1/* Single-precision AdvSIMD log1p
2
3 Copyright (C) 2023-2024 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <https://www.gnu.org/licenses/>. */
19
20#include "v_math.h"
21#include "poly_advsimd_f32.h"
22
23const static struct data
24{
25 float32x4_t poly[8], ln2;
26 uint32x4_t tiny_bound, minus_one, four, thresh;
27 int32x4_t three_quarters;
28} data = {
29 .poly = { /* Generated using FPMinimax in [-0.25, 0.5]. First two coefficients
30 (1, -0.5) are not stored as they can be generated more
31 efficiently. */
32 V4 (0x1.5555aap-2f), V4 (-0x1.000038p-2f), V4 (0x1.99675cp-3f),
33 V4 (-0x1.54ef78p-3f), V4 (0x1.28a1f4p-3f), V4 (-0x1.0da91p-3f),
34 V4 (0x1.abcb6p-4f), V4 (-0x1.6f0d5ep-5f) },
35 .ln2 = V4 (0x1.62e43p-1f),
36 .tiny_bound = V4 (0x34000000), /* asuint32(0x1p-23). ulp=0.5 at 0x1p-23. */
37 .thresh = V4 (0x4b800000), /* asuint32(INFINITY) - tiny_bound. */
38 .minus_one = V4 (0xbf800000),
39 .four = V4 (0x40800000),
40 .three_quarters = V4 (0x3f400000)
41};
42
43static inline float32x4_t
44eval_poly (float32x4_t m, const float32x4_t *p)
45{
46 /* Approximate log(1+m) on [-0.25, 0.5] using split Estrin scheme. */
47 float32x4_t p_12 = vfmaq_f32 (v_f32 (-0.5), m, p[0]);
48 float32x4_t p_34 = vfmaq_f32 (p[1], m, p[2]);
49 float32x4_t p_56 = vfmaq_f32 (p[3], m, p[4]);
50 float32x4_t p_78 = vfmaq_f32 (p[5], m, p[6]);
51
52 float32x4_t m2 = vmulq_f32 (m, m);
53 float32x4_t p_02 = vfmaq_f32 (m, m2, p_12);
54 float32x4_t p_36 = vfmaq_f32 (p_34, m2, p_56);
55 float32x4_t p_79 = vfmaq_f32 (p_78, m2, p[7]);
56
57 float32x4_t m4 = vmulq_f32 (m2, m2);
58 float32x4_t p_06 = vfmaq_f32 (p_02, m4, p_36);
59 return vfmaq_f32 (p_06, m4, vmulq_f32 (m4, p_79));
60}
61
62static float32x4_t NOINLINE VPCS_ATTR
63special_case (float32x4_t x, float32x4_t y, uint32x4_t special)
64{
65 return v_call_f32 (log1pf, x, y, special);
66}
67
68/* Vector log1pf approximation using polynomial on reduced interval. Accuracy
69 is roughly 2.02 ULP:
70 log1pf(0x1.21e13ap-2) got 0x1.fe8028p-3 want 0x1.fe802cp-3. */
71VPCS_ATTR float32x4_t V_NAME_F1 (log1p) (float32x4_t x)
72{
73 const struct data *d = ptr_barrier (&data);
74
75 uint32x4_t ix = vreinterpretq_u32_f32 (x);
76 uint32x4_t ia = vreinterpretq_u32_f32 (vabsq_f32 (x));
77 uint32x4_t special_cases
78 = vorrq_u32 (vcgeq_u32 (vsubq_u32 (ia, d->tiny_bound), d->thresh),
79 vcgeq_u32 (ix, d->minus_one));
80 float32x4_t special_arg = x;
81
82#if WANT_SIMD_EXCEPT
83 if (__glibc_unlikely (v_any_u32 (special_cases)))
84 /* Side-step special lanes so fenv exceptions are not triggered
85 inadvertently. */
86 x = v_zerofy_f32 (x, special_cases);
87#endif
88
89 /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m
90 is in [-0.25, 0.5]):
91 log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2).
92
93 We approximate log1p(m) with a polynomial, then scale by
94 k*log(2). Instead of doing this directly, we use an intermediate
95 scale factor s = 4*k*log(2) to ensure the scale is representable
96 as a normalised fp32 number. */
97
98 float32x4_t m = vaddq_f32 (x, v_f32 (1.0f));
99
100 /* Choose k to scale x to the range [-1/4, 1/2]. */
101 int32x4_t k
102 = vandq_s32 (vsubq_s32 (vreinterpretq_s32_f32 (m), d->three_quarters),
103 v_s32 (0xff800000));
104 uint32x4_t ku = vreinterpretq_u32_s32 (k);
105
106 /* Scale x by exponent manipulation. */
107 float32x4_t m_scale
108 = vreinterpretq_f32_u32 (vsubq_u32 (vreinterpretq_u32_f32 (x), ku));
109
110 /* Scale up to ensure that the scale factor is representable as normalised
111 fp32 number, and scale m down accordingly. */
112 float32x4_t s = vreinterpretq_f32_u32 (vsubq_u32 (d->four, ku));
113 m_scale = vaddq_f32 (m_scale, vfmaq_f32 (v_f32 (-1.0f), v_f32 (0.25f), s));
114
115 /* Evaluate polynomial on the reduced interval. */
116 float32x4_t p = eval_poly (m_scale, d->poly);
117
118 /* The scale factor to be applied back at the end - by multiplying float(k)
119 by 2^-23 we get the unbiased exponent of k. */
120 float32x4_t scale_back = vcvtq_f32_s32 (vshrq_n_s32 (k, 23));
121
122 /* Apply the scaling back. */
123 float32x4_t y = vfmaq_f32 (p, scale_back, d->ln2);
124
125 if (__glibc_unlikely (v_any_u32 (special_cases)))
126 return special_case (special_arg, y, special_cases);
127 return y;
128}
129libmvec_hidden_def (V_NAME_F1 (log1p))
130HALF_WIDTH_ALIAS_F1 (log1p)
131

source code of glibc/sysdeps/aarch64/fpu/log1pf_advsimd.c