| 1 | /* s_nextafterl.c -- long double version of s_nextafter.c. |
| 2 | */ |
| 3 | |
| 4 | /* |
| 5 | * ==================================================== |
| 6 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 7 | * |
| 8 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 9 | * Permission to use, copy, modify, and distribute this |
| 10 | * software is freely granted, provided that this notice |
| 11 | * is preserved. |
| 12 | * ==================================================== |
| 13 | */ |
| 14 | |
| 15 | #if defined(LIBM_SCCS) && !defined(lint) |
| 16 | static char rcsid[] = "$NetBSD: $" ; |
| 17 | #endif |
| 18 | |
| 19 | /* IEEE functions |
| 20 | * nextafterl(x,y) |
| 21 | * return the next machine floating-point number of x in the |
| 22 | * direction toward y. |
| 23 | * Special cases: |
| 24 | */ |
| 25 | |
| 26 | #include <errno.h> |
| 27 | #include <float.h> |
| 28 | #include <math.h> |
| 29 | #include <math-barriers.h> |
| 30 | #include <math_private.h> |
| 31 | #include <math_ldbl_opt.h> |
| 32 | |
| 33 | long double __nextafterl(long double x, long double y) |
| 34 | { |
| 35 | int64_t hx, hy, ihx, ihy, lx; |
| 36 | double xhi, xlo, yhi; |
| 37 | |
| 38 | ldbl_unpack (x, &xhi, &xlo); |
| 39 | EXTRACT_WORDS64 (hx, xhi); |
| 40 | EXTRACT_WORDS64 (lx, xlo); |
| 41 | yhi = ldbl_high (y); |
| 42 | EXTRACT_WORDS64 (hy, yhi); |
| 43 | ihx = hx&0x7fffffffffffffffLL; /* |hx| */ |
| 44 | ihy = hy&0x7fffffffffffffffLL; /* |hy| */ |
| 45 | |
| 46 | if((ihx>0x7ff0000000000000LL) || /* x is nan */ |
| 47 | (ihy>0x7ff0000000000000LL)) /* y is nan */ |
| 48 | return x+y; /* signal the nan */ |
| 49 | if(x==y) |
| 50 | return y; /* x=y, return y */ |
| 51 | if(ihx == 0) { /* x == 0 */ |
| 52 | long double u; /* return +-minsubnormal */ |
| 53 | hy = (hy & 0x8000000000000000ULL) | 1; |
| 54 | INSERT_WORDS64 (yhi, hy); |
| 55 | x = yhi; |
| 56 | u = math_opt_barrier (x); |
| 57 | u = u * u; |
| 58 | math_force_eval (u); /* raise underflow flag */ |
| 59 | return x; |
| 60 | } |
| 61 | |
| 62 | long double u; |
| 63 | if(x > y) { /* x > y, x -= ulp */ |
| 64 | /* This isn't the largest magnitude correctly rounded |
| 65 | long double as you can see from the lowest mantissa |
| 66 | bit being zero. It is however the largest magnitude |
| 67 | long double with a 106 bit mantissa, and nextafterl |
| 68 | is insane with variable precision. So to make |
| 69 | nextafterl sane we assume 106 bit precision. */ |
| 70 | if((hx==0xffefffffffffffffLL)&&(lx==0xfc8ffffffffffffeLL)) { |
| 71 | u = x+x; /* overflow, return -inf */ |
| 72 | math_force_eval (u); |
| 73 | __set_errno (ERANGE); |
| 74 | return y; |
| 75 | } |
| 76 | if (hx >= 0x7ff0000000000000LL) { |
| 77 | u = 0x1.fffffffffffff7ffffffffffff8p+1023L; |
| 78 | return u; |
| 79 | } |
| 80 | if(ihx <= 0x0360000000000000LL) { /* x <= LDBL_MIN */ |
| 81 | u = math_opt_barrier (x); |
| 82 | x -= LDBL_TRUE_MIN; |
| 83 | if (ihx < 0x0360000000000000LL |
| 84 | || (hx > 0 && lx <= 0) |
| 85 | || (hx < 0 && lx > 1)) { |
| 86 | u = u * u; |
| 87 | math_force_eval (u); /* raise underflow flag */ |
| 88 | __set_errno (ERANGE); |
| 89 | } |
| 90 | /* Avoid returning -0 in FE_DOWNWARD mode. */ |
| 91 | if (x == 0.0L) |
| 92 | return 0.0L; |
| 93 | return x; |
| 94 | } |
| 95 | /* If the high double is an exact power of two and the low |
| 96 | double is the opposite sign, then 1ulp is one less than |
| 97 | what we might determine from the high double. Similarly |
| 98 | if X is an exact power of two, and positive, because |
| 99 | making it a little smaller will result in the exponent |
| 100 | decreasing by one and normalisation of the mantissa. */ |
| 101 | if ((hx & 0x000fffffffffffffLL) == 0 |
| 102 | && ((lx != 0 && (hx ^ lx) < 0) |
| 103 | || (lx == 0 && hx >= 0))) |
| 104 | ihx -= 1LL << 52; |
| 105 | if (ihx < (106LL << 52)) { /* ulp will denormal */ |
| 106 | INSERT_WORDS64 (yhi, ihx & (0x7ffLL<<52)); |
| 107 | u = yhi * 0x1p-105; |
| 108 | } else { |
| 109 | INSERT_WORDS64 (yhi, (ihx & (0x7ffLL<<52))-(105LL<<52)); |
| 110 | u = yhi; |
| 111 | } |
| 112 | return x - u; |
| 113 | } else { /* x < y, x += ulp */ |
| 114 | if((hx==0x7fefffffffffffffLL)&&(lx==0x7c8ffffffffffffeLL)) { |
| 115 | u = x+x; /* overflow, return +inf */ |
| 116 | math_force_eval (u); |
| 117 | __set_errno (ERANGE); |
| 118 | return y; |
| 119 | } |
| 120 | if ((uint64_t) hx >= 0xfff0000000000000ULL) { |
| 121 | u = -0x1.fffffffffffff7ffffffffffff8p+1023L; |
| 122 | return u; |
| 123 | } |
| 124 | if(ihx <= 0x0360000000000000LL) { /* x <= LDBL_MIN */ |
| 125 | u = math_opt_barrier (x); |
| 126 | x += LDBL_TRUE_MIN; |
| 127 | if (ihx < 0x0360000000000000LL |
| 128 | || (hx > 0 && lx < 0 && lx != 0x8000000000000001LL) |
| 129 | || (hx < 0 && lx >= 0)) { |
| 130 | u = u * u; |
| 131 | math_force_eval (u); /* raise underflow flag */ |
| 132 | __set_errno (ERANGE); |
| 133 | } |
| 134 | if (x == 0.0L) /* handle negative LDBL_TRUE_MIN case */ |
| 135 | x = -0.0L; |
| 136 | return x; |
| 137 | } |
| 138 | /* If the high double is an exact power of two and the low |
| 139 | double is the opposite sign, then 1ulp is one less than |
| 140 | what we might determine from the high double. Similarly |
| 141 | if X is an exact power of two, and negative, because |
| 142 | making it a little larger will result in the exponent |
| 143 | decreasing by one and normalisation of the mantissa. */ |
| 144 | if ((hx & 0x000fffffffffffffLL) == 0 |
| 145 | && ((lx != 0 && (hx ^ lx) < 0) |
| 146 | || (lx == 0 && hx < 0))) |
| 147 | ihx -= 1LL << 52; |
| 148 | if (ihx < (106LL << 52)) { /* ulp will denormal */ |
| 149 | INSERT_WORDS64 (yhi, ihx & (0x7ffLL<<52)); |
| 150 | u = yhi * 0x1p-105; |
| 151 | } else { |
| 152 | INSERT_WORDS64 (yhi, (ihx & (0x7ffLL<<52))-(105LL<<52)); |
| 153 | u = yhi; |
| 154 | } |
| 155 | return x + u; |
| 156 | } |
| 157 | } |
| 158 | strong_alias (__nextafterl, __nexttowardl) |
| 159 | long_double_symbol (libm, __nextafterl, nextafterl); |
| 160 | long_double_symbol (libm, __nexttowardl, nexttowardl); |
| 161 | |