| 1 | /* Initialize x86 cache info. |
| 2 | Copyright (C) 2020-2024 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | static const struct intel_02_cache_info |
| 20 | { |
| 21 | unsigned char idx; |
| 22 | unsigned char assoc; |
| 23 | unsigned char linesize; |
| 24 | unsigned char rel_name; |
| 25 | unsigned int size; |
| 26 | } intel_02_known [] = |
| 27 | { |
| 28 | #define M(sc) ((sc) - _SC_LEVEL1_ICACHE_SIZE) |
| 29 | { 0x06, 4, 32, M(_SC_LEVEL1_ICACHE_SIZE), 8192 }, |
| 30 | { 0x08, 4, 32, M(_SC_LEVEL1_ICACHE_SIZE), 16384 }, |
| 31 | { 0x09, 4, 32, M(_SC_LEVEL1_ICACHE_SIZE), 32768 }, |
| 32 | { 0x0a, 2, 32, M(_SC_LEVEL1_DCACHE_SIZE), 8192 }, |
| 33 | { 0x0c, 4, 32, M(_SC_LEVEL1_DCACHE_SIZE), 16384 }, |
| 34 | { 0x0d, 4, 64, M(_SC_LEVEL1_DCACHE_SIZE), 16384 }, |
| 35 | { 0x0e, 6, 64, M(_SC_LEVEL1_DCACHE_SIZE), 24576 }, |
| 36 | { 0x21, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
| 37 | { 0x22, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 524288 }, |
| 38 | { 0x23, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 1048576 }, |
| 39 | { 0x25, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
| 40 | { 0x29, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
| 41 | { 0x2c, 8, 64, M(_SC_LEVEL1_DCACHE_SIZE), 32768 }, |
| 42 | { 0x30, 8, 64, M(_SC_LEVEL1_ICACHE_SIZE), 32768 }, |
| 43 | { 0x39, 4, 64, M(_SC_LEVEL2_CACHE_SIZE), 131072 }, |
| 44 | { 0x3a, 6, 64, M(_SC_LEVEL2_CACHE_SIZE), 196608 }, |
| 45 | { 0x3b, 2, 64, M(_SC_LEVEL2_CACHE_SIZE), 131072 }, |
| 46 | { 0x3c, 4, 64, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
| 47 | { 0x3d, 6, 64, M(_SC_LEVEL2_CACHE_SIZE), 393216 }, |
| 48 | { 0x3e, 4, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 49 | { 0x3f, 2, 64, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
| 50 | { 0x41, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 131072 }, |
| 51 | { 0x42, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
| 52 | { 0x43, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 53 | { 0x44, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
| 54 | { 0x45, 4, 32, M(_SC_LEVEL2_CACHE_SIZE), 2097152 }, |
| 55 | { 0x46, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
| 56 | { 0x47, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 8388608 }, |
| 57 | { 0x48, 12, 64, M(_SC_LEVEL2_CACHE_SIZE), 3145728 }, |
| 58 | { 0x49, 16, 64, M(_SC_LEVEL2_CACHE_SIZE), 4194304 }, |
| 59 | { 0x4a, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 6291456 }, |
| 60 | { 0x4b, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 8388608 }, |
| 61 | { 0x4c, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 12582912 }, |
| 62 | { 0x4d, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 16777216 }, |
| 63 | { 0x4e, 24, 64, M(_SC_LEVEL2_CACHE_SIZE), 6291456 }, |
| 64 | { 0x60, 8, 64, M(_SC_LEVEL1_DCACHE_SIZE), 16384 }, |
| 65 | { 0x66, 4, 64, M(_SC_LEVEL1_DCACHE_SIZE), 8192 }, |
| 66 | { 0x67, 4, 64, M(_SC_LEVEL1_DCACHE_SIZE), 16384 }, |
| 67 | { 0x68, 4, 64, M(_SC_LEVEL1_DCACHE_SIZE), 32768 }, |
| 68 | { 0x78, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
| 69 | { 0x79, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 131072 }, |
| 70 | { 0x7a, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
| 71 | { 0x7b, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 72 | { 0x7c, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
| 73 | { 0x7d, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 2097152 }, |
| 74 | { 0x7f, 2, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 75 | { 0x80, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 76 | { 0x82, 8, 32, M(_SC_LEVEL2_CACHE_SIZE), 262144 }, |
| 77 | { 0x83, 8, 32, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 78 | { 0x84, 8, 32, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
| 79 | { 0x85, 8, 32, M(_SC_LEVEL2_CACHE_SIZE), 2097152 }, |
| 80 | { 0x86, 4, 64, M(_SC_LEVEL2_CACHE_SIZE), 524288 }, |
| 81 | { 0x87, 8, 64, M(_SC_LEVEL2_CACHE_SIZE), 1048576 }, |
| 82 | { 0xd0, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 524288 }, |
| 83 | { 0xd1, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 1048576 }, |
| 84 | { 0xd2, 4, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
| 85 | { 0xd6, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 1048576 }, |
| 86 | { 0xd7, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
| 87 | { 0xd8, 8, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
| 88 | { 0xdc, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
| 89 | { 0xdd, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
| 90 | { 0xde, 12, 64, M(_SC_LEVEL3_CACHE_SIZE), 8388608 }, |
| 91 | { 0xe2, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 2097152 }, |
| 92 | { 0xe3, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 4194304 }, |
| 93 | { 0xe4, 16, 64, M(_SC_LEVEL3_CACHE_SIZE), 8388608 }, |
| 94 | { 0xea, 24, 64, M(_SC_LEVEL3_CACHE_SIZE), 12582912 }, |
| 95 | { 0xeb, 24, 64, M(_SC_LEVEL3_CACHE_SIZE), 18874368 }, |
| 96 | { 0xec, 24, 64, M(_SC_LEVEL3_CACHE_SIZE), 25165824 }, |
| 97 | }; |
| 98 | |
| 99 | #define nintel_02_known (sizeof (intel_02_known) / sizeof (intel_02_known [0])) |
| 100 | |
| 101 | static int |
| 102 | intel_02_known_compare (const void *p1, const void *p2) |
| 103 | { |
| 104 | const struct intel_02_cache_info *i1; |
| 105 | const struct intel_02_cache_info *i2; |
| 106 | |
| 107 | i1 = (const struct intel_02_cache_info *) p1; |
| 108 | i2 = (const struct intel_02_cache_info *) p2; |
| 109 | |
| 110 | if (i1->idx == i2->idx) |
| 111 | return 0; |
| 112 | |
| 113 | return i1->idx < i2->idx ? -1 : 1; |
| 114 | } |
| 115 | |
| 116 | |
| 117 | static long int |
| 118 | __attribute__ ((noinline)) |
| 119 | intel_check_word (int name, unsigned int value, bool *has_level_2, |
| 120 | bool *no_level_2_or_3, |
| 121 | const struct cpu_features *cpu_features) |
| 122 | { |
| 123 | if ((value & 0x80000000) != 0) |
| 124 | /* The register value is reserved. */ |
| 125 | return 0; |
| 126 | |
| 127 | /* Fold the name. The _SC_ constants are always in the order SIZE, |
| 128 | ASSOC, LINESIZE. */ |
| 129 | int folded_rel_name = (M(name) / 3) * 3; |
| 130 | |
| 131 | while (value != 0) |
| 132 | { |
| 133 | unsigned int byte = value & 0xff; |
| 134 | |
| 135 | if (byte == 0x40) |
| 136 | { |
| 137 | *no_level_2_or_3 = true; |
| 138 | |
| 139 | if (folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE)) |
| 140 | /* No need to look further. */ |
| 141 | break; |
| 142 | } |
| 143 | else if (byte == 0xff) |
| 144 | { |
| 145 | /* CPUID leaf 0x4 contains all the information. We need to |
| 146 | iterate over it. */ |
| 147 | unsigned int eax; |
| 148 | unsigned int ebx; |
| 149 | unsigned int ecx; |
| 150 | unsigned int edx; |
| 151 | |
| 152 | unsigned int round = 0; |
| 153 | while (1) |
| 154 | { |
| 155 | __cpuid_count (4, round, eax, ebx, ecx, edx); |
| 156 | |
| 157 | enum { null = 0, data = 1, inst = 2, uni = 3 } type = eax & 0x1f; |
| 158 | if (type == null) |
| 159 | /* That was the end. */ |
| 160 | break; |
| 161 | |
| 162 | unsigned int level = (eax >> 5) & 0x7; |
| 163 | |
| 164 | if ((level == 1 && type == data |
| 165 | && folded_rel_name == M(_SC_LEVEL1_DCACHE_SIZE)) |
| 166 | || (level == 1 && type == inst |
| 167 | && folded_rel_name == M(_SC_LEVEL1_ICACHE_SIZE)) |
| 168 | || (level == 2 && folded_rel_name == M(_SC_LEVEL2_CACHE_SIZE)) |
| 169 | || (level == 3 && folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE)) |
| 170 | || (level == 4 && folded_rel_name == M(_SC_LEVEL4_CACHE_SIZE))) |
| 171 | { |
| 172 | unsigned int offset = M(name) - folded_rel_name; |
| 173 | |
| 174 | if (offset == 0) |
| 175 | /* Cache size. */ |
| 176 | return (((ebx >> 22) + 1) |
| 177 | * (((ebx >> 12) & 0x3ff) + 1) |
| 178 | * ((ebx & 0xfff) + 1) |
| 179 | * (ecx + 1)); |
| 180 | if (offset == 1) |
| 181 | return (ebx >> 22) + 1; |
| 182 | |
| 183 | assert (offset == 2); |
| 184 | return (ebx & 0xfff) + 1; |
| 185 | } |
| 186 | |
| 187 | ++round; |
| 188 | } |
| 189 | /* There is no other cache information anywhere else. */ |
| 190 | return -1; |
| 191 | } |
| 192 | else |
| 193 | { |
| 194 | if (byte == 0x49 && folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE)) |
| 195 | { |
| 196 | /* Intel reused this value. For family 15, model 6 it |
| 197 | specifies the 3rd level cache. Otherwise the 2nd |
| 198 | level cache. */ |
| 199 | unsigned int family = cpu_features->basic.family; |
| 200 | unsigned int model = cpu_features->basic.model; |
| 201 | |
| 202 | if (family == 15 && model == 6) |
| 203 | { |
| 204 | /* The level 3 cache is encoded for this model like |
| 205 | the level 2 cache is for other models. Pretend |
| 206 | the caller asked for the level 2 cache. */ |
| 207 | name = (_SC_LEVEL2_CACHE_SIZE |
| 208 | + (name - _SC_LEVEL3_CACHE_SIZE)); |
| 209 | folded_rel_name = M(_SC_LEVEL2_CACHE_SIZE); |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | struct intel_02_cache_info *found; |
| 214 | struct intel_02_cache_info search; |
| 215 | |
| 216 | search.idx = byte; |
| 217 | found = bsearch (&search, intel_02_known, nintel_02_known, |
| 218 | sizeof (intel_02_known[0]), intel_02_known_compare); |
| 219 | if (found != NULL) |
| 220 | { |
| 221 | if (found->rel_name == folded_rel_name) |
| 222 | { |
| 223 | unsigned int offset = M(name) - folded_rel_name; |
| 224 | |
| 225 | if (offset == 0) |
| 226 | /* Cache size. */ |
| 227 | return found->size; |
| 228 | if (offset == 1) |
| 229 | return found->assoc; |
| 230 | |
| 231 | assert (offset == 2); |
| 232 | return found->linesize; |
| 233 | } |
| 234 | |
| 235 | if (found->rel_name == M(_SC_LEVEL2_CACHE_SIZE)) |
| 236 | *has_level_2 = true; |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | /* Next byte for the next round. */ |
| 241 | value >>= 8; |
| 242 | } |
| 243 | |
| 244 | /* Nothing found. */ |
| 245 | return 0; |
| 246 | } |
| 247 | |
| 248 | |
| 249 | static long int __attribute__ ((noinline)) |
| 250 | handle_intel (int name, const struct cpu_features *cpu_features) |
| 251 | { |
| 252 | unsigned int maxidx = cpu_features->basic.max_cpuid; |
| 253 | |
| 254 | /* Return -1 for older CPUs. */ |
| 255 | if (maxidx < 2) |
| 256 | return -1; |
| 257 | |
| 258 | /* OK, we can use the CPUID instruction to get all info about the |
| 259 | caches. */ |
| 260 | long int result = 0; |
| 261 | bool no_level_2_or_3 = false; |
| 262 | bool has_level_2 = false; |
| 263 | unsigned int eax; |
| 264 | unsigned int ebx; |
| 265 | unsigned int ecx; |
| 266 | unsigned int edx; |
| 267 | __cpuid (2, eax, ebx, ecx, edx); |
| 268 | |
| 269 | /* The low byte of EAX of CPUID leaf 2 should always return 1 and it |
| 270 | should be ignored. If it isn't 1, use CPUID leaf 4 instead. */ |
| 271 | if ((eax & 0xff) != 1) |
| 272 | return intel_check_word (name, value: 0xff, has_level_2: &has_level_2, no_level_2_or_3: &no_level_2_or_3, |
| 273 | cpu_features); |
| 274 | else |
| 275 | { |
| 276 | eax &= 0xffffff00; |
| 277 | |
| 278 | /* Process the individual registers' value. */ |
| 279 | result = intel_check_word (name, value: eax, has_level_2: &has_level_2, |
| 280 | no_level_2_or_3: &no_level_2_or_3, cpu_features); |
| 281 | if (result != 0) |
| 282 | return result; |
| 283 | |
| 284 | result = intel_check_word (name, value: ebx, has_level_2: &has_level_2, |
| 285 | no_level_2_or_3: &no_level_2_or_3, cpu_features); |
| 286 | if (result != 0) |
| 287 | return result; |
| 288 | |
| 289 | result = intel_check_word (name, value: ecx, has_level_2: &has_level_2, |
| 290 | no_level_2_or_3: &no_level_2_or_3, cpu_features); |
| 291 | if (result != 0) |
| 292 | return result; |
| 293 | |
| 294 | result = intel_check_word (name, value: edx, has_level_2: &has_level_2, |
| 295 | no_level_2_or_3: &no_level_2_or_3, cpu_features); |
| 296 | if (result != 0) |
| 297 | return result; |
| 298 | } |
| 299 | |
| 300 | if (name >= _SC_LEVEL2_CACHE_SIZE && name <= _SC_LEVEL3_CACHE_LINESIZE |
| 301 | && no_level_2_or_3) |
| 302 | return -1; |
| 303 | |
| 304 | return 0; |
| 305 | } |
| 306 | |
| 307 | |
| 308 | static long int __attribute__ ((noinline)) |
| 309 | handle_amd (int name) |
| 310 | { |
| 311 | unsigned int eax; |
| 312 | unsigned int ebx; |
| 313 | unsigned int ecx = 0; |
| 314 | unsigned int edx; |
| 315 | unsigned int max_cpuid = 0; |
| 316 | unsigned int fn = 0; |
| 317 | |
| 318 | /* No level 4 cache (yet). */ |
| 319 | if (name > _SC_LEVEL3_CACHE_LINESIZE) |
| 320 | return 0; |
| 321 | |
| 322 | __cpuid (0x80000000, max_cpuid, ebx, ecx, edx); |
| 323 | |
| 324 | if (max_cpuid >= 0x8000001D) |
| 325 | /* Use __cpuid__ '0x8000_001D' to compute cache details. */ |
| 326 | { |
| 327 | unsigned int count = 0x1; |
| 328 | |
| 329 | if (name >= _SC_LEVEL3_CACHE_SIZE) |
| 330 | count = 0x3; |
| 331 | else if (name >= _SC_LEVEL2_CACHE_SIZE) |
| 332 | count = 0x2; |
| 333 | else if (name >= _SC_LEVEL1_DCACHE_SIZE) |
| 334 | count = 0x0; |
| 335 | |
| 336 | __cpuid_count (0x8000001D, count, eax, ebx, ecx, edx); |
| 337 | |
| 338 | if (ecx != 0) |
| 339 | { |
| 340 | switch (name) |
| 341 | { |
| 342 | case _SC_LEVEL1_ICACHE_ASSOC: |
| 343 | case _SC_LEVEL1_DCACHE_ASSOC: |
| 344 | case _SC_LEVEL2_CACHE_ASSOC: |
| 345 | case _SC_LEVEL3_CACHE_ASSOC: |
| 346 | return ((ebx >> 22) & 0x3ff) + 1; |
| 347 | case _SC_LEVEL1_ICACHE_LINESIZE: |
| 348 | case _SC_LEVEL1_DCACHE_LINESIZE: |
| 349 | case _SC_LEVEL2_CACHE_LINESIZE: |
| 350 | case _SC_LEVEL3_CACHE_LINESIZE: |
| 351 | return (ebx & 0xfff) + 1; |
| 352 | case _SC_LEVEL1_ICACHE_SIZE: |
| 353 | case _SC_LEVEL1_DCACHE_SIZE: |
| 354 | case _SC_LEVEL2_CACHE_SIZE: |
| 355 | case _SC_LEVEL3_CACHE_SIZE: |
| 356 | return (((ebx >> 22) & 0x3ff) + 1) * ((ebx & 0xfff) + 1) * (ecx + 1); |
| 357 | default: |
| 358 | __builtin_unreachable (); |
| 359 | } |
| 360 | return -1; |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | /* Legacy cache computation for CPUs prior to Bulldozer family. |
| 365 | This is also a fail-safe mechanism for some hypervisors that |
| 366 | accidentally configure __cpuid__ '0x8000_001D' to Zero. */ |
| 367 | |
| 368 | fn = 0x80000005 + (name >= _SC_LEVEL2_CACHE_SIZE); |
| 369 | |
| 370 | if (max_cpuid < fn) |
| 371 | return 0; |
| 372 | |
| 373 | __cpuid (fn, eax, ebx, ecx, edx); |
| 374 | |
| 375 | if (name < _SC_LEVEL1_DCACHE_SIZE) |
| 376 | { |
| 377 | name += _SC_LEVEL1_DCACHE_SIZE - _SC_LEVEL1_ICACHE_SIZE; |
| 378 | ecx = edx; |
| 379 | } |
| 380 | |
| 381 | switch (name) |
| 382 | { |
| 383 | case _SC_LEVEL1_DCACHE_SIZE: |
| 384 | return (ecx >> 14) & 0x3fc00; |
| 385 | |
| 386 | case _SC_LEVEL1_DCACHE_ASSOC: |
| 387 | ecx >>= 16; |
| 388 | if ((ecx & 0xff) == 0xff) |
| 389 | { |
| 390 | /* Fully associative. */ |
| 391 | return (ecx << 2) & 0x3fc00; |
| 392 | } |
| 393 | return ecx & 0xff; |
| 394 | |
| 395 | case _SC_LEVEL1_DCACHE_LINESIZE: |
| 396 | return ecx & 0xff; |
| 397 | |
| 398 | case _SC_LEVEL2_CACHE_SIZE: |
| 399 | return (ecx & 0xf000) == 0 ? 0 : (ecx >> 6) & 0x3fffc00; |
| 400 | |
| 401 | case _SC_LEVEL2_CACHE_ASSOC: |
| 402 | switch ((ecx >> 12) & 0xf) |
| 403 | { |
| 404 | case 0: |
| 405 | case 1: |
| 406 | case 2: |
| 407 | case 4: |
| 408 | return (ecx >> 12) & 0xf; |
| 409 | case 6: |
| 410 | return 8; |
| 411 | case 8: |
| 412 | return 16; |
| 413 | case 10: |
| 414 | return 32; |
| 415 | case 11: |
| 416 | return 48; |
| 417 | case 12: |
| 418 | return 64; |
| 419 | case 13: |
| 420 | return 96; |
| 421 | case 14: |
| 422 | return 128; |
| 423 | case 15: |
| 424 | return ((ecx >> 6) & 0x3fffc00) / (ecx & 0xff); |
| 425 | default: |
| 426 | return 0; |
| 427 | } |
| 428 | |
| 429 | case _SC_LEVEL2_CACHE_LINESIZE: |
| 430 | return (ecx & 0xf000) == 0 ? 0 : ecx & 0xff; |
| 431 | |
| 432 | case _SC_LEVEL3_CACHE_SIZE: |
| 433 | { |
| 434 | long int total_l3_cache = 0, l3_cache_per_thread = 0; |
| 435 | unsigned int threads = 0; |
| 436 | const struct cpu_features *cpu_features; |
| 437 | |
| 438 | if ((edx & 0xf000) == 0) |
| 439 | return 0; |
| 440 | |
| 441 | total_l3_cache = (edx & 0x3ffc0000) << 1; |
| 442 | cpu_features = __get_cpu_features (); |
| 443 | |
| 444 | /* Figure out the number of logical threads that share L3. */ |
| 445 | if (max_cpuid >= 0x80000008) |
| 446 | { |
| 447 | /* Get width of APIC ID. */ |
| 448 | __cpuid (0x80000008, eax, ebx, ecx, edx); |
| 449 | threads = (ecx & 0xff) + 1; |
| 450 | } |
| 451 | |
| 452 | if (threads == 0) |
| 453 | { |
| 454 | /* If APIC ID width is not available, use logical |
| 455 | processor count. */ |
| 456 | __cpuid (0x00000001, eax, ebx, ecx, edx); |
| 457 | if ((edx & (1 << 28)) != 0) |
| 458 | threads = (ebx >> 16) & 0xff; |
| 459 | } |
| 460 | |
| 461 | /* Cap usage of highest cache level to the number of |
| 462 | supported threads. */ |
| 463 | if (threads > 0) |
| 464 | l3_cache_per_thread = total_l3_cache/threads; |
| 465 | |
| 466 | /* Get shared cache per ccx for Zen architectures. */ |
| 467 | if (cpu_features->basic.family >= 0x17) |
| 468 | { |
| 469 | long int l3_cache_per_ccx = 0; |
| 470 | /* Get number of threads share the L3 cache in CCX. */ |
| 471 | __cpuid_count (0x8000001D, 0x3, eax, ebx, ecx, edx); |
| 472 | unsigned int threads_per_ccx = ((eax >> 14) & 0xfff) + 1; |
| 473 | l3_cache_per_ccx = l3_cache_per_thread * threads_per_ccx; |
| 474 | return l3_cache_per_ccx; |
| 475 | } |
| 476 | else |
| 477 | { |
| 478 | return l3_cache_per_thread; |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | case _SC_LEVEL3_CACHE_ASSOC: |
| 483 | switch ((edx >> 12) & 0xf) |
| 484 | { |
| 485 | case 0: |
| 486 | case 1: |
| 487 | case 2: |
| 488 | case 4: |
| 489 | return (edx >> 12) & 0xf; |
| 490 | case 6: |
| 491 | return 8; |
| 492 | case 8: |
| 493 | return 16; |
| 494 | case 10: |
| 495 | return 32; |
| 496 | case 11: |
| 497 | return 48; |
| 498 | case 12: |
| 499 | return 64; |
| 500 | case 13: |
| 501 | return 96; |
| 502 | case 14: |
| 503 | return 128; |
| 504 | case 15: |
| 505 | return ((edx & 0x3ffc0000) << 1) / (edx & 0xff); |
| 506 | default: |
| 507 | return 0; |
| 508 | } |
| 509 | |
| 510 | case _SC_LEVEL3_CACHE_LINESIZE: |
| 511 | return (edx & 0xf000) == 0 ? 0 : edx & 0xff; |
| 512 | |
| 513 | default: |
| 514 | __builtin_unreachable (); |
| 515 | } |
| 516 | return -1; |
| 517 | } |
| 518 | |
| 519 | |
| 520 | static long int __attribute__ ((noinline)) |
| 521 | handle_zhaoxin (int name) |
| 522 | { |
| 523 | unsigned int eax; |
| 524 | unsigned int ebx; |
| 525 | unsigned int ecx; |
| 526 | unsigned int edx; |
| 527 | |
| 528 | int folded_rel_name = (M(name) / 3) * 3; |
| 529 | |
| 530 | unsigned int round = 0; |
| 531 | while (1) |
| 532 | { |
| 533 | __cpuid_count (4, round, eax, ebx, ecx, edx); |
| 534 | |
| 535 | enum { null = 0, data = 1, inst = 2, uni = 3 } type = eax & 0x1f; |
| 536 | if (type == null) |
| 537 | break; |
| 538 | |
| 539 | unsigned int level = (eax >> 5) & 0x7; |
| 540 | |
| 541 | if ((level == 1 && type == data |
| 542 | && folded_rel_name == M(_SC_LEVEL1_DCACHE_SIZE)) |
| 543 | || (level == 1 && type == inst |
| 544 | && folded_rel_name == M(_SC_LEVEL1_ICACHE_SIZE)) |
| 545 | || (level == 2 && folded_rel_name == M(_SC_LEVEL2_CACHE_SIZE)) |
| 546 | || (level == 3 && folded_rel_name == M(_SC_LEVEL3_CACHE_SIZE))) |
| 547 | { |
| 548 | unsigned int offset = M(name) - folded_rel_name; |
| 549 | |
| 550 | if (offset == 0) |
| 551 | /* Cache size. */ |
| 552 | return (((ebx >> 22) + 1) |
| 553 | * (((ebx >> 12) & 0x3ff) + 1) |
| 554 | * ((ebx & 0xfff) + 1) |
| 555 | * (ecx + 1)); |
| 556 | if (offset == 1) |
| 557 | return (ebx >> 22) + 1; |
| 558 | |
| 559 | assert (offset == 2); |
| 560 | return (ebx & 0xfff) + 1; |
| 561 | } |
| 562 | |
| 563 | ++round; |
| 564 | } |
| 565 | |
| 566 | /* Nothing found. */ |
| 567 | return 0; |
| 568 | } |
| 569 | |
| 570 | static void |
| 571 | get_common_cache_info (long int *shared_ptr, long int * shared_per_thread_ptr, unsigned int *threads_ptr, |
| 572 | long int core) |
| 573 | { |
| 574 | unsigned int eax; |
| 575 | unsigned int ebx; |
| 576 | unsigned int ecx; |
| 577 | unsigned int edx; |
| 578 | |
| 579 | /* Number of logical processors sharing L2 cache. */ |
| 580 | int threads_l2; |
| 581 | |
| 582 | /* Number of logical processors sharing L3 cache. */ |
| 583 | int threads_l3; |
| 584 | |
| 585 | const struct cpu_features *cpu_features = __get_cpu_features (); |
| 586 | int max_cpuid = cpu_features->basic.max_cpuid; |
| 587 | unsigned int family = cpu_features->basic.family; |
| 588 | unsigned int model = cpu_features->basic.model; |
| 589 | long int shared = *shared_ptr; |
| 590 | long int shared_per_thread = *shared_per_thread_ptr; |
| 591 | unsigned int threads = *threads_ptr; |
| 592 | bool inclusive_cache = true; |
| 593 | bool support_count_mask = true; |
| 594 | |
| 595 | /* Try L3 first. */ |
| 596 | unsigned int level = 3; |
| 597 | |
| 598 | if (cpu_features->basic.kind == arch_kind_zhaoxin && family == 6) |
| 599 | support_count_mask = false; |
| 600 | |
| 601 | if (shared <= 0) |
| 602 | { |
| 603 | /* Try L2 otherwise. */ |
| 604 | level = 2; |
| 605 | shared = core; |
| 606 | shared_per_thread = core; |
| 607 | threads_l2 = 0; |
| 608 | threads_l3 = -1; |
| 609 | } |
| 610 | else |
| 611 | { |
| 612 | threads_l2 = 0; |
| 613 | threads_l3 = 0; |
| 614 | } |
| 615 | |
| 616 | /* A value of 0 for the HTT bit indicates there is only a single |
| 617 | logical processor. */ |
| 618 | if (HAS_CPU_FEATURE (HTT)) |
| 619 | { |
| 620 | /* Figure out the number of logical threads that share the |
| 621 | highest cache level. */ |
| 622 | if (max_cpuid >= 4) |
| 623 | { |
| 624 | int i = 0; |
| 625 | |
| 626 | /* Query until cache level 2 and 3 are enumerated. */ |
| 627 | int check = 0x1 | (threads_l3 == 0) << 1; |
| 628 | do |
| 629 | { |
| 630 | __cpuid_count (4, i++, eax, ebx, ecx, edx); |
| 631 | |
| 632 | /* There seems to be a bug in at least some Pentium Ds |
| 633 | which sometimes fail to iterate all cache parameters. |
| 634 | Do not loop indefinitely here, stop in this case and |
| 635 | assume there is no such information. */ |
| 636 | if (cpu_features->basic.kind == arch_kind_intel |
| 637 | && (eax & 0x1f) == 0 ) |
| 638 | goto intel_bug_no_cache_info; |
| 639 | |
| 640 | switch ((eax >> 5) & 0x7) |
| 641 | { |
| 642 | default: |
| 643 | break; |
| 644 | case 2: |
| 645 | if ((check & 0x1)) |
| 646 | { |
| 647 | /* Get maximum number of logical processors |
| 648 | sharing L2 cache. */ |
| 649 | threads_l2 = (eax >> 14) & 0x3ff; |
| 650 | check &= ~0x1; |
| 651 | } |
| 652 | break; |
| 653 | case 3: |
| 654 | if ((check & (0x1 << 1))) |
| 655 | { |
| 656 | /* Get maximum number of logical processors |
| 657 | sharing L3 cache. */ |
| 658 | threads_l3 = (eax >> 14) & 0x3ff; |
| 659 | |
| 660 | /* Check if L2 and L3 caches are inclusive. */ |
| 661 | inclusive_cache = (edx & 0x2) != 0; |
| 662 | check &= ~(0x1 << 1); |
| 663 | } |
| 664 | break; |
| 665 | } |
| 666 | } |
| 667 | while (check); |
| 668 | |
| 669 | /* If max_cpuid >= 11, THREADS_L2/THREADS_L3 are the maximum |
| 670 | numbers of addressable IDs for logical processors sharing |
| 671 | the cache, instead of the maximum number of threads |
| 672 | sharing the cache. */ |
| 673 | if (max_cpuid >= 11 && support_count_mask) |
| 674 | { |
| 675 | /* Find the number of logical processors shipped in |
| 676 | one core and apply count mask. */ |
| 677 | i = 0; |
| 678 | |
| 679 | /* Count SMT only if there is L3 cache. Always count |
| 680 | core if there is no L3 cache. */ |
| 681 | int count = ((threads_l2 > 0 && level == 3) |
| 682 | | ((threads_l3 > 0 |
| 683 | || (threads_l2 > 0 && level == 2)) << 1)); |
| 684 | |
| 685 | while (count) |
| 686 | { |
| 687 | __cpuid_count (11, i++, eax, ebx, ecx, edx); |
| 688 | |
| 689 | int shipped = ebx & 0xff; |
| 690 | int type = ecx & 0xff00; |
| 691 | if (shipped == 0 || type == 0) |
| 692 | break; |
| 693 | else if (type == 0x100) |
| 694 | { |
| 695 | /* Count SMT. */ |
| 696 | if ((count & 0x1)) |
| 697 | { |
| 698 | int count_mask; |
| 699 | |
| 700 | /* Compute count mask. */ |
| 701 | asm ("bsr %1, %0" |
| 702 | : "=r" (count_mask) : "g" (threads_l2)); |
| 703 | count_mask = ~(-1 << (count_mask + 1)); |
| 704 | threads_l2 = (shipped - 1) & count_mask; |
| 705 | count &= ~0x1; |
| 706 | } |
| 707 | } |
| 708 | else if (type == 0x200) |
| 709 | { |
| 710 | /* Count core. */ |
| 711 | if ((count & (0x1 << 1))) |
| 712 | { |
| 713 | int count_mask; |
| 714 | int threads_core |
| 715 | = (level == 2 ? threads_l2 : threads_l3); |
| 716 | |
| 717 | /* Compute count mask. */ |
| 718 | asm ("bsr %1, %0" |
| 719 | : "=r" (count_mask) : "g" (threads_core)); |
| 720 | count_mask = ~(-1 << (count_mask + 1)); |
| 721 | threads_core = (shipped - 1) & count_mask; |
| 722 | if (level == 2) |
| 723 | threads_l2 = threads_core; |
| 724 | else |
| 725 | threads_l3 = threads_core; |
| 726 | count &= ~(0x1 << 1); |
| 727 | } |
| 728 | } |
| 729 | } |
| 730 | } |
| 731 | if (threads_l2 > 0) |
| 732 | threads_l2 += 1; |
| 733 | if (threads_l3 > 0) |
| 734 | threads_l3 += 1; |
| 735 | if (level == 2) |
| 736 | { |
| 737 | if (threads_l2) |
| 738 | { |
| 739 | threads = threads_l2; |
| 740 | if (cpu_features->basic.kind == arch_kind_intel |
| 741 | && threads > 2 |
| 742 | && family == 6) |
| 743 | switch (model) |
| 744 | { |
| 745 | case 0x37: |
| 746 | case 0x4a: |
| 747 | case 0x4d: |
| 748 | case 0x5a: |
| 749 | case 0x5d: |
| 750 | /* Silvermont has L2 cache shared by 2 cores. */ |
| 751 | threads = 2; |
| 752 | break; |
| 753 | default: |
| 754 | break; |
| 755 | } |
| 756 | } |
| 757 | } |
| 758 | else if (threads_l3) |
| 759 | threads = threads_l3; |
| 760 | } |
| 761 | else |
| 762 | { |
| 763 | intel_bug_no_cache_info: |
| 764 | /* Assume that all logical threads share the highest cache |
| 765 | level. */ |
| 766 | threads = ((cpu_features->features[CPUID_INDEX_1].cpuid.ebx >> 16) |
| 767 | & 0xff); |
| 768 | } |
| 769 | /* Get per-thread size of highest level cache. */ |
| 770 | if (shared_per_thread > 0 && threads > 0) |
| 771 | shared_per_thread /= threads; |
| 772 | } |
| 773 | |
| 774 | /* Account for non-inclusive L2 and L3 caches. */ |
| 775 | if (!inclusive_cache) |
| 776 | { |
| 777 | long int core_per_thread = threads_l2 > 0 ? (core / threads_l2) : core; |
| 778 | shared_per_thread += core_per_thread; |
| 779 | shared += core; |
| 780 | } |
| 781 | |
| 782 | *shared_ptr = shared; |
| 783 | *shared_per_thread_ptr = shared_per_thread; |
| 784 | *threads_ptr = threads; |
| 785 | } |
| 786 | |
| 787 | static void |
| 788 | dl_init_cacheinfo (struct cpu_features *cpu_features) |
| 789 | { |
| 790 | /* Find out what brand of processor. */ |
| 791 | long int data = -1; |
| 792 | long int shared = -1; |
| 793 | long int shared_per_thread = -1; |
| 794 | unsigned int threads = 0; |
| 795 | unsigned long int level1_icache_size = -1; |
| 796 | unsigned long int level1_icache_linesize = -1; |
| 797 | unsigned long int level1_dcache_size = -1; |
| 798 | unsigned long int level1_dcache_assoc = -1; |
| 799 | unsigned long int level1_dcache_linesize = -1; |
| 800 | unsigned long int level2_cache_size = -1; |
| 801 | unsigned long int level2_cache_assoc = -1; |
| 802 | unsigned long int level2_cache_linesize = -1; |
| 803 | unsigned long int level3_cache_size = -1; |
| 804 | unsigned long int level3_cache_assoc = -1; |
| 805 | unsigned long int level3_cache_linesize = -1; |
| 806 | unsigned long int level4_cache_size = -1; |
| 807 | |
| 808 | if (cpu_features->basic.kind == arch_kind_intel) |
| 809 | { |
| 810 | data = handle_intel (_SC_LEVEL1_DCACHE_SIZE, cpu_features); |
| 811 | shared = handle_intel (_SC_LEVEL3_CACHE_SIZE, cpu_features); |
| 812 | shared_per_thread = shared; |
| 813 | |
| 814 | level1_icache_size |
| 815 | = handle_intel (_SC_LEVEL1_ICACHE_SIZE, cpu_features); |
| 816 | level1_icache_linesize |
| 817 | = handle_intel (_SC_LEVEL1_ICACHE_LINESIZE, cpu_features); |
| 818 | level1_dcache_size = data; |
| 819 | level1_dcache_assoc |
| 820 | = handle_intel (_SC_LEVEL1_DCACHE_ASSOC, cpu_features); |
| 821 | level1_dcache_linesize |
| 822 | = handle_intel (_SC_LEVEL1_DCACHE_LINESIZE, cpu_features); |
| 823 | level2_cache_size |
| 824 | = handle_intel (_SC_LEVEL2_CACHE_SIZE, cpu_features); |
| 825 | level2_cache_assoc |
| 826 | = handle_intel (_SC_LEVEL2_CACHE_ASSOC, cpu_features); |
| 827 | level2_cache_linesize |
| 828 | = handle_intel (_SC_LEVEL2_CACHE_LINESIZE, cpu_features); |
| 829 | level3_cache_size = shared; |
| 830 | level3_cache_assoc |
| 831 | = handle_intel (_SC_LEVEL3_CACHE_ASSOC, cpu_features); |
| 832 | level3_cache_linesize |
| 833 | = handle_intel (_SC_LEVEL3_CACHE_LINESIZE, cpu_features); |
| 834 | level4_cache_size |
| 835 | = handle_intel (_SC_LEVEL4_CACHE_SIZE, cpu_features); |
| 836 | |
| 837 | get_common_cache_info (shared_ptr: &shared, shared_per_thread_ptr: &shared_per_thread, threads_ptr: &threads, |
| 838 | core: level2_cache_size); |
| 839 | } |
| 840 | else if (cpu_features->basic.kind == arch_kind_zhaoxin) |
| 841 | { |
| 842 | data = handle_zhaoxin (_SC_LEVEL1_DCACHE_SIZE); |
| 843 | shared = handle_zhaoxin (_SC_LEVEL3_CACHE_SIZE); |
| 844 | shared_per_thread = shared; |
| 845 | |
| 846 | level1_icache_size = handle_zhaoxin (_SC_LEVEL1_ICACHE_SIZE); |
| 847 | level1_icache_linesize = handle_zhaoxin (_SC_LEVEL1_ICACHE_LINESIZE); |
| 848 | level1_dcache_size = data; |
| 849 | level1_dcache_assoc = handle_zhaoxin (_SC_LEVEL1_DCACHE_ASSOC); |
| 850 | level1_dcache_linesize = handle_zhaoxin (_SC_LEVEL1_DCACHE_LINESIZE); |
| 851 | level2_cache_size = handle_zhaoxin (_SC_LEVEL2_CACHE_SIZE); |
| 852 | level2_cache_assoc = handle_zhaoxin (_SC_LEVEL2_CACHE_ASSOC); |
| 853 | level2_cache_linesize = handle_zhaoxin (_SC_LEVEL2_CACHE_LINESIZE); |
| 854 | level3_cache_size = shared; |
| 855 | level3_cache_assoc = handle_zhaoxin (_SC_LEVEL3_CACHE_ASSOC); |
| 856 | level3_cache_linesize = handle_zhaoxin (_SC_LEVEL3_CACHE_LINESIZE); |
| 857 | |
| 858 | get_common_cache_info (shared_ptr: &shared, shared_per_thread_ptr: &shared_per_thread, threads_ptr: &threads, |
| 859 | core: level2_cache_size); |
| 860 | } |
| 861 | else if (cpu_features->basic.kind == arch_kind_amd) |
| 862 | { |
| 863 | data = handle_amd (_SC_LEVEL1_DCACHE_SIZE); |
| 864 | shared = handle_amd (_SC_LEVEL3_CACHE_SIZE); |
| 865 | |
| 866 | level1_icache_size = handle_amd (_SC_LEVEL1_ICACHE_SIZE); |
| 867 | level1_icache_linesize = handle_amd (_SC_LEVEL1_ICACHE_LINESIZE); |
| 868 | level1_dcache_size = data; |
| 869 | level1_dcache_assoc = handle_amd (_SC_LEVEL1_DCACHE_ASSOC); |
| 870 | level1_dcache_linesize = handle_amd (_SC_LEVEL1_DCACHE_LINESIZE); |
| 871 | level2_cache_size = handle_amd (_SC_LEVEL2_CACHE_SIZE);; |
| 872 | level2_cache_assoc = handle_amd (_SC_LEVEL2_CACHE_ASSOC); |
| 873 | level2_cache_linesize = handle_amd (_SC_LEVEL2_CACHE_LINESIZE); |
| 874 | level3_cache_size = shared; |
| 875 | level3_cache_assoc = handle_amd (_SC_LEVEL3_CACHE_ASSOC); |
| 876 | level3_cache_linesize = handle_amd (_SC_LEVEL3_CACHE_LINESIZE); |
| 877 | level4_cache_size = handle_amd (_SC_LEVEL4_CACHE_SIZE); |
| 878 | |
| 879 | if (shared <= 0) |
| 880 | { |
| 881 | /* No shared L3 cache. All we have is the L2 cache. */ |
| 882 | shared = level2_cache_size; |
| 883 | } |
| 884 | else if (cpu_features->basic.family < 0x17) |
| 885 | { |
| 886 | /* Account for exclusive L2 and L3 caches. */ |
| 887 | shared += level2_cache_size; |
| 888 | } |
| 889 | |
| 890 | shared_per_thread = shared; |
| 891 | } |
| 892 | |
| 893 | cpu_features->level1_icache_size = level1_icache_size; |
| 894 | cpu_features->level1_icache_linesize = level1_icache_linesize; |
| 895 | cpu_features->level1_dcache_size = level1_dcache_size; |
| 896 | cpu_features->level1_dcache_assoc = level1_dcache_assoc; |
| 897 | cpu_features->level1_dcache_linesize = level1_dcache_linesize; |
| 898 | cpu_features->level2_cache_size = level2_cache_size; |
| 899 | cpu_features->level2_cache_assoc = level2_cache_assoc; |
| 900 | cpu_features->level2_cache_linesize = level2_cache_linesize; |
| 901 | cpu_features->level3_cache_size = level3_cache_size; |
| 902 | cpu_features->level3_cache_assoc = level3_cache_assoc; |
| 903 | cpu_features->level3_cache_linesize = level3_cache_linesize; |
| 904 | cpu_features->level4_cache_size = level4_cache_size; |
| 905 | |
| 906 | unsigned long int cachesize_non_temporal_divisor |
| 907 | = cpu_features->cachesize_non_temporal_divisor; |
| 908 | if (cachesize_non_temporal_divisor <= 0) |
| 909 | cachesize_non_temporal_divisor = 4; |
| 910 | |
| 911 | /* The default setting for the non_temporal threshold is [1/8, 1/2] of size |
| 912 | of the chip's cache (depending on `cachesize_non_temporal_divisor` which |
| 913 | is microarch specific. The default is 1/4). For most Intel processors |
| 914 | with an initial release date between 2017 and 2023, a thread's |
| 915 | typical share of the cache is from 18-64MB. Using a reasonable size |
| 916 | fraction of L3 is meant to estimate the point where non-temporal stores |
| 917 | begin out-competing REP MOVSB. As well the point where the fact that |
| 918 | non-temporal stores are forced back to main memory would already occurred |
| 919 | to the majority of the lines in the copy. Note, concerns about the entire |
| 920 | L3 cache being evicted by the copy are mostly alleviated by the fact that |
| 921 | modern HW detects streaming patterns and provides proper LRU hints so that |
| 922 | the maximum thrashing capped at 1/associativity. */ |
| 923 | unsigned long int non_temporal_threshold |
| 924 | = shared / cachesize_non_temporal_divisor; |
| 925 | |
| 926 | /* If the computed non_temporal_threshold <= 3/4 * per-thread L3, we most |
| 927 | likely have incorrect/incomplete cache info in which case, default to |
| 928 | 3/4 * per-thread L3 to avoid regressions. */ |
| 929 | unsigned long int non_temporal_threshold_lowbound |
| 930 | = shared_per_thread * 3 / 4; |
| 931 | if (non_temporal_threshold < non_temporal_threshold_lowbound) |
| 932 | non_temporal_threshold = non_temporal_threshold_lowbound; |
| 933 | |
| 934 | /* If no ERMS, we use the per-thread L3 chunking. Normal cacheable stores run |
| 935 | a higher risk of actually thrashing the cache as they don't have a HW LRU |
| 936 | hint. As well, their performance in highly parallel situations is |
| 937 | noticeably worse. */ |
| 938 | if (!CPU_FEATURE_USABLE_P (cpu_features, ERMS)) |
| 939 | non_temporal_threshold = non_temporal_threshold_lowbound; |
| 940 | /* SIZE_MAX >> 4 because memmove-vec-unaligned-erms right-shifts the value of |
| 941 | 'x86_non_temporal_threshold' by `LOG_4X_MEMCPY_THRESH` (4) and it is best |
| 942 | if that operation cannot overflow. Minimum of 0x4040 (16448) because the |
| 943 | L(large_memset_4x) loops need 64-byte to cache align and enough space for |
| 944 | at least 1 iteration of 4x PAGE_SIZE unrolled loop. Both values are |
| 945 | reflected in the manual. */ |
| 946 | unsigned long int maximum_non_temporal_threshold = SIZE_MAX >> 4; |
| 947 | unsigned long int minimum_non_temporal_threshold = 0x4040; |
| 948 | |
| 949 | /* If `non_temporal_threshold` less than `minimum_non_temporal_threshold` |
| 950 | it most likely means we failed to detect the cache info. We don't want |
| 951 | to default to `minimum_non_temporal_threshold` as such a small value, |
| 952 | while correct, has bad performance. We default to 64MB as reasonable |
| 953 | default bound. 64MB is likely conservative in that most/all systems would |
| 954 | choose a lower value so it should never forcing non-temporal stores when |
| 955 | they otherwise wouldn't be used. */ |
| 956 | if (non_temporal_threshold < minimum_non_temporal_threshold) |
| 957 | non_temporal_threshold = 64 * 1024 * 1024; |
| 958 | else if (non_temporal_threshold > maximum_non_temporal_threshold) |
| 959 | non_temporal_threshold = maximum_non_temporal_threshold; |
| 960 | |
| 961 | /* NB: The REP MOVSB threshold must be greater than VEC_SIZE * 8. */ |
| 962 | unsigned long int minimum_rep_movsb_threshold; |
| 963 | /* NB: The default REP MOVSB threshold is 4096 * (VEC_SIZE / 16) for |
| 964 | VEC_SIZE == 64 or 32. For VEC_SIZE == 16, the default REP MOVSB |
| 965 | threshold is 2048 * (VEC_SIZE / 16). */ |
| 966 | unsigned long int rep_movsb_threshold; |
| 967 | if (CPU_FEATURE_USABLE_P (cpu_features, AVX512F) |
| 968 | && !CPU_FEATURE_PREFERRED_P (cpu_features, Prefer_No_AVX512)) |
| 969 | { |
| 970 | rep_movsb_threshold = 4096 * (64 / 16); |
| 971 | minimum_rep_movsb_threshold = 64 * 8; |
| 972 | } |
| 973 | else if (CPU_FEATURE_PREFERRED_P (cpu_features, |
| 974 | AVX_Fast_Unaligned_Load)) |
| 975 | { |
| 976 | rep_movsb_threshold = 4096 * (32 / 16); |
| 977 | minimum_rep_movsb_threshold = 32 * 8; |
| 978 | } |
| 979 | else |
| 980 | { |
| 981 | rep_movsb_threshold = 2048 * (16 / 16); |
| 982 | minimum_rep_movsb_threshold = 16 * 8; |
| 983 | } |
| 984 | /* NB: The default REP MOVSB threshold is 2112 on processors with fast |
| 985 | short REP MOVSB (FSRM). */ |
| 986 | if (CPU_FEATURE_USABLE_P (cpu_features, FSRM)) |
| 987 | rep_movsb_threshold = 2112; |
| 988 | |
| 989 | /* For AMD CPUs that support ERMS (Zen3+), REP MOVSB is in a lot of |
| 990 | cases slower than the vectorized path (and for some alignments, |
| 991 | it is really slow, check BZ #30994). */ |
| 992 | if (cpu_features->basic.kind == arch_kind_amd) |
| 993 | rep_movsb_threshold = non_temporal_threshold; |
| 994 | |
| 995 | /* The default threshold to use Enhanced REP STOSB. */ |
| 996 | unsigned long int rep_stosb_threshold = 2048; |
| 997 | |
| 998 | long int tunable_size; |
| 999 | |
| 1000 | tunable_size = TUNABLE_GET (x86_data_cache_size, long int, NULL); |
| 1001 | /* NB: Ignore the default value 0. */ |
| 1002 | if (tunable_size != 0) |
| 1003 | data = tunable_size; |
| 1004 | |
| 1005 | tunable_size = TUNABLE_GET (x86_shared_cache_size, long int, NULL); |
| 1006 | /* NB: Ignore the default value 0. */ |
| 1007 | if (tunable_size != 0) |
| 1008 | shared = tunable_size; |
| 1009 | |
| 1010 | /* Non-temporal stores are more performant on some hardware above |
| 1011 | non_temporal_threshold. Currently Prefer_Non_Temporal is set for for both |
| 1012 | Intel and AMD hardware. */ |
| 1013 | unsigned long int memset_non_temporal_threshold = SIZE_MAX; |
| 1014 | if (!CPU_FEATURES_ARCH_P (cpu_features, Avoid_Non_Temporal_Memset)) |
| 1015 | memset_non_temporal_threshold = non_temporal_threshold; |
| 1016 | |
| 1017 | tunable_size = TUNABLE_GET (x86_non_temporal_threshold, long int, NULL); |
| 1018 | if (tunable_size > minimum_non_temporal_threshold |
| 1019 | && tunable_size <= maximum_non_temporal_threshold) |
| 1020 | non_temporal_threshold = tunable_size; |
| 1021 | |
| 1022 | tunable_size = TUNABLE_GET (x86_memset_non_temporal_threshold, long int, NULL); |
| 1023 | if (tunable_size > minimum_non_temporal_threshold |
| 1024 | && tunable_size <= maximum_non_temporal_threshold) |
| 1025 | memset_non_temporal_threshold = tunable_size; |
| 1026 | |
| 1027 | tunable_size = TUNABLE_GET (x86_rep_movsb_threshold, long int, NULL); |
| 1028 | if (tunable_size > minimum_rep_movsb_threshold) |
| 1029 | rep_movsb_threshold = tunable_size; |
| 1030 | |
| 1031 | /* NB: The default value of the x86_rep_stosb_threshold tunable is the |
| 1032 | same as the default value of __x86_rep_stosb_threshold and the |
| 1033 | minimum value is fixed. */ |
| 1034 | rep_stosb_threshold = TUNABLE_GET (x86_rep_stosb_threshold, |
| 1035 | long int, NULL); |
| 1036 | if (cpu_features->basic.kind == arch_kind_amd |
| 1037 | && !TUNABLE_IS_INITIALIZED (x86_rep_stosb_threshold)) |
| 1038 | /* For AMD Zen3+ architecture, the performance of the vectorized loop is |
| 1039 | slightly better than ERMS. */ |
| 1040 | rep_stosb_threshold = SIZE_MAX; |
| 1041 | |
| 1042 | TUNABLE_SET_WITH_BOUNDS (x86_data_cache_size, data, 0, SIZE_MAX); |
| 1043 | TUNABLE_SET_WITH_BOUNDS (x86_shared_cache_size, shared, 0, SIZE_MAX); |
| 1044 | TUNABLE_SET_WITH_BOUNDS (x86_non_temporal_threshold, non_temporal_threshold, |
| 1045 | minimum_non_temporal_threshold, |
| 1046 | maximum_non_temporal_threshold); |
| 1047 | TUNABLE_SET_WITH_BOUNDS (x86_memset_non_temporal_threshold, |
| 1048 | memset_non_temporal_threshold, |
| 1049 | minimum_non_temporal_threshold, SIZE_MAX); |
| 1050 | TUNABLE_SET_WITH_BOUNDS (x86_rep_movsb_threshold, rep_movsb_threshold, |
| 1051 | minimum_rep_movsb_threshold, SIZE_MAX); |
| 1052 | TUNABLE_SET_WITH_BOUNDS (x86_rep_stosb_threshold, rep_stosb_threshold, 1, |
| 1053 | SIZE_MAX); |
| 1054 | |
| 1055 | unsigned long int rep_movsb_stop_threshold; |
| 1056 | /* Setting the upper bound of ERMS to the computed value of |
| 1057 | non-temporal threshold for all architectures. */ |
| 1058 | rep_movsb_stop_threshold = non_temporal_threshold; |
| 1059 | |
| 1060 | cpu_features->data_cache_size = data; |
| 1061 | cpu_features->shared_cache_size = shared; |
| 1062 | cpu_features->non_temporal_threshold = non_temporal_threshold; |
| 1063 | cpu_features->memset_non_temporal_threshold = memset_non_temporal_threshold; |
| 1064 | cpu_features->rep_movsb_threshold = rep_movsb_threshold; |
| 1065 | cpu_features->rep_stosb_threshold = rep_stosb_threshold; |
| 1066 | cpu_features->rep_movsb_stop_threshold = rep_movsb_stop_threshold; |
| 1067 | } |
| 1068 | |