| 1 | /* Implementation of cbrtl. IBM Extended Precision version. |
| 2 | Cephes Math Library Release 2.2: January, 1991 |
| 3 | Copyright 1984, 1991 by Stephen L. Moshier |
| 4 | Adapted for glibc October, 2001. |
| 5 | |
| 6 | This library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | This library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with this library; if not, see |
| 18 | <https://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | /* This file was copied from sysdeps/ieee754/ldbl-128/e_j0l.c. */ |
| 21 | |
| 22 | |
| 23 | #include <math_ldbl_opt.h> |
| 24 | #include <math.h> |
| 25 | #include <math_private.h> |
| 26 | |
| 27 | static const long double CBRT2 = 1.259921049894873164767210607278228350570251L; |
| 28 | static const long double CBRT4 = 1.587401051968199474751705639272308260391493L; |
| 29 | static const long double CBRT2I = 0.7937005259840997373758528196361541301957467L; |
| 30 | static const long double CBRT4I = 0.6299605249474365823836053036391141752851257L; |
| 31 | |
| 32 | |
| 33 | long double |
| 34 | __cbrtl (long double x) |
| 35 | { |
| 36 | int e, rem, sign; |
| 37 | long double z; |
| 38 | |
| 39 | if (!isfinite (x)) |
| 40 | return x + x; |
| 41 | |
| 42 | if (x == 0) |
| 43 | return (x); |
| 44 | |
| 45 | if (x > 0) |
| 46 | sign = 1; |
| 47 | else |
| 48 | { |
| 49 | sign = -1; |
| 50 | x = -x; |
| 51 | } |
| 52 | |
| 53 | z = x; |
| 54 | /* extract power of 2, leaving mantissa between 0.5 and 1 */ |
| 55 | x = __frexpl (x: x, exponent: &e); |
| 56 | |
| 57 | /* Approximate cube root of number between .5 and 1, |
| 58 | peak relative error = 1.2e-6 */ |
| 59 | x = ((((1.3584464340920900529734e-1L * x |
| 60 | - 6.3986917220457538402318e-1L) * x |
| 61 | + 1.2875551670318751538055e0L) * x |
| 62 | - 1.4897083391357284957891e0L) * x |
| 63 | + 1.3304961236013647092521e0L) * x + 3.7568280825958912391243e-1L; |
| 64 | |
| 65 | /* exponent divided by 3 */ |
| 66 | if (e >= 0) |
| 67 | { |
| 68 | rem = e; |
| 69 | e /= 3; |
| 70 | rem -= 3 * e; |
| 71 | if (rem == 1) |
| 72 | x *= CBRT2; |
| 73 | else if (rem == 2) |
| 74 | x *= CBRT4; |
| 75 | } |
| 76 | else |
| 77 | { /* argument less than 1 */ |
| 78 | e = -e; |
| 79 | rem = e; |
| 80 | e /= 3; |
| 81 | rem -= 3 * e; |
| 82 | if (rem == 1) |
| 83 | x *= CBRT2I; |
| 84 | else if (rem == 2) |
| 85 | x *= CBRT4I; |
| 86 | e = -e; |
| 87 | } |
| 88 | |
| 89 | /* multiply by power of 2 */ |
| 90 | x = __ldexpl (x: x, exponent: e); |
| 91 | |
| 92 | /* Newton iteration */ |
| 93 | x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L; |
| 94 | x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L; |
| 95 | x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L; |
| 96 | |
| 97 | if (sign < 0) |
| 98 | x = -x; |
| 99 | return (x); |
| 100 | } |
| 101 | |
| 102 | long_double_symbol (libm, __cbrtl, cbrtl); |
| 103 | |