| 1 | /* Double-precision AdvSIMD expm1 |
| 2 | |
| 3 | Copyright (C) 2023-2024 Free Software Foundation, Inc. |
| 4 | This file is part of the GNU C Library. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <https://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include "v_math.h" |
| 21 | #include "poly_advsimd_f64.h" |
| 22 | |
| 23 | static const struct data |
| 24 | { |
| 25 | float64x2_t poly[11]; |
| 26 | float64x2_t invln2; |
| 27 | double ln2[2]; |
| 28 | float64x2_t shift; |
| 29 | int64x2_t exponent_bias; |
| 30 | #if WANT_SIMD_EXCEPT |
| 31 | uint64x2_t thresh, tiny_bound; |
| 32 | #else |
| 33 | float64x2_t oflow_bound; |
| 34 | #endif |
| 35 | } data = { |
| 36 | /* Generated using fpminimax, with degree=12 in [log(2)/2, log(2)/2]. */ |
| 37 | .poly = { V2 (0x1p-1), V2 (0x1.5555555555559p-3), V2 (0x1.555555555554bp-5), |
| 38 | V2 (0x1.111111110f663p-7), V2 (0x1.6c16c16c1b5f3p-10), |
| 39 | V2 (0x1.a01a01affa35dp-13), V2 (0x1.a01a018b4ecbbp-16), |
| 40 | V2 (0x1.71ddf82db5bb4p-19), V2 (0x1.27e517fc0d54bp-22), |
| 41 | V2 (0x1.af5eedae67435p-26), V2 (0x1.1f143d060a28ap-29) }, |
| 42 | .invln2 = V2 (0x1.71547652b82fep0), |
| 43 | .ln2 = { 0x1.62e42fefa39efp-1, 0x1.abc9e3b39803fp-56 }, |
| 44 | .shift = V2 (0x1.8p52), |
| 45 | .exponent_bias = V2 (0x3ff0000000000000), |
| 46 | #if WANT_SIMD_EXCEPT |
| 47 | /* asuint64(oflow_bound) - asuint64(0x1p-51), shifted left by 1 for abs |
| 48 | compare. */ |
| 49 | .thresh = V2 (0x78c56fa6d34b552), |
| 50 | /* asuint64(0x1p-51) << 1. */ |
| 51 | .tiny_bound = V2 (0x3cc0000000000000 << 1), |
| 52 | #else |
| 53 | /* Value above which expm1(x) should overflow. Absolute value of the |
| 54 | underflow bound is greater than this, so it catches both cases - there is |
| 55 | a small window where fallbacks are triggered unnecessarily. */ |
| 56 | .oflow_bound = V2 (0x1.62b7d369a5aa9p+9), |
| 57 | #endif |
| 58 | }; |
| 59 | |
| 60 | static float64x2_t VPCS_ATTR NOINLINE |
| 61 | special_case (float64x2_t x, float64x2_t y, uint64x2_t special) |
| 62 | { |
| 63 | return v_call_f64 (expm1, x, y, special); |
| 64 | } |
| 65 | |
| 66 | /* Double-precision vector exp(x) - 1 function. |
| 67 | The maximum error observed error is 2.18 ULP: |
| 68 | _ZGVnN2v_expm1 (0x1.634ba0c237d7bp-2) got 0x1.a8b9ea8d66e22p-2 |
| 69 | want 0x1.a8b9ea8d66e2p-2. */ |
| 70 | float64x2_t VPCS_ATTR V_NAME_D1 (expm1) (float64x2_t x) |
| 71 | { |
| 72 | const struct data *d = ptr_barrier (&data); |
| 73 | |
| 74 | uint64x2_t ix = vreinterpretq_u64_f64 (x); |
| 75 | |
| 76 | #if WANT_SIMD_EXCEPT |
| 77 | /* If fp exceptions are to be triggered correctly, fall back to scalar for |
| 78 | |x| < 2^-51, |x| > oflow_bound, Inf & NaN. Add ix to itself for |
| 79 | shift-left by 1, and compare with thresh which was left-shifted offline - |
| 80 | this is effectively an absolute compare. */ |
| 81 | uint64x2_t special |
| 82 | = vcgeq_u64 (vsubq_u64 (vaddq_u64 (ix, ix), d->tiny_bound), d->thresh); |
| 83 | if (__glibc_unlikely (v_any_u64 (special))) |
| 84 | x = v_zerofy_f64 (x, special); |
| 85 | #else |
| 86 | /* Large input, NaNs and Infs. */ |
| 87 | uint64x2_t special = vcageq_f64 (x, d->oflow_bound); |
| 88 | #endif |
| 89 | |
| 90 | /* Reduce argument to smaller range: |
| 91 | Let i = round(x / ln2) |
| 92 | and f = x - i * ln2, then f is in [-ln2/2, ln2/2]. |
| 93 | exp(x) - 1 = 2^i * (expm1(f) + 1) - 1 |
| 94 | where 2^i is exact because i is an integer. */ |
| 95 | float64x2_t n = vsubq_f64 (vfmaq_f64 (d->shift, d->invln2, x), d->shift); |
| 96 | int64x2_t i = vcvtq_s64_f64 (n); |
| 97 | float64x2_t ln2 = vld1q_f64 (&d->ln2[0]); |
| 98 | float64x2_t f = vfmsq_laneq_f64 (x, n, ln2, 0); |
| 99 | f = vfmsq_laneq_f64 (f, n, ln2, 1); |
| 100 | |
| 101 | /* Approximate expm1(f) using polynomial. |
| 102 | Taylor expansion for expm1(x) has the form: |
| 103 | x + ax^2 + bx^3 + cx^4 .... |
| 104 | So we calculate the polynomial P(f) = a + bf + cf^2 + ... |
| 105 | and assemble the approximation expm1(f) ~= f + f^2 * P(f). */ |
| 106 | float64x2_t f2 = vmulq_f64 (f, f); |
| 107 | float64x2_t f4 = vmulq_f64 (f2, f2); |
| 108 | float64x2_t f8 = vmulq_f64 (f4, f4); |
| 109 | float64x2_t p = vfmaq_f64 (f, f2, v_estrin_10_f64 (f, f2, f4, f8, d->poly)); |
| 110 | |
| 111 | /* Assemble the result. |
| 112 | expm1(x) ~= 2^i * (p + 1) - 1 |
| 113 | Let t = 2^i. */ |
| 114 | int64x2_t u = vaddq_s64 (vshlq_n_s64 (i, 52), d->exponent_bias); |
| 115 | float64x2_t t = vreinterpretq_f64_s64 (u); |
| 116 | |
| 117 | if (__glibc_unlikely (v_any_u64 (special))) |
| 118 | return special_case (vreinterpretq_f64_u64 (ix), |
| 119 | vfmaq_f64 (vsubq_f64 (t, v_f64 (1.0)), p, t), |
| 120 | special); |
| 121 | |
| 122 | /* expm1(x) ~= p * t + (t - 1). */ |
| 123 | return vfmaq_f64 (vsubq_f64 (t, v_f64 (1.0)), p, t); |
| 124 | } |
| 125 | |