| 1 | /* Compute x * y + z as ternary operation. |
| 2 | Copyright (C) 2010-2024 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #define NO_MATH_REDIRECT |
| 20 | #include <float.h> |
| 21 | #define dfmal __hide_dfmal |
| 22 | #define f32xfmaf64 __hide_f32xfmaf64 |
| 23 | #include <math.h> |
| 24 | #undef dfmal |
| 25 | #undef f32xfmaf64 |
| 26 | #include <fenv.h> |
| 27 | #include <ieee754.h> |
| 28 | #include <math-barriers.h> |
| 29 | #include <libm-alias-double.h> |
| 30 | #include <math-narrow-alias.h> |
| 31 | |
| 32 | /* This implementation uses rounding to odd to avoid problems with |
| 33 | double rounding. See a paper by Boldo and Melquiond: |
| 34 | http://www.lri.fr/~melquion/doc/08-tc.pdf */ |
| 35 | |
| 36 | double |
| 37 | __fma (double x, double y, double z) |
| 38 | { |
| 39 | if (__glibc_unlikely (!isfinite (x) || !isfinite (y))) |
| 40 | return x * y + z; |
| 41 | else if (__glibc_unlikely (!isfinite (z))) |
| 42 | /* If z is Inf, but x and y are finite, the result should be z |
| 43 | rather than NaN. */ |
| 44 | return (z + x) + y; |
| 45 | |
| 46 | /* Ensure correct sign of exact 0 + 0. */ |
| 47 | if (__glibc_unlikely ((x == 0 || y == 0) && z == 0)) |
| 48 | { |
| 49 | x = math_opt_barrier (x); |
| 50 | return x * y + z; |
| 51 | } |
| 52 | |
| 53 | fenv_t env; |
| 54 | feholdexcept (envp: &env); |
| 55 | fesetround (FE_TONEAREST); |
| 56 | |
| 57 | /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ |
| 58 | #define C ((1ULL << (LDBL_MANT_DIG + 1) / 2) + 1) |
| 59 | long double x1 = (long double) x * C; |
| 60 | long double y1 = (long double) y * C; |
| 61 | long double m1 = (long double) x * y; |
| 62 | x1 = (x - x1) + x1; |
| 63 | y1 = (y - y1) + y1; |
| 64 | long double x2 = x - x1; |
| 65 | long double y2 = y - y1; |
| 66 | long double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; |
| 67 | |
| 68 | /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ |
| 69 | long double a1 = z + m1; |
| 70 | long double t1 = a1 - z; |
| 71 | long double t2 = a1 - t1; |
| 72 | t1 = m1 - t1; |
| 73 | t2 = z - t2; |
| 74 | long double a2 = t1 + t2; |
| 75 | /* Ensure the arithmetic is not scheduled after feclearexcept call. */ |
| 76 | math_force_eval (m2); |
| 77 | math_force_eval (a2); |
| 78 | feclearexcept (FE_INEXACT); |
| 79 | |
| 80 | /* If the result is an exact zero, ensure it has the correct sign. */ |
| 81 | if (a1 == 0 && m2 == 0) |
| 82 | { |
| 83 | feupdateenv (envp: &env); |
| 84 | /* Ensure that round-to-nearest value of z + m1 is not reused. */ |
| 85 | z = math_opt_barrier (z); |
| 86 | return z + m1; |
| 87 | } |
| 88 | |
| 89 | fesetround (FE_TOWARDZERO); |
| 90 | /* Perform m2 + a2 addition with round to odd. */ |
| 91 | a2 = a2 + m2; |
| 92 | |
| 93 | /* Add that to a1 again using rounding to odd. */ |
| 94 | union ieee854_long_double u; |
| 95 | u.d = a1 + a2; |
| 96 | if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff) |
| 97 | u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0; |
| 98 | feupdateenv (envp: &env); |
| 99 | |
| 100 | /* Add finally round to double precision. */ |
| 101 | return u.d; |
| 102 | } |
| 103 | #ifndef __fma |
| 104 | libm_alias_double (__fma, fma) |
| 105 | libm_alias_double_narrow (__fma, fma) |
| 106 | #endif |
| 107 | |