| 1 | /* Single-precision AdvSIMD expm1 |
| 2 | |
| 3 | Copyright (C) 2023-2024 Free Software Foundation, Inc. |
| 4 | This file is part of the GNU C Library. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <https://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include "v_math.h" |
| 21 | #include "poly_advsimd_f32.h" |
| 22 | |
| 23 | static const struct data |
| 24 | { |
| 25 | float32x4_t poly[5]; |
| 26 | float invln2_and_ln2[4]; |
| 27 | float32x4_t shift; |
| 28 | int32x4_t exponent_bias; |
| 29 | #if WANT_SIMD_EXCEPT |
| 30 | uint32x4_t thresh; |
| 31 | #else |
| 32 | float32x4_t oflow_bound; |
| 33 | #endif |
| 34 | } data = { |
| 35 | /* Generated using fpminimax with degree=5 in [-log(2)/2, log(2)/2]. */ |
| 36 | .poly = { V4 (0x1.fffffep-2), V4 (0x1.5554aep-3), V4 (0x1.555736p-5), |
| 37 | V4 (0x1.12287cp-7), V4 (0x1.6b55a2p-10) }, |
| 38 | /* Stores constants: invln2, ln2_hi, ln2_lo, 0. */ |
| 39 | .invln2_and_ln2 = { 0x1.715476p+0f, 0x1.62e4p-1f, 0x1.7f7d1cp-20f, 0 }, |
| 40 | .shift = V4 (0x1.8p23f), |
| 41 | .exponent_bias = V4 (0x3f800000), |
| 42 | #if !WANT_SIMD_EXCEPT |
| 43 | /* Value above which expm1f(x) should overflow. Absolute value of the |
| 44 | underflow bound is greater than this, so it catches both cases - there is |
| 45 | a small window where fallbacks are triggered unnecessarily. */ |
| 46 | .oflow_bound = V4 (0x1.5ebc4p+6), |
| 47 | #else |
| 48 | /* asuint(oflow_bound) - asuint(0x1p-23), shifted left by 1 for absolute |
| 49 | compare. */ |
| 50 | .thresh = V4 (0x1d5ebc40), |
| 51 | #endif |
| 52 | }; |
| 53 | |
| 54 | /* asuint(0x1p-23), shifted by 1 for abs compare. */ |
| 55 | #define TinyBound v_u32 (0x34000000 << 1) |
| 56 | |
| 57 | static float32x4_t VPCS_ATTR NOINLINE |
| 58 | special_case (float32x4_t x, float32x4_t y, uint32x4_t special) |
| 59 | { |
| 60 | return v_call_f32 (expm1f, x, y, special); |
| 61 | } |
| 62 | |
| 63 | /* Single-precision vector exp(x) - 1 function. |
| 64 | The maximum error is 1.51 ULP: |
| 65 | _ZGVnN4v_expm1f (0x1.8baa96p-2) got 0x1.e2fb9p-2 |
| 66 | want 0x1.e2fb94p-2. */ |
| 67 | float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (expm1) (float32x4_t x) |
| 68 | { |
| 69 | const struct data *d = ptr_barrier (&data); |
| 70 | uint32x4_t ix = vreinterpretq_u32_f32 (x); |
| 71 | |
| 72 | #if WANT_SIMD_EXCEPT |
| 73 | /* If fp exceptions are to be triggered correctly, fall back to scalar for |
| 74 | |x| < 2^-23, |x| > oflow_bound, Inf & NaN. Add ix to itself for |
| 75 | shift-left by 1, and compare with thresh which was left-shifted offline - |
| 76 | this is effectively an absolute compare. */ |
| 77 | uint32x4_t special |
| 78 | = vcgeq_u32 (vsubq_u32 (vaddq_u32 (ix, ix), TinyBound), d->thresh); |
| 79 | if (__glibc_unlikely (v_any_u32 (special))) |
| 80 | x = v_zerofy_f32 (x, special); |
| 81 | #else |
| 82 | /* Handles very large values (+ve and -ve), +/-NaN, +/-Inf. */ |
| 83 | uint32x4_t special = vcagtq_f32 (x, d->oflow_bound); |
| 84 | #endif |
| 85 | |
| 86 | /* Reduce argument to smaller range: |
| 87 | Let i = round(x / ln2) |
| 88 | and f = x - i * ln2, then f is in [-ln2/2, ln2/2]. |
| 89 | exp(x) - 1 = 2^i * (expm1(f) + 1) - 1 |
| 90 | where 2^i is exact because i is an integer. */ |
| 91 | float32x4_t invln2_and_ln2 = vld1q_f32 (d->invln2_and_ln2); |
| 92 | float32x4_t j |
| 93 | = vsubq_f32 (vfmaq_laneq_f32 (d->shift, x, invln2_and_ln2, 0), d->shift); |
| 94 | int32x4_t i = vcvtq_s32_f32 (j); |
| 95 | float32x4_t f = vfmsq_laneq_f32 (x, j, invln2_and_ln2, 1); |
| 96 | f = vfmsq_laneq_f32 (f, j, invln2_and_ln2, 2); |
| 97 | |
| 98 | /* Approximate expm1(f) using polynomial. |
| 99 | Taylor expansion for expm1(x) has the form: |
| 100 | x + ax^2 + bx^3 + cx^4 .... |
| 101 | So we calculate the polynomial P(f) = a + bf + cf^2 + ... |
| 102 | and assemble the approximation expm1(f) ~= f + f^2 * P(f). */ |
| 103 | float32x4_t p = v_horner_4_f32 (f, d->poly); |
| 104 | p = vfmaq_f32 (f, vmulq_f32 (f, f), p); |
| 105 | |
| 106 | /* Assemble the result. |
| 107 | expm1(x) ~= 2^i * (p + 1) - 1 |
| 108 | Let t = 2^i. */ |
| 109 | int32x4_t u = vaddq_s32 (vshlq_n_s32 (i, 23), d->exponent_bias); |
| 110 | float32x4_t t = vreinterpretq_f32_s32 (u); |
| 111 | |
| 112 | if (__glibc_unlikely (v_any_u32 (special))) |
| 113 | return special_case (vreinterpretq_f32_u32 (ix), |
| 114 | vfmaq_f32 (vsubq_f32 (t, v_f32 (1.0f)), p, t), |
| 115 | special); |
| 116 | |
| 117 | /* expm1(x) ~= p * t + (t - 1). */ |
| 118 | return vfmaq_f32 (vsubq_f32 (t, v_f32 (1.0f)), p, t); |
| 119 | } |
| 120 | libmvec_hidden_def (V_NAME_F1 (expm1)) |
| 121 | HALF_WIDTH_ALIAS_F1 (expm1) |
| 122 | |