| 1 | /* Single-precision SVE inverse sin |
| 2 | |
| 3 | Copyright (C) 2023-2024 Free Software Foundation, Inc. |
| 4 | This file is part of the GNU C Library. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <https://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include "sv_math.h" |
| 21 | #include "poly_sve_f32.h" |
| 22 | |
| 23 | static const struct data |
| 24 | { |
| 25 | float32_t poly[5]; |
| 26 | float32_t pi_over_2f; |
| 27 | } data = { |
| 28 | /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) on |
| 29 | [ 0x1p-24 0x1p-2 ] order = 4 rel error: 0x1.00a23bbp-29 . */ |
| 30 | .poly = { 0x1.55555ep-3, 0x1.33261ap-4, 0x1.70d7dcp-5, 0x1.b059dp-6, |
| 31 | 0x1.3af7d8p-5, }, |
| 32 | .pi_over_2f = 0x1.921fb6p+0f, |
| 33 | }; |
| 34 | |
| 35 | /* Single-precision SVE implementation of vector asin(x). |
| 36 | |
| 37 | For |x| in [0, 0.5], use order 4 polynomial P such that the final |
| 38 | approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2). |
| 39 | |
| 40 | The largest observed error in this region is 0.83 ulps, |
| 41 | _ZGVsMxv_asinf (0x1.ea00f4p-2) got 0x1.fef15ep-2 |
| 42 | want 0x1.fef15cp-2. |
| 43 | |
| 44 | For |x| in [0.5, 1.0], use same approximation with a change of variable |
| 45 | |
| 46 | asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z). |
| 47 | |
| 48 | The largest observed error in this region is 2.41 ulps, |
| 49 | _ZGVsMxv_asinf (-0x1.00203ep-1) got -0x1.0c3a64p-1 |
| 50 | want -0x1.0c3a6p-1. */ |
| 51 | svfloat32_t SV_NAME_F1 (asin) (svfloat32_t x, const svbool_t pg) |
| 52 | { |
| 53 | const struct data *d = ptr_barrier (&data); |
| 54 | |
| 55 | svuint32_t sign = svand_x (pg, svreinterpret_u32 (x), 0x80000000); |
| 56 | |
| 57 | svfloat32_t ax = svabs_x (pg, x); |
| 58 | svbool_t a_ge_half = svacge (pg, x, 0.5); |
| 59 | |
| 60 | /* Evaluate polynomial Q(x) = y + y * z * P(z) with |
| 61 | z = x ^ 2 and y = |x| , if |x| < 0.5 |
| 62 | z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */ |
| 63 | svfloat32_t z2 = svsel (a_ge_half, svmls_x (pg, sv_f32 (x: 0.5), ax, 0.5), |
| 64 | svmul_x (pg, x, x)); |
| 65 | svfloat32_t z = svsqrt_m (ax, a_ge_half, z2); |
| 66 | |
| 67 | /* Use a single polynomial approximation P for both intervals. */ |
| 68 | svfloat32_t p = sv_horner_4_f32_x (pg, x: z2, poly: d->poly); |
| 69 | /* Finalize polynomial: z + z * z2 * P(z2). */ |
| 70 | p = svmla_x (pg, z, svmul_x (pg, z, z2), p); |
| 71 | |
| 72 | /* asin(|x|) = Q(|x|) , for |x| < 0.5 |
| 73 | = pi/2 - 2 Q(|x|), for |x| >= 0.5. */ |
| 74 | svfloat32_t y = svmad_m (a_ge_half, p, sv_f32 (x: -2.0), d->pi_over_2f); |
| 75 | |
| 76 | /* Copy sign. */ |
| 77 | return svreinterpret_f32 (svorr_x (pg, svreinterpret_u32 (y), sign)); |
| 78 | } |
| 79 | |