1 | /* Extended regular expression matching and search library. |
2 | Copyright (C) 2002-2024 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | static void re_string_construct_common (const char *str, Idx len, |
21 | re_string_t *pstr, |
22 | RE_TRANSLATE_TYPE trans, bool icase, |
23 | const re_dfa_t *dfa); |
24 | static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa, |
25 | const re_node_set *nodes, |
26 | re_hashval_t hash); |
27 | static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa, |
28 | const re_node_set *nodes, |
29 | unsigned int context, |
30 | re_hashval_t hash); |
31 | static reg_errcode_t re_string_realloc_buffers (re_string_t *pstr, |
32 | Idx new_buf_len); |
33 | #ifdef RE_ENABLE_I18N |
34 | static void build_wcs_buffer (re_string_t *pstr); |
35 | static reg_errcode_t build_wcs_upper_buffer (re_string_t *pstr); |
36 | #endif /* RE_ENABLE_I18N */ |
37 | static void build_upper_buffer (re_string_t *pstr); |
38 | static void re_string_translate_buffer (re_string_t *pstr); |
39 | static unsigned int re_string_context_at (const re_string_t *input, Idx idx, |
40 | int eflags) __attribute__ ((pure)); |
41 | |
42 | /* Functions for string operation. */ |
43 | |
44 | /* This function allocate the buffers. It is necessary to call |
45 | re_string_reconstruct before using the object. */ |
46 | |
47 | static reg_errcode_t |
48 | __attribute_warn_unused_result__ |
49 | re_string_allocate (re_string_t *pstr, const char *str, Idx len, Idx init_len, |
50 | RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa) |
51 | { |
52 | reg_errcode_t ret; |
53 | Idx init_buf_len; |
54 | |
55 | /* Ensure at least one character fits into the buffers. */ |
56 | if (init_len < dfa->mb_cur_max) |
57 | init_len = dfa->mb_cur_max; |
58 | init_buf_len = (len + 1 < init_len) ? len + 1: init_len; |
59 | re_string_construct_common (str, len, pstr, trans, icase, dfa); |
60 | |
61 | ret = re_string_realloc_buffers (pstr, new_buf_len: init_buf_len); |
62 | if (__glibc_unlikely (ret != REG_NOERROR)) |
63 | return ret; |
64 | |
65 | pstr->word_char = dfa->word_char; |
66 | pstr->word_ops_used = dfa->word_ops_used; |
67 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; |
68 | pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len; |
69 | pstr->valid_raw_len = pstr->valid_len; |
70 | return REG_NOERROR; |
71 | } |
72 | |
73 | /* This function allocate the buffers, and initialize them. */ |
74 | |
75 | static reg_errcode_t |
76 | __attribute_warn_unused_result__ |
77 | re_string_construct (re_string_t *pstr, const char *str, Idx len, |
78 | RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa) |
79 | { |
80 | reg_errcode_t ret; |
81 | memset (pstr, '\0', sizeof (re_string_t)); |
82 | re_string_construct_common (str, len, pstr, trans, icase, dfa); |
83 | |
84 | if (len > 0) |
85 | { |
86 | ret = re_string_realloc_buffers (pstr, new_buf_len: len + 1); |
87 | if (__glibc_unlikely (ret != REG_NOERROR)) |
88 | return ret; |
89 | } |
90 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; |
91 | |
92 | if (icase) |
93 | { |
94 | #ifdef RE_ENABLE_I18N |
95 | if (dfa->mb_cur_max > 1) |
96 | { |
97 | while (1) |
98 | { |
99 | ret = build_wcs_upper_buffer (pstr); |
100 | if (__glibc_unlikely (ret != REG_NOERROR)) |
101 | return ret; |
102 | if (pstr->valid_raw_len >= len) |
103 | break; |
104 | if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max) |
105 | break; |
106 | ret = re_string_realloc_buffers (pstr, new_buf_len: pstr->bufs_len * 2); |
107 | if (__glibc_unlikely (ret != REG_NOERROR)) |
108 | return ret; |
109 | } |
110 | } |
111 | else |
112 | #endif /* RE_ENABLE_I18N */ |
113 | build_upper_buffer (pstr); |
114 | } |
115 | else |
116 | { |
117 | #ifdef RE_ENABLE_I18N |
118 | if (dfa->mb_cur_max > 1) |
119 | build_wcs_buffer (pstr); |
120 | else |
121 | #endif /* RE_ENABLE_I18N */ |
122 | { |
123 | if (trans != NULL) |
124 | re_string_translate_buffer (pstr); |
125 | else |
126 | { |
127 | pstr->valid_len = pstr->bufs_len; |
128 | pstr->valid_raw_len = pstr->bufs_len; |
129 | } |
130 | } |
131 | } |
132 | |
133 | return REG_NOERROR; |
134 | } |
135 | |
136 | /* Helper functions for re_string_allocate, and re_string_construct. */ |
137 | |
138 | static reg_errcode_t |
139 | __attribute_warn_unused_result__ |
140 | re_string_realloc_buffers (re_string_t *pstr, Idx new_buf_len) |
141 | { |
142 | #ifdef RE_ENABLE_I18N |
143 | if (pstr->mb_cur_max > 1) |
144 | { |
145 | wint_t *new_wcs; |
146 | |
147 | /* Avoid overflow in realloc. */ |
148 | const size_t max_object_size = MAX (sizeof (wint_t), sizeof (Idx)); |
149 | if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / max_object_size) |
150 | < new_buf_len)) |
151 | return REG_ESPACE; |
152 | |
153 | new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len); |
154 | if (__glibc_unlikely (new_wcs == NULL)) |
155 | return REG_ESPACE; |
156 | pstr->wcs = new_wcs; |
157 | if (pstr->offsets != NULL) |
158 | { |
159 | Idx *new_offsets = re_realloc (pstr->offsets, Idx, new_buf_len); |
160 | if (__glibc_unlikely (new_offsets == NULL)) |
161 | return REG_ESPACE; |
162 | pstr->offsets = new_offsets; |
163 | } |
164 | } |
165 | #endif /* RE_ENABLE_I18N */ |
166 | if (pstr->mbs_allocated) |
167 | { |
168 | unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char, |
169 | new_buf_len); |
170 | if (__glibc_unlikely (new_mbs == NULL)) |
171 | return REG_ESPACE; |
172 | pstr->mbs = new_mbs; |
173 | } |
174 | pstr->bufs_len = new_buf_len; |
175 | return REG_NOERROR; |
176 | } |
177 | |
178 | |
179 | static void |
180 | re_string_construct_common (const char *str, Idx len, re_string_t *pstr, |
181 | RE_TRANSLATE_TYPE trans, bool icase, |
182 | const re_dfa_t *dfa) |
183 | { |
184 | pstr->raw_mbs = (const unsigned char *) str; |
185 | pstr->len = len; |
186 | pstr->raw_len = len; |
187 | pstr->trans = trans; |
188 | pstr->icase = icase; |
189 | pstr->mbs_allocated = (trans != NULL || icase); |
190 | pstr->mb_cur_max = dfa->mb_cur_max; |
191 | pstr->is_utf8 = dfa->is_utf8; |
192 | pstr->map_notascii = dfa->map_notascii; |
193 | pstr->stop = pstr->len; |
194 | pstr->raw_stop = pstr->stop; |
195 | } |
196 | |
197 | #ifdef RE_ENABLE_I18N |
198 | |
199 | /* Build wide character buffer PSTR->WCS. |
200 | If the byte sequence of the string are: |
201 | <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3> |
202 | Then wide character buffer will be: |
203 | <wc1> , WEOF , <wc2> , WEOF , <wc3> |
204 | We use WEOF for padding, they indicate that the position isn't |
205 | a first byte of a multibyte character. |
206 | |
207 | Note that this function assumes PSTR->VALID_LEN elements are already |
208 | built and starts from PSTR->VALID_LEN. */ |
209 | |
210 | static void |
211 | build_wcs_buffer (re_string_t *pstr) |
212 | { |
213 | #ifdef _LIBC |
214 | unsigned char buf[MB_LEN_MAX]; |
215 | DEBUG_ASSERT (MB_LEN_MAX >= pstr->mb_cur_max); |
216 | #else |
217 | unsigned char buf[64]; |
218 | #endif |
219 | mbstate_t prev_st; |
220 | Idx byte_idx, end_idx, remain_len; |
221 | size_t mbclen; |
222 | |
223 | /* Build the buffers from pstr->valid_len to either pstr->len or |
224 | pstr->bufs_len. */ |
225 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
226 | for (byte_idx = pstr->valid_len; byte_idx < end_idx;) |
227 | { |
228 | wchar_t wc; |
229 | const char *p; |
230 | |
231 | remain_len = end_idx - byte_idx; |
232 | prev_st = pstr->cur_state; |
233 | /* Apply the translation if we need. */ |
234 | if (__glibc_unlikely (pstr->trans != NULL)) |
235 | { |
236 | int i, ch; |
237 | |
238 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) |
239 | { |
240 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i]; |
241 | buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch]; |
242 | } |
243 | p = (const char *) buf; |
244 | } |
245 | else |
246 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx; |
247 | mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); |
248 | if (__glibc_unlikely (mbclen == (size_t) -1 || mbclen == 0 |
249 | || (mbclen == (size_t) -2 |
250 | && pstr->bufs_len >= pstr->len))) |
251 | { |
252 | /* We treat these cases as a singlebyte character. */ |
253 | mbclen = 1; |
254 | wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; |
255 | if (__glibc_unlikely (pstr->trans != NULL)) |
256 | wc = pstr->trans[wc]; |
257 | pstr->cur_state = prev_st; |
258 | } |
259 | else if (__glibc_unlikely (mbclen == (size_t) -2)) |
260 | { |
261 | /* The buffer doesn't have enough space, finish to build. */ |
262 | pstr->cur_state = prev_st; |
263 | break; |
264 | } |
265 | |
266 | /* Write wide character and padding. */ |
267 | pstr->wcs[byte_idx++] = wc; |
268 | /* Write paddings. */ |
269 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
270 | pstr->wcs[byte_idx++] = WEOF; |
271 | } |
272 | pstr->valid_len = byte_idx; |
273 | pstr->valid_raw_len = byte_idx; |
274 | } |
275 | |
276 | /* Build wide character buffer PSTR->WCS like build_wcs_buffer, |
277 | but for REG_ICASE. */ |
278 | |
279 | static reg_errcode_t |
280 | __attribute_warn_unused_result__ |
281 | build_wcs_upper_buffer (re_string_t *pstr) |
282 | { |
283 | mbstate_t prev_st; |
284 | Idx src_idx, byte_idx, end_idx, remain_len; |
285 | size_t mbclen; |
286 | #ifdef _LIBC |
287 | char buf[MB_LEN_MAX]; |
288 | DEBUG_ASSERT (pstr->mb_cur_max <= MB_LEN_MAX); |
289 | #else |
290 | char buf[64]; |
291 | #endif |
292 | |
293 | byte_idx = pstr->valid_len; |
294 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
295 | |
296 | /* The following optimization assumes that ASCII characters can be |
297 | mapped to wide characters with a simple cast. */ |
298 | if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed) |
299 | { |
300 | while (byte_idx < end_idx) |
301 | { |
302 | wchar_t wc; |
303 | unsigned char ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; |
304 | |
305 | if (isascii (ch) && mbsinit (&pstr->cur_state)) |
306 | { |
307 | /* The next step uses the assumption that wchar_t is encoded |
308 | ASCII-safe: all ASCII values can be converted like this. */ |
309 | wchar_t wcu = __towupper (ch); |
310 | if (isascii (wcu)) |
311 | { |
312 | pstr->mbs[byte_idx] = wcu; |
313 | pstr->wcs[byte_idx] = wcu; |
314 | byte_idx++; |
315 | continue; |
316 | } |
317 | } |
318 | |
319 | remain_len = end_idx - byte_idx; |
320 | prev_st = pstr->cur_state; |
321 | mbclen = __mbrtowc (&wc, |
322 | ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx |
323 | + byte_idx), remain_len, &pstr->cur_state); |
324 | if (__glibc_likely (0 < mbclen && mbclen < (size_t) -2)) |
325 | { |
326 | wchar_t wcu = __towupper (wc); |
327 | if (wcu != wc) |
328 | { |
329 | size_t mbcdlen; |
330 | |
331 | mbcdlen = __wcrtomb (s: buf, wc: wcu, ps: &prev_st); |
332 | if (__glibc_likely (mbclen == mbcdlen)) |
333 | memcpy (pstr->mbs + byte_idx, buf, mbclen); |
334 | else |
335 | { |
336 | src_idx = byte_idx; |
337 | goto offsets_needed; |
338 | } |
339 | } |
340 | else |
341 | memcpy (pstr->mbs + byte_idx, |
342 | pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen); |
343 | pstr->wcs[byte_idx++] = wcu; |
344 | /* Write paddings. */ |
345 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
346 | pstr->wcs[byte_idx++] = WEOF; |
347 | } |
348 | else if (mbclen == (size_t) -1 || mbclen == 0 |
349 | || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len)) |
350 | { |
351 | /* It is an invalid character, an incomplete character |
352 | at the end of the string, or '\0'. Just use the byte. */ |
353 | pstr->mbs[byte_idx] = ch; |
354 | /* And also cast it to wide char. */ |
355 | pstr->wcs[byte_idx++] = (wchar_t) ch; |
356 | if (__glibc_unlikely (mbclen == (size_t) -1)) |
357 | pstr->cur_state = prev_st; |
358 | } |
359 | else |
360 | { |
361 | /* The buffer doesn't have enough space, finish to build. */ |
362 | pstr->cur_state = prev_st; |
363 | break; |
364 | } |
365 | } |
366 | pstr->valid_len = byte_idx; |
367 | pstr->valid_raw_len = byte_idx; |
368 | return REG_NOERROR; |
369 | } |
370 | else |
371 | for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;) |
372 | { |
373 | wchar_t wc; |
374 | const char *p; |
375 | offsets_needed: |
376 | remain_len = end_idx - byte_idx; |
377 | prev_st = pstr->cur_state; |
378 | if (__glibc_unlikely (pstr->trans != NULL)) |
379 | { |
380 | int i, ch; |
381 | |
382 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) |
383 | { |
384 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i]; |
385 | buf[i] = pstr->trans[ch]; |
386 | } |
387 | p = (const char *) buf; |
388 | } |
389 | else |
390 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx; |
391 | mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); |
392 | if (__glibc_likely (0 < mbclen && mbclen < (size_t) -2)) |
393 | { |
394 | wchar_t wcu = __towupper (wc); |
395 | if (wcu != wc) |
396 | { |
397 | size_t mbcdlen; |
398 | |
399 | mbcdlen = __wcrtomb (s: (char *) buf, wc: wcu, ps: &prev_st); |
400 | if (__glibc_likely (mbclen == mbcdlen)) |
401 | memcpy (pstr->mbs + byte_idx, buf, mbclen); |
402 | else if (mbcdlen != (size_t) -1) |
403 | { |
404 | size_t i; |
405 | |
406 | if (byte_idx + mbcdlen > pstr->bufs_len) |
407 | { |
408 | pstr->cur_state = prev_st; |
409 | break; |
410 | } |
411 | |
412 | if (pstr->offsets == NULL) |
413 | { |
414 | pstr->offsets = re_malloc (Idx, pstr->bufs_len); |
415 | |
416 | if (pstr->offsets == NULL) |
417 | return REG_ESPACE; |
418 | } |
419 | if (!pstr->offsets_needed) |
420 | { |
421 | for (i = 0; i < (size_t) byte_idx; ++i) |
422 | pstr->offsets[i] = i; |
423 | pstr->offsets_needed = 1; |
424 | } |
425 | |
426 | memcpy (pstr->mbs + byte_idx, buf, mbcdlen); |
427 | pstr->wcs[byte_idx] = wcu; |
428 | pstr->offsets[byte_idx] = src_idx; |
429 | for (i = 1; i < mbcdlen; ++i) |
430 | { |
431 | pstr->offsets[byte_idx + i] |
432 | = src_idx + (i < mbclen ? i : mbclen - 1); |
433 | pstr->wcs[byte_idx + i] = WEOF; |
434 | } |
435 | pstr->len += mbcdlen - mbclen; |
436 | if (pstr->raw_stop > src_idx) |
437 | pstr->stop += mbcdlen - mbclen; |
438 | end_idx = (pstr->bufs_len > pstr->len) |
439 | ? pstr->len : pstr->bufs_len; |
440 | byte_idx += mbcdlen; |
441 | src_idx += mbclen; |
442 | continue; |
443 | } |
444 | else |
445 | memcpy (pstr->mbs + byte_idx, p, mbclen); |
446 | } |
447 | else |
448 | memcpy (pstr->mbs + byte_idx, p, mbclen); |
449 | |
450 | if (__glibc_unlikely (pstr->offsets_needed != 0)) |
451 | { |
452 | size_t i; |
453 | for (i = 0; i < mbclen; ++i) |
454 | pstr->offsets[byte_idx + i] = src_idx + i; |
455 | } |
456 | src_idx += mbclen; |
457 | |
458 | pstr->wcs[byte_idx++] = wcu; |
459 | /* Write paddings. */ |
460 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
461 | pstr->wcs[byte_idx++] = WEOF; |
462 | } |
463 | else if (mbclen == (size_t) -1 || mbclen == 0 |
464 | || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len)) |
465 | { |
466 | /* It is an invalid character or '\0'. Just use the byte. */ |
467 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx]; |
468 | |
469 | if (__glibc_unlikely (pstr->trans != NULL)) |
470 | ch = pstr->trans [ch]; |
471 | pstr->mbs[byte_idx] = ch; |
472 | |
473 | if (__glibc_unlikely (pstr->offsets_needed != 0)) |
474 | pstr->offsets[byte_idx] = src_idx; |
475 | ++src_idx; |
476 | |
477 | /* And also cast it to wide char. */ |
478 | pstr->wcs[byte_idx++] = (wchar_t) ch; |
479 | if (__glibc_unlikely (mbclen == (size_t) -1)) |
480 | pstr->cur_state = prev_st; |
481 | } |
482 | else |
483 | { |
484 | /* The buffer doesn't have enough space, finish to build. */ |
485 | pstr->cur_state = prev_st; |
486 | break; |
487 | } |
488 | } |
489 | pstr->valid_len = byte_idx; |
490 | pstr->valid_raw_len = src_idx; |
491 | return REG_NOERROR; |
492 | } |
493 | |
494 | /* Skip characters until the index becomes greater than NEW_RAW_IDX. |
495 | Return the index. */ |
496 | |
497 | static Idx |
498 | re_string_skip_chars (re_string_t *pstr, Idx new_raw_idx, wint_t *last_wc) |
499 | { |
500 | mbstate_t prev_st; |
501 | Idx rawbuf_idx; |
502 | size_t mbclen; |
503 | wint_t wc = WEOF; |
504 | |
505 | /* Skip the characters which are not necessary to check. */ |
506 | for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len; |
507 | rawbuf_idx < new_raw_idx;) |
508 | { |
509 | wchar_t wc2; |
510 | Idx remain_len = pstr->raw_len - rawbuf_idx; |
511 | prev_st = pstr->cur_state; |
512 | mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx, |
513 | remain_len, &pstr->cur_state); |
514 | if (__glibc_unlikely (mbclen == (size_t) -2 || mbclen == (size_t) -1 |
515 | || mbclen == 0)) |
516 | { |
517 | /* We treat these cases as a single byte character. */ |
518 | if (mbclen == 0 || remain_len == 0) |
519 | wc = L'\0'; |
520 | else |
521 | wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx); |
522 | mbclen = 1; |
523 | pstr->cur_state = prev_st; |
524 | } |
525 | else |
526 | wc = wc2; |
527 | /* Then proceed the next character. */ |
528 | rawbuf_idx += mbclen; |
529 | } |
530 | *last_wc = wc; |
531 | return rawbuf_idx; |
532 | } |
533 | #endif /* RE_ENABLE_I18N */ |
534 | |
535 | /* Build the buffer PSTR->MBS, and apply the translation if we need. |
536 | This function is used in case of REG_ICASE. */ |
537 | |
538 | static void |
539 | build_upper_buffer (re_string_t *pstr) |
540 | { |
541 | Idx char_idx, end_idx; |
542 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
543 | |
544 | for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx) |
545 | { |
546 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx]; |
547 | if (__glibc_unlikely (pstr->trans != NULL)) |
548 | ch = pstr->trans[ch]; |
549 | pstr->mbs[char_idx] = toupper (ch); |
550 | } |
551 | pstr->valid_len = char_idx; |
552 | pstr->valid_raw_len = char_idx; |
553 | } |
554 | |
555 | /* Apply TRANS to the buffer in PSTR. */ |
556 | |
557 | static void |
558 | re_string_translate_buffer (re_string_t *pstr) |
559 | { |
560 | Idx buf_idx, end_idx; |
561 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
562 | |
563 | for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx) |
564 | { |
565 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx]; |
566 | pstr->mbs[buf_idx] = pstr->trans[ch]; |
567 | } |
568 | |
569 | pstr->valid_len = buf_idx; |
570 | pstr->valid_raw_len = buf_idx; |
571 | } |
572 | |
573 | /* This function re-construct the buffers. |
574 | Concretely, convert to wide character in case of pstr->mb_cur_max > 1, |
575 | convert to upper case in case of REG_ICASE, apply translation. */ |
576 | |
577 | static reg_errcode_t |
578 | __attribute_warn_unused_result__ |
579 | re_string_reconstruct (re_string_t *pstr, Idx idx, int eflags) |
580 | { |
581 | Idx offset; |
582 | |
583 | if (__glibc_unlikely (pstr->raw_mbs_idx <= idx)) |
584 | offset = idx - pstr->raw_mbs_idx; |
585 | else |
586 | { |
587 | /* Reset buffer. */ |
588 | #ifdef RE_ENABLE_I18N |
589 | if (pstr->mb_cur_max > 1) |
590 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); |
591 | #endif /* RE_ENABLE_I18N */ |
592 | pstr->len = pstr->raw_len; |
593 | pstr->stop = pstr->raw_stop; |
594 | pstr->valid_len = 0; |
595 | pstr->raw_mbs_idx = 0; |
596 | pstr->valid_raw_len = 0; |
597 | pstr->offsets_needed = 0; |
598 | pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF |
599 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF); |
600 | if (!pstr->mbs_allocated) |
601 | pstr->mbs = (unsigned char *) pstr->raw_mbs; |
602 | offset = idx; |
603 | } |
604 | |
605 | if (__glibc_likely (offset != 0)) |
606 | { |
607 | /* Should the already checked characters be kept? */ |
608 | if (__glibc_likely (offset < pstr->valid_raw_len)) |
609 | { |
610 | /* Yes, move them to the front of the buffer. */ |
611 | #ifdef RE_ENABLE_I18N |
612 | if (__glibc_unlikely (pstr->offsets_needed)) |
613 | { |
614 | Idx low = 0, high = pstr->valid_len, mid; |
615 | do |
616 | { |
617 | mid = (high + low) / 2; |
618 | if (pstr->offsets[mid] > offset) |
619 | high = mid; |
620 | else if (pstr->offsets[mid] < offset) |
621 | low = mid + 1; |
622 | else |
623 | break; |
624 | } |
625 | while (low < high); |
626 | if (pstr->offsets[mid] < offset) |
627 | ++mid; |
628 | pstr->tip_context = re_string_context_at (input: pstr, idx: mid - 1, |
629 | eflags); |
630 | /* This can be quite complicated, so handle specially |
631 | only the common and easy case where the character with |
632 | different length representation of lower and upper |
633 | case is present at or after offset. */ |
634 | if (pstr->valid_len > offset |
635 | && mid == offset && pstr->offsets[mid] == offset) |
636 | { |
637 | memmove (pstr->wcs, pstr->wcs + offset, |
638 | (pstr->valid_len - offset) * sizeof (wint_t)); |
639 | memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset); |
640 | pstr->valid_len -= offset; |
641 | pstr->valid_raw_len -= offset; |
642 | for (low = 0; low < pstr->valid_len; low++) |
643 | pstr->offsets[low] = pstr->offsets[low + offset] - offset; |
644 | } |
645 | else |
646 | { |
647 | /* Otherwise, just find out how long the partial multibyte |
648 | character at offset is and fill it with WEOF/255. */ |
649 | pstr->len = pstr->raw_len - idx + offset; |
650 | pstr->stop = pstr->raw_stop - idx + offset; |
651 | pstr->offsets_needed = 0; |
652 | while (mid > 0 && pstr->offsets[mid - 1] == offset) |
653 | --mid; |
654 | while (mid < pstr->valid_len) |
655 | if (pstr->wcs[mid] != WEOF) |
656 | break; |
657 | else |
658 | ++mid; |
659 | if (mid == pstr->valid_len) |
660 | pstr->valid_len = 0; |
661 | else |
662 | { |
663 | pstr->valid_len = pstr->offsets[mid] - offset; |
664 | if (pstr->valid_len) |
665 | { |
666 | for (low = 0; low < pstr->valid_len; ++low) |
667 | pstr->wcs[low] = WEOF; |
668 | memset (pstr->mbs, 255, pstr->valid_len); |
669 | } |
670 | } |
671 | pstr->valid_raw_len = pstr->valid_len; |
672 | } |
673 | } |
674 | else |
675 | #endif |
676 | { |
677 | pstr->tip_context = re_string_context_at (input: pstr, idx: offset - 1, |
678 | eflags); |
679 | #ifdef RE_ENABLE_I18N |
680 | if (pstr->mb_cur_max > 1) |
681 | memmove (pstr->wcs, pstr->wcs + offset, |
682 | (pstr->valid_len - offset) * sizeof (wint_t)); |
683 | #endif /* RE_ENABLE_I18N */ |
684 | if (__glibc_unlikely (pstr->mbs_allocated)) |
685 | memmove (pstr->mbs, pstr->mbs + offset, |
686 | pstr->valid_len - offset); |
687 | pstr->valid_len -= offset; |
688 | pstr->valid_raw_len -= offset; |
689 | DEBUG_ASSERT (pstr->valid_len > 0); |
690 | } |
691 | } |
692 | else |
693 | { |
694 | #ifdef RE_ENABLE_I18N |
695 | /* No, skip all characters until IDX. */ |
696 | Idx prev_valid_len = pstr->valid_len; |
697 | |
698 | if (__glibc_unlikely (pstr->offsets_needed)) |
699 | { |
700 | pstr->len = pstr->raw_len - idx + offset; |
701 | pstr->stop = pstr->raw_stop - idx + offset; |
702 | pstr->offsets_needed = 0; |
703 | } |
704 | #endif |
705 | pstr->valid_len = 0; |
706 | #ifdef RE_ENABLE_I18N |
707 | if (pstr->mb_cur_max > 1) |
708 | { |
709 | Idx wcs_idx; |
710 | wint_t wc = WEOF; |
711 | |
712 | if (pstr->is_utf8) |
713 | { |
714 | const unsigned char *raw, *p, *end; |
715 | |
716 | /* Special case UTF-8. Multi-byte chars start with any |
717 | byte other than 0x80 - 0xbf. */ |
718 | raw = pstr->raw_mbs + pstr->raw_mbs_idx; |
719 | end = raw + (offset - pstr->mb_cur_max); |
720 | if (end < pstr->raw_mbs) |
721 | end = pstr->raw_mbs; |
722 | p = raw + offset - 1; |
723 | #ifdef _LIBC |
724 | /* We know the wchar_t encoding is UCS4, so for the simple |
725 | case, ASCII characters, skip the conversion step. */ |
726 | if (isascii (*p) && __glibc_likely (pstr->trans == NULL)) |
727 | { |
728 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); |
729 | /* pstr->valid_len = 0; */ |
730 | wc = (wchar_t) *p; |
731 | } |
732 | else |
733 | #endif |
734 | for (; p >= end; --p) |
735 | if ((*p & 0xc0) != 0x80) |
736 | { |
737 | mbstate_t cur_state; |
738 | wchar_t wc2; |
739 | Idx mlen = raw + pstr->len - p; |
740 | unsigned char buf[6]; |
741 | size_t mbclen; |
742 | |
743 | const unsigned char *pp = p; |
744 | if (__glibc_unlikely (pstr->trans != NULL)) |
745 | { |
746 | int i = mlen < 6 ? mlen : 6; |
747 | while (--i >= 0) |
748 | buf[i] = pstr->trans[p[i]]; |
749 | pp = buf; |
750 | } |
751 | /* XXX Don't use mbrtowc, we know which conversion |
752 | to use (UTF-8 -> UCS4). */ |
753 | memset (&cur_state, 0, sizeof (cur_state)); |
754 | mbclen = __mbrtowc (&wc2, (const char *) pp, mlen, |
755 | &cur_state); |
756 | if (raw + offset - p <= mbclen |
757 | && mbclen < (size_t) -2) |
758 | { |
759 | memset (&pstr->cur_state, '\0', |
760 | sizeof (mbstate_t)); |
761 | pstr->valid_len = mbclen - (raw + offset - p); |
762 | wc = wc2; |
763 | } |
764 | break; |
765 | } |
766 | } |
767 | |
768 | if (wc == WEOF) |
769 | pstr->valid_len = re_string_skip_chars (pstr, new_raw_idx: idx, last_wc: &wc) - idx; |
770 | if (wc == WEOF) |
771 | pstr->tip_context |
772 | = re_string_context_at (input: pstr, idx: prev_valid_len - 1, eflags); |
773 | else |
774 | pstr->tip_context = ((__glibc_unlikely (pstr->word_ops_used != 0) |
775 | && IS_WIDE_WORD_CHAR (wc)) |
776 | ? CONTEXT_WORD |
777 | : ((IS_WIDE_NEWLINE (wc) |
778 | && pstr->newline_anchor) |
779 | ? CONTEXT_NEWLINE : 0)); |
780 | if (__glibc_unlikely (pstr->valid_len)) |
781 | { |
782 | for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx) |
783 | pstr->wcs[wcs_idx] = WEOF; |
784 | if (pstr->mbs_allocated) |
785 | memset (pstr->mbs, 255, pstr->valid_len); |
786 | } |
787 | pstr->valid_raw_len = pstr->valid_len; |
788 | } |
789 | else |
790 | #endif /* RE_ENABLE_I18N */ |
791 | { |
792 | int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1]; |
793 | pstr->valid_raw_len = 0; |
794 | if (pstr->trans) |
795 | c = pstr->trans[c]; |
796 | pstr->tip_context = (bitset_contain (set: pstr->word_char, i: c) |
797 | ? CONTEXT_WORD |
798 | : ((IS_NEWLINE (c) && pstr->newline_anchor) |
799 | ? CONTEXT_NEWLINE : 0)); |
800 | } |
801 | } |
802 | if (!__glibc_unlikely (pstr->mbs_allocated)) |
803 | pstr->mbs += offset; |
804 | } |
805 | pstr->raw_mbs_idx = idx; |
806 | pstr->len -= offset; |
807 | pstr->stop -= offset; |
808 | |
809 | /* Then build the buffers. */ |
810 | #ifdef RE_ENABLE_I18N |
811 | if (pstr->mb_cur_max > 1) |
812 | { |
813 | if (pstr->icase) |
814 | { |
815 | reg_errcode_t ret = build_wcs_upper_buffer (pstr); |
816 | if (__glibc_unlikely (ret != REG_NOERROR)) |
817 | return ret; |
818 | } |
819 | else |
820 | build_wcs_buffer (pstr); |
821 | } |
822 | else |
823 | #endif /* RE_ENABLE_I18N */ |
824 | if (__glibc_unlikely (pstr->mbs_allocated)) |
825 | { |
826 | if (pstr->icase) |
827 | build_upper_buffer (pstr); |
828 | else if (pstr->trans != NULL) |
829 | re_string_translate_buffer (pstr); |
830 | } |
831 | else |
832 | pstr->valid_len = pstr->len; |
833 | |
834 | pstr->cur_idx = 0; |
835 | return REG_NOERROR; |
836 | } |
837 | |
838 | static unsigned char |
839 | __attribute__ ((pure)) |
840 | re_string_peek_byte_case (const re_string_t *pstr, Idx idx) |
841 | { |
842 | int ch; |
843 | Idx off; |
844 | |
845 | /* Handle the common (easiest) cases first. */ |
846 | if (__glibc_likely (!pstr->mbs_allocated)) |
847 | return re_string_peek_byte (pstr, idx); |
848 | |
849 | #ifdef RE_ENABLE_I18N |
850 | if (pstr->mb_cur_max > 1 |
851 | && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx)) |
852 | return re_string_peek_byte (pstr, idx); |
853 | #endif |
854 | |
855 | off = pstr->cur_idx + idx; |
856 | #ifdef RE_ENABLE_I18N |
857 | if (pstr->offsets_needed) |
858 | off = pstr->offsets[off]; |
859 | #endif |
860 | |
861 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; |
862 | |
863 | #ifdef RE_ENABLE_I18N |
864 | /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I |
865 | this function returns CAPITAL LETTER I instead of first byte of |
866 | DOTLESS SMALL LETTER I. The latter would confuse the parser, |
867 | since peek_byte_case doesn't advance cur_idx in any way. */ |
868 | if (pstr->offsets_needed && !isascii (ch)) |
869 | return re_string_peek_byte (pstr, idx); |
870 | #endif |
871 | |
872 | return ch; |
873 | } |
874 | |
875 | static unsigned char |
876 | re_string_fetch_byte_case (re_string_t *pstr) |
877 | { |
878 | if (__glibc_likely (!pstr->mbs_allocated)) |
879 | return re_string_fetch_byte (pstr); |
880 | |
881 | #ifdef RE_ENABLE_I18N |
882 | if (pstr->offsets_needed) |
883 | { |
884 | Idx off; |
885 | int ch; |
886 | |
887 | /* For tr_TR.UTF-8 [[:islower:]] there is |
888 | [[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip |
889 | in that case the whole multi-byte character and return |
890 | the original letter. On the other side, with |
891 | [[: DOTLESS SMALL LETTER I return [[:I, as doing |
892 | anything else would complicate things too much. */ |
893 | |
894 | if (!re_string_first_byte (pstr, pstr->cur_idx)) |
895 | return re_string_fetch_byte (pstr); |
896 | |
897 | off = pstr->offsets[pstr->cur_idx]; |
898 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; |
899 | |
900 | if (! isascii (ch)) |
901 | return re_string_fetch_byte (pstr); |
902 | |
903 | re_string_skip_bytes (pstr, |
904 | re_string_char_size_at (pstr, pstr->cur_idx)); |
905 | return ch; |
906 | } |
907 | #endif |
908 | |
909 | return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++]; |
910 | } |
911 | |
912 | static void |
913 | re_string_destruct (re_string_t *pstr) |
914 | { |
915 | #ifdef RE_ENABLE_I18N |
916 | re_free (pstr->wcs); |
917 | re_free (pstr->offsets); |
918 | #endif /* RE_ENABLE_I18N */ |
919 | if (pstr->mbs_allocated) |
920 | re_free (pstr->mbs); |
921 | } |
922 | |
923 | /* Return the context at IDX in INPUT. */ |
924 | |
925 | static unsigned int |
926 | re_string_context_at (const re_string_t *input, Idx idx, int eflags) |
927 | { |
928 | int c; |
929 | if (__glibc_unlikely (idx < 0)) |
930 | /* In this case, we use the value stored in input->tip_context, |
931 | since we can't know the character in input->mbs[-1] here. */ |
932 | return input->tip_context; |
933 | if (__glibc_unlikely (idx == input->len)) |
934 | return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF |
935 | : CONTEXT_NEWLINE | CONTEXT_ENDBUF); |
936 | #ifdef RE_ENABLE_I18N |
937 | if (input->mb_cur_max > 1) |
938 | { |
939 | wint_t wc; |
940 | Idx wc_idx = idx; |
941 | while(input->wcs[wc_idx] == WEOF) |
942 | { |
943 | DEBUG_ASSERT (wc_idx >= 0); |
944 | --wc_idx; |
945 | if (wc_idx < 0) |
946 | return input->tip_context; |
947 | } |
948 | wc = input->wcs[wc_idx]; |
949 | if (__glibc_unlikely (input->word_ops_used != 0) |
950 | && IS_WIDE_WORD_CHAR (wc)) |
951 | return CONTEXT_WORD; |
952 | return (IS_WIDE_NEWLINE (wc) && input->newline_anchor |
953 | ? CONTEXT_NEWLINE : 0); |
954 | } |
955 | else |
956 | #endif |
957 | { |
958 | c = re_string_byte_at (input, idx); |
959 | if (bitset_contain (set: input->word_char, i: c)) |
960 | return CONTEXT_WORD; |
961 | return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0; |
962 | } |
963 | } |
964 | |
965 | /* Functions for set operation. */ |
966 | |
967 | static reg_errcode_t |
968 | __attribute_warn_unused_result__ |
969 | re_node_set_alloc (re_node_set *set, Idx size) |
970 | { |
971 | set->alloc = size; |
972 | set->nelem = 0; |
973 | set->elems = re_malloc (Idx, size); |
974 | if (__glibc_unlikely (set->elems == NULL) |
975 | && (MALLOC_0_IS_NONNULL || size != 0)) |
976 | return REG_ESPACE; |
977 | return REG_NOERROR; |
978 | } |
979 | |
980 | static reg_errcode_t |
981 | __attribute_warn_unused_result__ |
982 | re_node_set_init_1 (re_node_set *set, Idx elem) |
983 | { |
984 | set->alloc = 1; |
985 | set->nelem = 1; |
986 | set->elems = re_malloc (Idx, 1); |
987 | if (__glibc_unlikely (set->elems == NULL)) |
988 | { |
989 | set->alloc = set->nelem = 0; |
990 | return REG_ESPACE; |
991 | } |
992 | set->elems[0] = elem; |
993 | return REG_NOERROR; |
994 | } |
995 | |
996 | static reg_errcode_t |
997 | __attribute_warn_unused_result__ |
998 | re_node_set_init_2 (re_node_set *set, Idx elem1, Idx elem2) |
999 | { |
1000 | set->alloc = 2; |
1001 | set->elems = re_malloc (Idx, 2); |
1002 | if (__glibc_unlikely (set->elems == NULL)) |
1003 | return REG_ESPACE; |
1004 | if (elem1 == elem2) |
1005 | { |
1006 | set->nelem = 1; |
1007 | set->elems[0] = elem1; |
1008 | } |
1009 | else |
1010 | { |
1011 | set->nelem = 2; |
1012 | if (elem1 < elem2) |
1013 | { |
1014 | set->elems[0] = elem1; |
1015 | set->elems[1] = elem2; |
1016 | } |
1017 | else |
1018 | { |
1019 | set->elems[0] = elem2; |
1020 | set->elems[1] = elem1; |
1021 | } |
1022 | } |
1023 | return REG_NOERROR; |
1024 | } |
1025 | |
1026 | static reg_errcode_t |
1027 | __attribute_warn_unused_result__ |
1028 | re_node_set_init_copy (re_node_set *dest, const re_node_set *src) |
1029 | { |
1030 | dest->nelem = src->nelem; |
1031 | if (src->nelem > 0) |
1032 | { |
1033 | dest->alloc = dest->nelem; |
1034 | dest->elems = re_malloc (Idx, dest->alloc); |
1035 | if (__glibc_unlikely (dest->elems == NULL)) |
1036 | { |
1037 | dest->alloc = dest->nelem = 0; |
1038 | return REG_ESPACE; |
1039 | } |
1040 | memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx)); |
1041 | } |
1042 | else |
1043 | re_node_set_init_empty (dest); |
1044 | return REG_NOERROR; |
1045 | } |
1046 | |
1047 | /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to |
1048 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. |
1049 | Note: We assume dest->elems is NULL, when dest->alloc is 0. */ |
1050 | |
1051 | static reg_errcode_t |
1052 | __attribute_warn_unused_result__ |
1053 | re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1, |
1054 | const re_node_set *src2) |
1055 | { |
1056 | Idx i1, i2, is, id, delta, sbase; |
1057 | if (src1->nelem == 0 || src2->nelem == 0) |
1058 | return REG_NOERROR; |
1059 | |
1060 | /* We need dest->nelem + 2 * elems_in_intersection; this is a |
1061 | conservative estimate. */ |
1062 | if (src1->nelem + src2->nelem + dest->nelem > dest->alloc) |
1063 | { |
1064 | Idx new_alloc = src1->nelem + src2->nelem + dest->alloc; |
1065 | Idx *new_elems = re_realloc (dest->elems, Idx, new_alloc); |
1066 | if (__glibc_unlikely (new_elems == NULL)) |
1067 | return REG_ESPACE; |
1068 | dest->elems = new_elems; |
1069 | dest->alloc = new_alloc; |
1070 | } |
1071 | |
1072 | /* Find the items in the intersection of SRC1 and SRC2, and copy |
1073 | into the top of DEST those that are not already in DEST itself. */ |
1074 | sbase = dest->nelem + src1->nelem + src2->nelem; |
1075 | i1 = src1->nelem - 1; |
1076 | i2 = src2->nelem - 1; |
1077 | id = dest->nelem - 1; |
1078 | for (;;) |
1079 | { |
1080 | if (src1->elems[i1] == src2->elems[i2]) |
1081 | { |
1082 | /* Try to find the item in DEST. Maybe we could binary search? */ |
1083 | while (id >= 0 && dest->elems[id] > src1->elems[i1]) |
1084 | --id; |
1085 | |
1086 | if (id < 0 || dest->elems[id] != src1->elems[i1]) |
1087 | dest->elems[--sbase] = src1->elems[i1]; |
1088 | |
1089 | if (--i1 < 0 || --i2 < 0) |
1090 | break; |
1091 | } |
1092 | |
1093 | /* Lower the highest of the two items. */ |
1094 | else if (src1->elems[i1] < src2->elems[i2]) |
1095 | { |
1096 | if (--i2 < 0) |
1097 | break; |
1098 | } |
1099 | else |
1100 | { |
1101 | if (--i1 < 0) |
1102 | break; |
1103 | } |
1104 | } |
1105 | |
1106 | id = dest->nelem - 1; |
1107 | is = dest->nelem + src1->nelem + src2->nelem - 1; |
1108 | delta = is - sbase + 1; |
1109 | |
1110 | /* Now copy. When DELTA becomes zero, the remaining |
1111 | DEST elements are already in place; this is more or |
1112 | less the same loop that is in re_node_set_merge. */ |
1113 | dest->nelem += delta; |
1114 | if (delta > 0 && id >= 0) |
1115 | for (;;) |
1116 | { |
1117 | if (dest->elems[is] > dest->elems[id]) |
1118 | { |
1119 | /* Copy from the top. */ |
1120 | dest->elems[id + delta--] = dest->elems[is--]; |
1121 | if (delta == 0) |
1122 | break; |
1123 | } |
1124 | else |
1125 | { |
1126 | /* Slide from the bottom. */ |
1127 | dest->elems[id + delta] = dest->elems[id]; |
1128 | if (--id < 0) |
1129 | break; |
1130 | } |
1131 | } |
1132 | |
1133 | /* Copy remaining SRC elements. */ |
1134 | memcpy (dest->elems, dest->elems + sbase, delta * sizeof (Idx)); |
1135 | |
1136 | return REG_NOERROR; |
1137 | } |
1138 | |
1139 | /* Calculate the union set of the sets SRC1 and SRC2. And store it to |
1140 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ |
1141 | |
1142 | static reg_errcode_t |
1143 | __attribute_warn_unused_result__ |
1144 | re_node_set_init_union (re_node_set *dest, const re_node_set *src1, |
1145 | const re_node_set *src2) |
1146 | { |
1147 | Idx i1, i2, id; |
1148 | if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0) |
1149 | { |
1150 | dest->alloc = src1->nelem + src2->nelem; |
1151 | dest->elems = re_malloc (Idx, dest->alloc); |
1152 | if (__glibc_unlikely (dest->elems == NULL)) |
1153 | return REG_ESPACE; |
1154 | } |
1155 | else |
1156 | { |
1157 | if (src1 != NULL && src1->nelem > 0) |
1158 | return re_node_set_init_copy (dest, src: src1); |
1159 | else if (src2 != NULL && src2->nelem > 0) |
1160 | return re_node_set_init_copy (dest, src: src2); |
1161 | else |
1162 | re_node_set_init_empty (dest); |
1163 | return REG_NOERROR; |
1164 | } |
1165 | for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;) |
1166 | { |
1167 | if (src1->elems[i1] > src2->elems[i2]) |
1168 | { |
1169 | dest->elems[id++] = src2->elems[i2++]; |
1170 | continue; |
1171 | } |
1172 | if (src1->elems[i1] == src2->elems[i2]) |
1173 | ++i2; |
1174 | dest->elems[id++] = src1->elems[i1++]; |
1175 | } |
1176 | if (i1 < src1->nelem) |
1177 | { |
1178 | memcpy (dest->elems + id, src1->elems + i1, |
1179 | (src1->nelem - i1) * sizeof (Idx)); |
1180 | id += src1->nelem - i1; |
1181 | } |
1182 | else if (i2 < src2->nelem) |
1183 | { |
1184 | memcpy (dest->elems + id, src2->elems + i2, |
1185 | (src2->nelem - i2) * sizeof (Idx)); |
1186 | id += src2->nelem - i2; |
1187 | } |
1188 | dest->nelem = id; |
1189 | return REG_NOERROR; |
1190 | } |
1191 | |
1192 | /* Calculate the union set of the sets DEST and SRC. And store it to |
1193 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ |
1194 | |
1195 | static reg_errcode_t |
1196 | __attribute_warn_unused_result__ |
1197 | re_node_set_merge (re_node_set *dest, const re_node_set *src) |
1198 | { |
1199 | Idx is, id, sbase, delta; |
1200 | if (src == NULL || src->nelem == 0) |
1201 | return REG_NOERROR; |
1202 | if (dest->alloc < 2 * src->nelem + dest->nelem) |
1203 | { |
1204 | Idx new_alloc = 2 * (src->nelem + dest->alloc); |
1205 | Idx *new_buffer = re_realloc (dest->elems, Idx, new_alloc); |
1206 | if (__glibc_unlikely (new_buffer == NULL)) |
1207 | return REG_ESPACE; |
1208 | dest->elems = new_buffer; |
1209 | dest->alloc = new_alloc; |
1210 | } |
1211 | |
1212 | if (__glibc_unlikely (dest->nelem == 0)) |
1213 | { |
1214 | /* Although we already guaranteed above that dest->alloc != 0 and |
1215 | therefore dest->elems != NULL, add a debug assertion to pacify |
1216 | GCC 11.2.1's -fanalyzer. */ |
1217 | DEBUG_ASSERT (dest->elems); |
1218 | dest->nelem = src->nelem; |
1219 | memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx)); |
1220 | return REG_NOERROR; |
1221 | } |
1222 | |
1223 | /* Copy into the top of DEST the items of SRC that are not |
1224 | found in DEST. Maybe we could binary search in DEST? */ |
1225 | for (sbase = dest->nelem + 2 * src->nelem, |
1226 | is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; ) |
1227 | { |
1228 | if (dest->elems[id] == src->elems[is]) |
1229 | is--, id--; |
1230 | else if (dest->elems[id] < src->elems[is]) |
1231 | dest->elems[--sbase] = src->elems[is--]; |
1232 | else /* if (dest->elems[id] > src->elems[is]) */ |
1233 | --id; |
1234 | } |
1235 | |
1236 | if (is >= 0) |
1237 | { |
1238 | /* If DEST is exhausted, the remaining items of SRC must be unique. */ |
1239 | sbase -= is + 1; |
1240 | memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (Idx)); |
1241 | } |
1242 | |
1243 | id = dest->nelem - 1; |
1244 | is = dest->nelem + 2 * src->nelem - 1; |
1245 | delta = is - sbase + 1; |
1246 | if (delta == 0) |
1247 | return REG_NOERROR; |
1248 | |
1249 | /* Now copy. When DELTA becomes zero, the remaining |
1250 | DEST elements are already in place. */ |
1251 | dest->nelem += delta; |
1252 | for (;;) |
1253 | { |
1254 | if (dest->elems[is] > dest->elems[id]) |
1255 | { |
1256 | /* Copy from the top. */ |
1257 | dest->elems[id + delta--] = dest->elems[is--]; |
1258 | if (delta == 0) |
1259 | break; |
1260 | } |
1261 | else |
1262 | { |
1263 | /* Slide from the bottom. */ |
1264 | dest->elems[id + delta] = dest->elems[id]; |
1265 | if (--id < 0) |
1266 | { |
1267 | /* Copy remaining SRC elements. */ |
1268 | memcpy (dest->elems, dest->elems + sbase, |
1269 | delta * sizeof (Idx)); |
1270 | break; |
1271 | } |
1272 | } |
1273 | } |
1274 | |
1275 | return REG_NOERROR; |
1276 | } |
1277 | |
1278 | /* Insert the new element ELEM to the re_node_set* SET. |
1279 | SET should not already have ELEM. |
1280 | Return true if successful. */ |
1281 | |
1282 | static bool |
1283 | __attribute_warn_unused_result__ |
1284 | re_node_set_insert (re_node_set *set, Idx elem) |
1285 | { |
1286 | Idx idx; |
1287 | /* In case the set is empty. */ |
1288 | if (set->alloc == 0) |
1289 | return __glibc_likely (re_node_set_init_1 (set, elem) == REG_NOERROR); |
1290 | |
1291 | if (__glibc_unlikely (set->nelem) == 0) |
1292 | { |
1293 | /* Although we already guaranteed above that set->alloc != 0 and |
1294 | therefore set->elems != NULL, add a debug assertion to pacify |
1295 | GCC 11.2 -fanalyzer. */ |
1296 | DEBUG_ASSERT (set->elems); |
1297 | set->elems[0] = elem; |
1298 | ++set->nelem; |
1299 | return true; |
1300 | } |
1301 | |
1302 | /* Realloc if we need. */ |
1303 | if (set->alloc == set->nelem) |
1304 | { |
1305 | Idx *new_elems; |
1306 | set->alloc = set->alloc * 2; |
1307 | new_elems = re_realloc (set->elems, Idx, set->alloc); |
1308 | if (__glibc_unlikely (new_elems == NULL)) |
1309 | return false; |
1310 | set->elems = new_elems; |
1311 | } |
1312 | |
1313 | /* Move the elements which follows the new element. Test the |
1314 | first element separately to skip a check in the inner loop. */ |
1315 | if (elem < set->elems[0]) |
1316 | { |
1317 | for (idx = set->nelem; idx > 0; idx--) |
1318 | set->elems[idx] = set->elems[idx - 1]; |
1319 | } |
1320 | else |
1321 | { |
1322 | for (idx = set->nelem; set->elems[idx - 1] > elem; idx--) |
1323 | set->elems[idx] = set->elems[idx - 1]; |
1324 | DEBUG_ASSERT (set->elems[idx - 1] < elem); |
1325 | } |
1326 | |
1327 | /* Insert the new element. */ |
1328 | set->elems[idx] = elem; |
1329 | ++set->nelem; |
1330 | return true; |
1331 | } |
1332 | |
1333 | /* Insert the new element ELEM to the re_node_set* SET. |
1334 | SET should not already have any element greater than or equal to ELEM. |
1335 | Return true if successful. */ |
1336 | |
1337 | static bool |
1338 | __attribute_warn_unused_result__ |
1339 | re_node_set_insert_last (re_node_set *set, Idx elem) |
1340 | { |
1341 | /* Realloc if we need. */ |
1342 | if (set->alloc == set->nelem) |
1343 | { |
1344 | Idx *new_elems; |
1345 | set->alloc = (set->alloc + 1) * 2; |
1346 | new_elems = re_realloc (set->elems, Idx, set->alloc); |
1347 | if (__glibc_unlikely (new_elems == NULL)) |
1348 | return false; |
1349 | set->elems = new_elems; |
1350 | } |
1351 | |
1352 | /* Insert the new element. */ |
1353 | set->elems[set->nelem++] = elem; |
1354 | return true; |
1355 | } |
1356 | |
1357 | /* Compare two node sets SET1 and SET2. |
1358 | Return true if SET1 and SET2 are equivalent. */ |
1359 | |
1360 | static bool |
1361 | __attribute__ ((pure)) |
1362 | re_node_set_compare (const re_node_set *set1, const re_node_set *set2) |
1363 | { |
1364 | Idx i; |
1365 | if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem) |
1366 | return false; |
1367 | for (i = set1->nelem ; --i >= 0 ; ) |
1368 | if (set1->elems[i] != set2->elems[i]) |
1369 | return false; |
1370 | return true; |
1371 | } |
1372 | |
1373 | /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */ |
1374 | |
1375 | static Idx |
1376 | __attribute__ ((pure)) |
1377 | re_node_set_contains (const re_node_set *set, Idx elem) |
1378 | { |
1379 | __re_size_t idx, right, mid; |
1380 | if (set->nelem <= 0) |
1381 | return 0; |
1382 | |
1383 | /* Binary search the element. */ |
1384 | idx = 0; |
1385 | right = set->nelem - 1; |
1386 | while (idx < right) |
1387 | { |
1388 | mid = (idx + right) / 2; |
1389 | if (set->elems[mid] < elem) |
1390 | idx = mid + 1; |
1391 | else |
1392 | right = mid; |
1393 | } |
1394 | return set->elems[idx] == elem ? idx + 1 : 0; |
1395 | } |
1396 | |
1397 | static void |
1398 | re_node_set_remove_at (re_node_set *set, Idx idx) |
1399 | { |
1400 | if (idx < 0 || idx >= set->nelem) |
1401 | return; |
1402 | --set->nelem; |
1403 | for (; idx < set->nelem; idx++) |
1404 | set->elems[idx] = set->elems[idx + 1]; |
1405 | } |
1406 | |
1407 | |
1408 | /* Add the token TOKEN to dfa->nodes, and return the index of the token. |
1409 | Or return -1 if an error occurred. */ |
1410 | |
1411 | static Idx |
1412 | re_dfa_add_node (re_dfa_t *dfa, re_token_t token) |
1413 | { |
1414 | if (__glibc_unlikely (dfa->nodes_len >= dfa->nodes_alloc)) |
1415 | { |
1416 | size_t new_nodes_alloc = dfa->nodes_alloc * 2; |
1417 | Idx *new_nexts, *new_indices; |
1418 | re_node_set *new_edests, *new_eclosures; |
1419 | re_token_t *new_nodes; |
1420 | |
1421 | /* Avoid overflows in realloc. */ |
1422 | const size_t max_object_size = MAX (sizeof (re_token_t), |
1423 | MAX (sizeof (re_node_set), |
1424 | sizeof (Idx))); |
1425 | if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / max_object_size) |
1426 | < new_nodes_alloc)) |
1427 | return -1; |
1428 | |
1429 | new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc); |
1430 | if (__glibc_unlikely (new_nodes == NULL)) |
1431 | return -1; |
1432 | dfa->nodes = new_nodes; |
1433 | new_nexts = re_realloc (dfa->nexts, Idx, new_nodes_alloc); |
1434 | new_indices = re_realloc (dfa->org_indices, Idx, new_nodes_alloc); |
1435 | new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc); |
1436 | new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc); |
1437 | if (__glibc_unlikely (new_nexts == NULL || new_indices == NULL |
1438 | || new_edests == NULL || new_eclosures == NULL)) |
1439 | { |
1440 | re_free (new_nexts); |
1441 | re_free (new_indices); |
1442 | re_free (new_edests); |
1443 | re_free (new_eclosures); |
1444 | return -1; |
1445 | } |
1446 | dfa->nexts = new_nexts; |
1447 | dfa->org_indices = new_indices; |
1448 | dfa->edests = new_edests; |
1449 | dfa->eclosures = new_eclosures; |
1450 | dfa->nodes_alloc = new_nodes_alloc; |
1451 | } |
1452 | dfa->nodes[dfa->nodes_len] = token; |
1453 | dfa->nodes[dfa->nodes_len].constraint = 0; |
1454 | #ifdef RE_ENABLE_I18N |
1455 | dfa->nodes[dfa->nodes_len].accept_mb = |
1456 | ((token.type == OP_PERIOD && dfa->mb_cur_max > 1) |
1457 | || token.type == COMPLEX_BRACKET); |
1458 | #endif |
1459 | dfa->nexts[dfa->nodes_len] = -1; |
1460 | re_node_set_init_empty (dfa->edests + dfa->nodes_len); |
1461 | re_node_set_init_empty (dfa->eclosures + dfa->nodes_len); |
1462 | return dfa->nodes_len++; |
1463 | } |
1464 | |
1465 | static re_hashval_t |
1466 | calc_state_hash (const re_node_set *nodes, unsigned int context) |
1467 | { |
1468 | re_hashval_t hash = nodes->nelem + context; |
1469 | Idx i; |
1470 | for (i = 0 ; i < nodes->nelem ; i++) |
1471 | hash += nodes->elems[i]; |
1472 | return hash; |
1473 | } |
1474 | |
1475 | /* Search for the state whose node_set is equivalent to NODES. |
1476 | Return the pointer to the state, if we found it in the DFA. |
1477 | Otherwise create the new one and return it. In case of an error |
1478 | return NULL and set the error code in ERR. |
1479 | Note: - We assume NULL as the invalid state, then it is possible that |
1480 | return value is NULL and ERR is REG_NOERROR. |
1481 | - We never return non-NULL value in case of any errors, it is for |
1482 | optimization. */ |
1483 | |
1484 | static re_dfastate_t * |
1485 | __attribute_warn_unused_result__ |
1486 | re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa, |
1487 | const re_node_set *nodes) |
1488 | { |
1489 | re_hashval_t hash; |
1490 | re_dfastate_t *new_state; |
1491 | struct re_state_table_entry *spot; |
1492 | Idx i; |
1493 | #if defined GCC_LINT || defined lint |
1494 | /* Suppress bogus uninitialized-variable warnings. */ |
1495 | *err = REG_NOERROR; |
1496 | #endif |
1497 | if (__glibc_unlikely (nodes->nelem == 0)) |
1498 | { |
1499 | *err = REG_NOERROR; |
1500 | return NULL; |
1501 | } |
1502 | hash = calc_state_hash (nodes, context: 0); |
1503 | spot = dfa->state_table + (hash & dfa->state_hash_mask); |
1504 | |
1505 | for (i = 0 ; i < spot->num ; i++) |
1506 | { |
1507 | re_dfastate_t *state = spot->array[i]; |
1508 | if (hash != state->hash) |
1509 | continue; |
1510 | if (re_node_set_compare (set1: &state->nodes, set2: nodes)) |
1511 | return state; |
1512 | } |
1513 | |
1514 | /* There are no appropriate state in the dfa, create the new one. */ |
1515 | new_state = create_ci_newstate (dfa, nodes, hash); |
1516 | if (__glibc_unlikely (new_state == NULL)) |
1517 | *err = REG_ESPACE; |
1518 | |
1519 | return new_state; |
1520 | } |
1521 | |
1522 | /* Search for the state whose node_set is equivalent to NODES and |
1523 | whose context is equivalent to CONTEXT. |
1524 | Return the pointer to the state, if we found it in the DFA. |
1525 | Otherwise create the new one and return it. In case of an error |
1526 | return NULL and set the error code in ERR. |
1527 | Note: - We assume NULL as the invalid state, then it is possible that |
1528 | return value is NULL and ERR is REG_NOERROR. |
1529 | - We never return non-NULL value in case of any errors, it is for |
1530 | optimization. */ |
1531 | |
1532 | static re_dfastate_t * |
1533 | __attribute_warn_unused_result__ |
1534 | re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa, |
1535 | const re_node_set *nodes, unsigned int context) |
1536 | { |
1537 | re_hashval_t hash; |
1538 | re_dfastate_t *new_state; |
1539 | struct re_state_table_entry *spot; |
1540 | Idx i; |
1541 | #if defined GCC_LINT || defined lint |
1542 | /* Suppress bogus uninitialized-variable warnings. */ |
1543 | *err = REG_NOERROR; |
1544 | #endif |
1545 | if (nodes->nelem == 0) |
1546 | { |
1547 | *err = REG_NOERROR; |
1548 | return NULL; |
1549 | } |
1550 | hash = calc_state_hash (nodes, context); |
1551 | spot = dfa->state_table + (hash & dfa->state_hash_mask); |
1552 | |
1553 | for (i = 0 ; i < spot->num ; i++) |
1554 | { |
1555 | re_dfastate_t *state = spot->array[i]; |
1556 | if (state->hash == hash |
1557 | && state->context == context |
1558 | && re_node_set_compare (set1: state->entrance_nodes, set2: nodes)) |
1559 | return state; |
1560 | } |
1561 | /* There are no appropriate state in 'dfa', create the new one. */ |
1562 | new_state = create_cd_newstate (dfa, nodes, context, hash); |
1563 | if (__glibc_unlikely (new_state == NULL)) |
1564 | *err = REG_ESPACE; |
1565 | |
1566 | return new_state; |
1567 | } |
1568 | |
1569 | /* Finish initialization of the new state NEWSTATE, and using its hash value |
1570 | HASH put in the appropriate bucket of DFA's state table. Return value |
1571 | indicates the error code if failed. */ |
1572 | |
1573 | static reg_errcode_t |
1574 | __attribute_warn_unused_result__ |
1575 | register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, |
1576 | re_hashval_t hash) |
1577 | { |
1578 | struct re_state_table_entry *spot; |
1579 | reg_errcode_t err; |
1580 | Idx i; |
1581 | |
1582 | newstate->hash = hash; |
1583 | err = re_node_set_alloc (set: &newstate->non_eps_nodes, size: newstate->nodes.nelem); |
1584 | if (__glibc_unlikely (err != REG_NOERROR)) |
1585 | return REG_ESPACE; |
1586 | for (i = 0; i < newstate->nodes.nelem; i++) |
1587 | { |
1588 | Idx elem = newstate->nodes.elems[i]; |
1589 | if (!IS_EPSILON_NODE (dfa->nodes[elem].type)) |
1590 | if (! re_node_set_insert_last (set: &newstate->non_eps_nodes, elem)) |
1591 | return REG_ESPACE; |
1592 | } |
1593 | |
1594 | spot = dfa->state_table + (hash & dfa->state_hash_mask); |
1595 | if (__glibc_unlikely (spot->alloc <= spot->num)) |
1596 | { |
1597 | Idx new_alloc = 2 * spot->num + 2; |
1598 | re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *, |
1599 | new_alloc); |
1600 | if (__glibc_unlikely (new_array == NULL)) |
1601 | return REG_ESPACE; |
1602 | spot->array = new_array; |
1603 | spot->alloc = new_alloc; |
1604 | } |
1605 | spot->array[spot->num++] = newstate; |
1606 | return REG_NOERROR; |
1607 | } |
1608 | |
1609 | static void |
1610 | free_state (re_dfastate_t *state) |
1611 | { |
1612 | re_node_set_free (&state->non_eps_nodes); |
1613 | re_node_set_free (&state->inveclosure); |
1614 | if (state->entrance_nodes != &state->nodes) |
1615 | { |
1616 | re_node_set_free (state->entrance_nodes); |
1617 | re_free (state->entrance_nodes); |
1618 | } |
1619 | re_node_set_free (&state->nodes); |
1620 | re_free (state->word_trtable); |
1621 | re_free (state->trtable); |
1622 | re_free (state); |
1623 | } |
1624 | |
1625 | /* Create the new state which is independent of contexts. |
1626 | Return the new state if succeeded, otherwise return NULL. */ |
1627 | |
1628 | static re_dfastate_t * |
1629 | __attribute_warn_unused_result__ |
1630 | create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes, |
1631 | re_hashval_t hash) |
1632 | { |
1633 | Idx i; |
1634 | reg_errcode_t err; |
1635 | re_dfastate_t *newstate; |
1636 | |
1637 | newstate = (re_dfastate_t *) calloc (nmemb: sizeof (re_dfastate_t), size: 1); |
1638 | if (__glibc_unlikely (newstate == NULL)) |
1639 | return NULL; |
1640 | err = re_node_set_init_copy (dest: &newstate->nodes, src: nodes); |
1641 | if (__glibc_unlikely (err != REG_NOERROR)) |
1642 | { |
1643 | re_free (newstate); |
1644 | return NULL; |
1645 | } |
1646 | |
1647 | newstate->entrance_nodes = &newstate->nodes; |
1648 | for (i = 0 ; i < nodes->nelem ; i++) |
1649 | { |
1650 | re_token_t *node = dfa->nodes + nodes->elems[i]; |
1651 | re_token_type_t type = node->type; |
1652 | if (type == CHARACTER && !node->constraint) |
1653 | continue; |
1654 | #ifdef RE_ENABLE_I18N |
1655 | newstate->accept_mb |= node->accept_mb; |
1656 | #endif /* RE_ENABLE_I18N */ |
1657 | |
1658 | /* If the state has the halt node, the state is a halt state. */ |
1659 | if (type == END_OF_RE) |
1660 | newstate->halt = 1; |
1661 | else if (type == OP_BACK_REF) |
1662 | newstate->has_backref = 1; |
1663 | else if (type == ANCHOR || node->constraint) |
1664 | newstate->has_constraint = 1; |
1665 | } |
1666 | err = register_state (dfa, newstate, hash); |
1667 | if (__glibc_unlikely (err != REG_NOERROR)) |
1668 | { |
1669 | free_state (state: newstate); |
1670 | newstate = NULL; |
1671 | } |
1672 | return newstate; |
1673 | } |
1674 | |
1675 | /* Create the new state which is depend on the context CONTEXT. |
1676 | Return the new state if succeeded, otherwise return NULL. */ |
1677 | |
1678 | static re_dfastate_t * |
1679 | __attribute_warn_unused_result__ |
1680 | create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes, |
1681 | unsigned int context, re_hashval_t hash) |
1682 | { |
1683 | Idx i, nctx_nodes = 0; |
1684 | reg_errcode_t err; |
1685 | re_dfastate_t *newstate; |
1686 | |
1687 | newstate = (re_dfastate_t *) calloc (nmemb: sizeof (re_dfastate_t), size: 1); |
1688 | if (__glibc_unlikely (newstate == NULL)) |
1689 | return NULL; |
1690 | err = re_node_set_init_copy (dest: &newstate->nodes, src: nodes); |
1691 | if (__glibc_unlikely (err != REG_NOERROR)) |
1692 | { |
1693 | re_free (newstate); |
1694 | return NULL; |
1695 | } |
1696 | |
1697 | newstate->context = context; |
1698 | newstate->entrance_nodes = &newstate->nodes; |
1699 | |
1700 | for (i = 0 ; i < nodes->nelem ; i++) |
1701 | { |
1702 | re_token_t *node = dfa->nodes + nodes->elems[i]; |
1703 | re_token_type_t type = node->type; |
1704 | unsigned int constraint = node->constraint; |
1705 | |
1706 | if (type == CHARACTER && !constraint) |
1707 | continue; |
1708 | #ifdef RE_ENABLE_I18N |
1709 | newstate->accept_mb |= node->accept_mb; |
1710 | #endif /* RE_ENABLE_I18N */ |
1711 | |
1712 | /* If the state has the halt node, the state is a halt state. */ |
1713 | if (type == END_OF_RE) |
1714 | newstate->halt = 1; |
1715 | else if (type == OP_BACK_REF) |
1716 | newstate->has_backref = 1; |
1717 | |
1718 | if (constraint) |
1719 | { |
1720 | if (newstate->entrance_nodes == &newstate->nodes) |
1721 | { |
1722 | re_node_set *entrance_nodes = re_malloc (re_node_set, 1); |
1723 | if (__glibc_unlikely (entrance_nodes == NULL)) |
1724 | { |
1725 | free_state (state: newstate); |
1726 | return NULL; |
1727 | } |
1728 | newstate->entrance_nodes = entrance_nodes; |
1729 | if (re_node_set_init_copy (dest: newstate->entrance_nodes, src: nodes) |
1730 | != REG_NOERROR) |
1731 | { |
1732 | free_state (state: newstate); |
1733 | return NULL; |
1734 | } |
1735 | nctx_nodes = 0; |
1736 | newstate->has_constraint = 1; |
1737 | } |
1738 | |
1739 | if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context)) |
1740 | { |
1741 | re_node_set_remove_at (set: &newstate->nodes, idx: i - nctx_nodes); |
1742 | ++nctx_nodes; |
1743 | } |
1744 | } |
1745 | } |
1746 | err = register_state (dfa, newstate, hash); |
1747 | if (__glibc_unlikely (err != REG_NOERROR)) |
1748 | { |
1749 | free_state (state: newstate); |
1750 | newstate = NULL; |
1751 | } |
1752 | return newstate; |
1753 | } |
1754 | |