEDLE special case. */ |
| 95 | if (needle[0] == '\0') |
| 96 | return (char *) haystack; |
| 97 | |
| 98 | /* Skip until we find the first matching char from NEEDLE. */ |
| 99 | haystack = strchr (haystack, needle[0]); |
| 100 | if (haystack == NULL || needle[1] == '\0') |
| 101 | return (char *) haystack; |
| 102 | |
| 103 | /* Ensure HAYSTACK length is at least as long as NEEDLE length. |
| 104 | Since a match may occur early on in a huge HAYSTACK, use strnlen |
| 105 | and read ahead a few cachelines for improved performance. */ |
| 106 | needle_len = strlen (needle); |
| 107 | haystack_len = __strnlen (haystack, needle_len + 256); |
| 108 | if (haystack_len < needle_len) |
| 109 | return NULL; |
| 110 | |
| 111 | /* Check whether we have a match. This improves performance since we avoid |
| 112 | the initialization overhead of the two-way algorithm. */ |
| 113 | if (memcmp (haystack, needle, needle_len) == 0) |
| 114 | return (char *) haystack; |
| 115 | |
| 116 | /* Perform the search. Abstract memory is considered to be an array |
| 117 | of 'unsigned char' values, not an array of 'char' values. See |
| 118 | ISO C 99 section 6.2.6.1. */ |
| 119 | if (needle_len < LONG_NEEDLE_THRESHOLD) |
| 120 | return two_way_short_needle (haystack: (const unsigned char *) haystack, |
| 121 | haystack_len, |
| 122 | needle: (const unsigned char *) needle, needle_len); |
| 123 | return two_way_long_needle (haystack: (const unsigned char *) haystack, haystack_len, |
| 124 | needle: (const unsigned char *) needle, needle_len); |
| 125 | } |
| 126 | |
| 127 | typedef char *(*proto_t) (const char *, const char *); |
| 128 | |
| 129 | IMPL (strstr, 1) |
| 130 | IMPL (twoway_strstr, 0) |
| 131 | IMPL (basic_strstr, 0) |
| 132 | |
| 133 | static void |
| 134 | do_one_test (json_ctx_t *json_ctx, impl_t *impl, const char *s1, |
| 135 | const char *s2, char *exp_result) |
| 136 | { |
| 137 | size_t i, iters = INNER_LOOP_ITERS_SMALL / 8; |
| 138 | timing_t start, stop, cur; |
| 139 | char *res; |
| 140 | |
| 141 | TIMING_NOW (start); |
| 142 | for (i = 0; i < iters; ++i) |
| 143 | res = CALL (impl, s1, s2); |
| 144 | TIMING_NOW (stop); |
| 145 | |
| 146 | TIMING_DIFF (cur, start, stop); |
| 147 | |
| 148 | json_element_double (ctx: json_ctx, d: (double) cur / (double) iters); |
| 149 | |
| 150 | if (res != exp_result) |
| 151 | { |
| 152 | error (status: 0, errnum: 0, format: "Wrong result in function %s %s %s" , impl->name, |
| 153 | (res == NULL) ? "(null)" : res, |
| 154 | (exp_result == NULL) ? "(null)" : exp_result); |
| 155 | ret = 1; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | static void |
| 160 | do_test (json_ctx_t *json_ctx, size_t align1, size_t align2, size_t len1, |
| 161 | size_t len2, int fail) |
| 162 | { |
| 163 | char *s1 = (char *) (buf1 + align1); |
| 164 | char *s2 = (char *) (buf2 + align2); |
| 165 | |
| 166 | size_t size = sizeof (input) - 1; |
| 167 | size_t pos = (len1 + len2) % size; |
| 168 | |
| 169 | char *ss2 = s2; |
| 170 | for (size_t l = len2; l > 0; l = l > size ? l - size : 0) |
| 171 | { |
| 172 | size_t t = l > size ? size : l; |
| 173 | if (pos + t <= size) |
| 174 | ss2 = mempcpy (ss2, input + pos, t); |
| 175 | else |
| 176 | { |
| 177 | ss2 = mempcpy (ss2, input + pos, size - pos); |
| 178 | ss2 = mempcpy (ss2, input, t - (size - pos)); |
| 179 | } |
| 180 | } |
| 181 | s2[len2] = '\0'; |
| 182 | |
| 183 | char *ss1 = s1; |
| 184 | for (size_t l = len1; l > 0; l = l > size ? l - size : 0) |
| 185 | { |
| 186 | size_t t = l > size ? size : l; |
| 187 | memcpy (ss1, input, t); |
| 188 | ss1 += t; |
| 189 | } |
| 190 | |
| 191 | if (!fail) |
| 192 | memcpy (s1 + len1 - len2, s2, len2); |
| 193 | s1[len1] = '\0'; |
| 194 | |
| 195 | /* Remove any accidental matches except for the last if !fail. */ |
| 196 | for (ss1 = basic_strstr (s1, s2); ss1; ss1 = basic_strstr (s1: ss1 + 1, s2)) |
| 197 | if (fail || ss1 != s1 + len1 - len2) |
| 198 | ++ss1[len2 / 2]; |
| 199 | |
| 200 | json_element_object_begin (ctx: json_ctx); |
| 201 | json_attr_uint (ctx: json_ctx, name: "len_haystack" , d: len1); |
| 202 | json_attr_uint (ctx: json_ctx, name: "len_needle" , d: len2); |
| 203 | json_attr_uint (ctx: json_ctx, name: "align_haystack" , d: align1); |
| 204 | json_attr_uint (ctx: json_ctx, name: "align_needle" , d: align2); |
| 205 | json_attr_uint (ctx: json_ctx, name: "fail" , d: fail); |
| 206 | |
| 207 | json_array_begin (ctx: json_ctx, name: "timings" ); |
| 208 | |
| 209 | FOR_EACH_IMPL (impl, 0) |
| 210 | do_one_test (json_ctx, impl, s1, s2, exp_result: fail ? NULL : s1 + len1 - len2); |
| 211 | |
| 212 | json_array_end (ctx: json_ctx); |
| 213 | json_element_object_end (ctx: json_ctx); |
| 214 | |
| 215 | } |
| 216 | |
| 217 | /* Test needles which exhibit worst-case performance. This shows that |
| 218 | basic_strstr is quadratic and thus unsuitable for large needles. |
| 219 | On the other hand Two-way and skip table implementations are linear with |
| 220 | increasing needle sizes. The slowest cases of the two implementations are |
| 221 | within a factor of 2 on several different microarchitectures. */ |
| 222 | |
| 223 | static void |
| 224 | test_hard_needle (json_ctx_t *json_ctx, size_t ne_len, size_t hs_len) |
| 225 | { |
| 226 | char *ne = (char *) buf1; |
| 227 | char *hs = (char *) buf2; |
| 228 | |
| 229 | /* Hard needle for strstr algorithm using skip table. This results in many |
| 230 | memcmp calls comparing most of the needle. */ |
| 231 | { |
| 232 | memset (ne, 'a', ne_len); |
| 233 | ne[ne_len] = '\0'; |
| 234 | ne[ne_len - 14] = 'b'; |
| 235 | |
| 236 | memset (hs, 'a', hs_len); |
| 237 | for (size_t i = ne_len; i <= hs_len; i += ne_len) |
| 238 | { |
| 239 | hs[i - 5] = 'b'; |
| 240 | hs[i - 62] = 'b'; |
| 241 | } |
| 242 | |
| 243 | json_element_object_begin (ctx: json_ctx); |
| 244 | json_attr_uint (ctx: json_ctx, name: "len_haystack" , d: hs_len); |
| 245 | json_attr_uint (ctx: json_ctx, name: "len_needle" , d: ne_len); |
| 246 | json_attr_uint (ctx: json_ctx, name: "align_haystack" , d: 0); |
| 247 | json_attr_uint (ctx: json_ctx, name: "align_needle" , d: 0); |
| 248 | json_attr_uint (ctx: json_ctx, name: "fail" , d: 1); |
| 249 | json_attr_string (ctx: json_ctx, name: "desc" , s: "Difficult skiptable(0)" ); |
| 250 | |
| 251 | json_array_begin (ctx: json_ctx, name: "timings" ); |
| 252 | |
| 253 | FOR_EACH_IMPL (impl, 0) |
| 254 | do_one_test (json_ctx, impl, s1: hs, s2: ne, NULL); |
| 255 | |
| 256 | json_array_end (ctx: json_ctx); |
| 257 | json_element_object_end (ctx: json_ctx); |
| 258 | } |
| 259 | |
| 260 | /* 2nd hard needle for strstr algorithm using skip table. This results in |
| 261 | many memcmp calls comparing most of the needle. */ |
| 262 | { |
| 263 | memset (ne, 'a', ne_len); |
| 264 | ne[ne_len] = '\0'; |
| 265 | ne[ne_len - 6] = 'b'; |
| 266 | |
| 267 | memset (hs, 'a', hs_len); |
| 268 | for (size_t i = ne_len; i <= hs_len; i += ne_len) |
| 269 | { |
| 270 | hs[i - 5] = 'b'; |
| 271 | hs[i - 6] = 'b'; |
| 272 | } |
| 273 | |
| 274 | json_element_object_begin (ctx: json_ctx); |
| 275 | json_attr_uint (ctx: json_ctx, name: "len_haystack" , d: hs_len); |
| 276 | json_attr_uint (ctx: json_ctx, name: "len_needle" , d: ne_len); |
| 277 | json_attr_uint (ctx: json_ctx, name: "align_haystack" , d: 0); |
| 278 | json_attr_uint (ctx: json_ctx, name: "align_needle" , d: 0); |
| 279 | json_attr_uint (ctx: json_ctx, name: "fail" , d: 1); |
| 280 | json_attr_string (ctx: json_ctx, name: "desc" , s: "Difficult skiptable(1)" ); |
| 281 | |
| 282 | json_array_begin (ctx: json_ctx, name: "timings" ); |
| 283 | |
| 284 | FOR_EACH_IMPL (impl, 0) |
| 285 | do_one_test (json_ctx, impl, s1: hs, s2: ne, NULL); |
| 286 | |
| 287 | json_array_end (ctx: json_ctx); |
| 288 | json_element_object_end (ctx: json_ctx); |
| 289 | } |
| 290 | |
| 291 | /* Hard needle for Two-way algorithm - the random input causes a large number |
| 292 | of branch mispredictions which significantly reduces performance on modern |
| 293 | micro architectures. */ |
| 294 | { |
| 295 | for (int i = 0; i < hs_len; i++) |
| 296 | hs[i] = (rand () & 255) > 155 ? 'a' : 'b'; |
| 297 | hs[hs_len] = 0; |
| 298 | |
| 299 | memset (ne, 'a', ne_len); |
| 300 | ne[ne_len - 2] = 'b'; |
| 301 | ne[0] = 'b'; |
| 302 | ne[ne_len] = 0; |
| 303 | |
| 304 | json_element_object_begin (ctx: json_ctx); |
| 305 | json_attr_uint (ctx: json_ctx, name: "len_haystack" , d: hs_len); |
| 306 | json_attr_uint (ctx: json_ctx, name: "len_needle" , d: ne_len); |
| 307 | json_attr_uint (ctx: json_ctx, name: "align_haystack" , d: 0); |
| 308 | json_attr_uint (ctx: json_ctx, name: "align_needle" , d: 0); |
| 309 | json_attr_uint (ctx: json_ctx, name: "fail" , d: 1); |
| 310 | json_attr_string (ctx: json_ctx, name: "desc" , s: "Difficult 2-way" ); |
| 311 | |
| 312 | json_array_begin (ctx: json_ctx, name: "timings" ); |
| 313 | |
| 314 | FOR_EACH_IMPL (impl, 0) |
| 315 | do_one_test (json_ctx, impl, s1: hs, s2: ne, NULL); |
| 316 | |
| 317 | json_array_end (ctx: json_ctx); |
| 318 | json_element_object_end (ctx: json_ctx); |
| 319 | } |
| 320 | |
| 321 | /* Hard needle for standard algorithm testing first few characters of |
| 322 | * needle. */ |
| 323 | { |
| 324 | for (int i = 0; i < hs_len; i++) |
| 325 | hs[i] = (rand () & 255) >= 128 ? 'a' : 'b'; |
| 326 | hs[hs_len] = 0; |
| 327 | |
| 328 | for (int i = 0; i < ne_len; i++) |
| 329 | { |
| 330 | if (i % 3 == 0) |
| 331 | ne[i] = 'a'; |
| 332 | else if (i % 3 == 1) |
| 333 | ne[i] = 'b'; |
| 334 | else |
| 335 | ne[i] = 'c'; |
| 336 | } |
| 337 | ne[ne_len] = 0; |
| 338 | |
| 339 | json_element_object_begin (ctx: json_ctx); |
| 340 | json_attr_uint (ctx: json_ctx, name: "len_haystack" , d: hs_len); |
| 341 | json_attr_uint (ctx: json_ctx, name: "len_needle" , d: ne_len); |
| 342 | json_attr_uint (ctx: json_ctx, name: "align_haystack" , d: 0); |
| 343 | json_attr_uint (ctx: json_ctx, name: "align_needle" , d: 0); |
| 344 | json_attr_uint (ctx: json_ctx, name: "fail" , d: 1); |
| 345 | json_attr_string (ctx: json_ctx, name: "desc" , s: "Difficult testing first 2" ); |
| 346 | |
| 347 | json_array_begin (ctx: json_ctx, name: "timings" ); |
| 348 | |
| 349 | FOR_EACH_IMPL (impl, 0) |
| 350 | do_one_test (json_ctx, impl, s1: hs, s2: ne, NULL); |
| 351 | |
| 352 | json_array_end (ctx: json_ctx); |
| 353 | json_element_object_end (ctx: json_ctx); |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | static int |
| 358 | test_main (void) |
| 359 | { |
| 360 | json_ctx_t json_ctx; |
| 361 | test_init (); |
| 362 | |
| 363 | json_init (ctx: &json_ctx, indent_level: 0, stdout); |
| 364 | |
| 365 | json_document_begin (ctx: &json_ctx); |
| 366 | json_attr_string (ctx: &json_ctx, name: "timing_type" , TIMING_TYPE); |
| 367 | |
| 368 | json_attr_object_begin (ctx: &json_ctx, name: "functions" ); |
| 369 | json_attr_object_begin (ctx: &json_ctx, TEST_NAME); |
| 370 | json_attr_string (ctx: &json_ctx, name: "bench-variant" , s: "" ); |
| 371 | |
| 372 | json_array_begin (ctx: &json_ctx, name: "ifuncs" ); |
| 373 | FOR_EACH_IMPL (impl, 0) |
| 374 | json_element_string (ctx: &json_ctx, s: impl->name); |
| 375 | json_array_end (ctx: &json_ctx); |
| 376 | |
| 377 | json_array_begin (ctx: &json_ctx, name: "results" ); |
| 378 | |
| 379 | for (size_t hlen = 8; hlen <= 256;) |
| 380 | for (size_t klen = 1; klen <= 16; klen++) |
| 381 | { |
| 382 | do_test (json_ctx: &json_ctx, align1: 1, align2: 3, len1: hlen, len2: klen, fail: 0); |
| 383 | do_test (json_ctx: &json_ctx, align1: 0, align2: 9, len1: hlen, len2: klen, fail: 1); |
| 384 | |
| 385 | do_test (json_ctx: &json_ctx, align1: 1, align2: 3, len1: hlen + 1, len2: klen, fail: 0); |
| 386 | do_test (json_ctx: &json_ctx, align1: 0, align2: 9, len1: hlen + 1, len2: klen, fail: 1); |
| 387 | |
| 388 | do_test (json_ctx: &json_ctx, align1: getpagesize () - 15, align2: 9, len1: hlen, len2: klen, fail: 1); |
| 389 | if (hlen < 64) |
| 390 | { |
| 391 | hlen += 8; |
| 392 | } |
| 393 | else |
| 394 | { |
| 395 | hlen += 32; |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | for (size_t hlen = 256; hlen <= 65536; hlen *= 2) |
| 400 | for (size_t klen = 4; klen <= 256; klen *= 2) |
| 401 | { |
| 402 | do_test (json_ctx: &json_ctx, align1: 1, align2: 11, len1: hlen, len2: klen, fail: 0); |
| 403 | do_test (json_ctx: &json_ctx, align1: 14, align2: 5, len1: hlen, len2: klen, fail: 1); |
| 404 | |
| 405 | do_test (json_ctx: &json_ctx, align1: 1, align2: 11, len1: hlen + 1, len2: klen + 1, fail: 0); |
| 406 | do_test (json_ctx: &json_ctx, align1: 14, align2: 5, len1: hlen + 1, len2: klen + 1, fail: 1); |
| 407 | |
| 408 | do_test (json_ctx: &json_ctx, align1: 1, align2: 11, len1: hlen + 1, len2: klen, fail: 0); |
| 409 | do_test (json_ctx: &json_ctx, align1: 14, align2: 5, len1: hlen + 1, len2: klen, fail: 1); |
| 410 | |
| 411 | do_test (json_ctx: &json_ctx, align1: getpagesize () - 15, align2: 5, len1: hlen + 1, len2: klen, fail: 1); |
| 412 | } |
| 413 | |
| 414 | test_hard_needle (json_ctx: &json_ctx, ne_len: 64, hs_len: 65536); |
| 415 | test_hard_needle (json_ctx: &json_ctx, ne_len: 256, hs_len: 65536); |
| 416 | test_hard_needle (json_ctx: &json_ctx, ne_len: 1024, hs_len: 65536); |
| 417 | |
| 418 | json_array_end (ctx: &json_ctx); |
| 419 | json_attr_object_end (ctx: &json_ctx); |
| 420 | json_attr_object_end (ctx: &json_ctx); |
| 421 | json_document_end (ctx: &json_ctx); |
| 422 | |
| 423 | return ret; |
| 424 | } |
| 425 | |
| 426 | #include <support/test-driver.c> |
| 427 | |