| 1 | /* Double-precision SVE inverse sin |
| 2 | |
| 3 | Copyright (C) 2023-2024 Free Software Foundation, Inc. |
| 4 | This file is part of the GNU C Library. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <https://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include "sv_math.h" |
| 21 | #include "poly_sve_f64.h" |
| 22 | |
| 23 | static const struct data |
| 24 | { |
| 25 | float64_t poly[12]; |
| 26 | float64_t pi_over_2f; |
| 27 | } data = { |
| 28 | /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) |
| 29 | on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */ |
| 30 | .poly = { 0x1.555555555554ep-3, 0x1.3333333337233p-4, |
| 31 | 0x1.6db6db67f6d9fp-5, 0x1.f1c71fbd29fbbp-6, |
| 32 | 0x1.6e8b264d467d6p-6, 0x1.1c5997c357e9dp-6, |
| 33 | 0x1.c86a22cd9389dp-7, 0x1.856073c22ebbep-7, |
| 34 | 0x1.fd1151acb6bedp-8, 0x1.087182f799c1dp-6, |
| 35 | -0x1.6602748120927p-7, 0x1.cfa0dd1f9478p-6, }, |
| 36 | .pi_over_2f = 0x1.921fb54442d18p+0, |
| 37 | }; |
| 38 | |
| 39 | #define P(i) sv_f64 (d->poly[i]) |
| 40 | |
| 41 | /* Double-precision SVE implementation of vector asin(x). |
| 42 | |
| 43 | For |x| in [0, 0.5], use an order 11 polynomial P such that the final |
| 44 | approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2). |
| 45 | |
| 46 | The largest observed error in this region is 0.52 ulps, |
| 47 | _ZGVsMxv_asin(0x1.d95ae04998b6cp-2) got 0x1.ec13757305f27p-2 |
| 48 | want 0x1.ec13757305f26p-2. |
| 49 | |
| 50 | For |x| in [0.5, 1.0], use same approximation with a change of variable |
| 51 | |
| 52 | asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z). |
| 53 | |
| 54 | The largest observed error in this region is 2.69 ulps, |
| 55 | _ZGVsMxv_asin(0x1.044ac9819f573p-1) got 0x1.110d7e85fdd5p-1 |
| 56 | want 0x1.110d7e85fdd53p-1. */ |
| 57 | svfloat64_t SV_NAME_D1 (asin) (svfloat64_t x, const svbool_t pg) |
| 58 | { |
| 59 | const struct data *d = ptr_barrier (&data); |
| 60 | |
| 61 | svuint64_t sign = svand_x (pg, svreinterpret_u64 (x), 0x8000000000000000); |
| 62 | svfloat64_t ax = svabs_x (pg, x); |
| 63 | svbool_t a_ge_half = svacge (pg, x, 0.5); |
| 64 | |
| 65 | /* Evaluate polynomial Q(x) = y + y * z * P(z) with |
| 66 | z = x ^ 2 and y = |x| , if |x| < 0.5 |
| 67 | z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */ |
| 68 | svfloat64_t z2 = svsel (a_ge_half, svmls_x (pg, sv_f64 (x: 0.5), ax, 0.5), |
| 69 | svmul_x (pg, x, x)); |
| 70 | svfloat64_t z = svsqrt_m (ax, a_ge_half, z2); |
| 71 | |
| 72 | /* Use a single polynomial approximation P for both intervals. */ |
| 73 | svfloat64_t z4 = svmul_x (pg, z2, z2); |
| 74 | svfloat64_t z8 = svmul_x (pg, z4, z4); |
| 75 | svfloat64_t z16 = svmul_x (pg, z8, z8); |
| 76 | svfloat64_t p = sv_estrin_11_f64_x (pg, x: z2, x2: z4, x4: z8, x8: z16, poly: d->poly); |
| 77 | /* Finalize polynomial: z + z * z2 * P(z2). */ |
| 78 | p = svmla_x (pg, z, svmul_x (pg, z, z2), p); |
| 79 | |
| 80 | /* asin(|x|) = Q(|x|) , for |x| < 0.5 |
| 81 | = pi/2 - 2 Q(|x|), for |x| >= 0.5. */ |
| 82 | svfloat64_t y = svmad_m (a_ge_half, p, sv_f64 (x: -2.0), d->pi_over_2f); |
| 83 | |
| 84 | /* Copy sign. */ |
| 85 | return svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (y), sign)); |
| 86 | } |
| 87 | |