| 1 | /* Function atanhf vectorized with AVX2. |
| 2 | Copyright (C) 2021-2024 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | https://www.gnu.org/licenses/. */ |
| 18 | |
| 19 | /* |
| 20 | * ALGORITHM DESCRIPTION: |
| 21 | * |
| 22 | * Compute atanh(x) as 0.5 * log((1 + x)/(1 - x)) |
| 23 | * |
| 24 | * Special cases: |
| 25 | * |
| 26 | * atanh(0) = 0 |
| 27 | * atanh(+1) = +INF |
| 28 | * atanh(-1) = -INF |
| 29 | * atanh(x) = NaN if |x| > 1, or if x is a NaN or INF |
| 30 | * |
| 31 | */ |
| 32 | |
| 33 | /* Offsets for data table __svml_satanh_data_internal_avx512. Ordered |
| 34 | by use in the function. On cold-starts this might hhelp the |
| 35 | prefetcher. Possibly a better idea is to interleave start/end so |
| 36 | that the prefetcher is less likely to detect a stream and pull |
| 37 | irrelivant lines into cache. */ |
| 38 | #define SgnMask 0 |
| 39 | #define sOne 32 |
| 40 | #define sTopMask12 64 |
| 41 | #define TinyRange 96 |
| 42 | #define iBrkValue 128 |
| 43 | #define iOffExpoMask 160 |
| 44 | #define sPoly 192 |
| 45 | #define sLn2 448 |
| 46 | #define sHalf 480 |
| 47 | |
| 48 | #include <sysdep.h> |
| 49 | #define ATANHF_DATA(x) ((x)+__svml_satanh_data_internal) |
| 50 | |
| 51 | .section .text.avx2, "ax" , @progbits |
| 52 | ENTRY(_ZGVdN8v_atanhf_avx2) |
| 53 | /* Strip off the sign, so treat X as positive until right at the end */ |
| 54 | vmovaps ATANHF_DATA(SgnMask)(%rip), %ymm2 |
| 55 | vandps %ymm2, %ymm0, %ymm3 |
| 56 | /* Load constants including One = 1 */ |
| 57 | vmovups ATANHF_DATA(sOne)(%rip), %ymm5 |
| 58 | vsubps %ymm3, %ymm5, %ymm1 |
| 59 | vmovups ATANHF_DATA(sTopMask12)(%rip), %ymm4 |
| 60 | |
| 61 | vrcpps %ymm1, %ymm7 |
| 62 | vsubps %ymm1, %ymm5, %ymm9 |
| 63 | vandps %ymm4, %ymm7, %ymm6 |
| 64 | vsubps %ymm3, %ymm9, %ymm7 |
| 65 | |
| 66 | /* No need to split sU when FMA is available */ |
| 67 | vfnmadd213ps %ymm5, %ymm6, %ymm1 |
| 68 | vmovaps %ymm0, %ymm8 |
| 69 | vfmadd213ps %ymm0, %ymm0, %ymm0 |
| 70 | vfnmadd231ps %ymm6, %ymm7, %ymm1 |
| 71 | |
| 72 | /* |
| 73 | * Check whether |X| < 1, in which case we use the main function. |
| 74 | * Otherwise set the rangemask so that the callout will get used. |
| 75 | * Note that this will also use the callout for NaNs since not(NaN < 1). |
| 76 | */ |
| 77 | vcmpnlt_uqps %ymm5, %ymm3, %ymm14 |
| 78 | vcmplt_oqps ATANHF_DATA(TinyRange)(%rip), %ymm3, %ymm15 |
| 79 | |
| 80 | /* |
| 81 | * Compute V = 2 * X trivially, and UHi + U_lo = 1 - X in two pieces, |
| 82 | * the upper part UHi being <= 12 bits long. Then we have |
| 83 | * atanh(X) = 1/2 * log((1 + X) / (1 - X)) = 1/2 * log1p(V / (UHi + ULo)). |
| 84 | */ |
| 85 | vaddps %ymm3, %ymm3, %ymm3 |
| 86 | |
| 87 | /* |
| 88 | * Split V as well into upper 12 bits and lower part, so that we can get |
| 89 | * a preliminary quotient estimate without rounding error. |
| 90 | */ |
| 91 | vandps %ymm4, %ymm3, %ymm4 |
| 92 | vsubps %ymm4, %ymm3, %ymm7 |
| 93 | |
| 94 | /* Hence get initial quotient estimate QHi + QLo = R * VHi + R * VLo */ |
| 95 | vmulps %ymm4, %ymm6, %ymm4 |
| 96 | |
| 97 | /* Compute D = E + E^2 */ |
| 98 | vfmadd213ps %ymm1, %ymm1, %ymm1 |
| 99 | |
| 100 | /* Record the sign for eventual reincorporation. */ |
| 101 | vandnps %ymm8, %ymm2, %ymm3 |
| 102 | |
| 103 | /* Or the sign bit in with the tiny result to handle atanh(-0) correctly */ |
| 104 | vorps %ymm3, %ymm0, %ymm13 |
| 105 | vmulps %ymm7, %ymm6, %ymm2 |
| 106 | |
| 107 | /* |
| 108 | * Compute R * (VHi + VLo) * (1 + E + E^2) |
| 109 | * = R * (VHi + VLo) * (1 + D) |
| 110 | * = QHi + (QHi * D + QLo + QLo * D) |
| 111 | */ |
| 112 | |
| 113 | /* |
| 114 | * If less precision is acceptable the `vmulps %ymm1, %ymm4, %ymm9; |
| 115 | * vaddps %ymm1, %ymm9, %ymm1` can be replaced with |
| 116 | * `vfmadd231ps %ymm1, %ymm4, %ymm4`. |
| 117 | */ |
| 118 | vmulps %ymm1, %ymm4, %ymm6 |
| 119 | vfmadd213ps %ymm2, %ymm2, %ymm1 |
| 120 | vaddps %ymm1, %ymm6, %ymm1 |
| 121 | |
| 122 | /* |
| 123 | * Now finally accumulate the high and low parts of the |
| 124 | * argument to log1p, H + L, with a final compensated summation. |
| 125 | */ |
| 126 | vaddps %ymm1, %ymm4, %ymm2 |
| 127 | |
| 128 | /* reduction: compute r, n */ |
| 129 | vmovups ATANHF_DATA(iBrkValue)(%rip), %ymm9 |
| 130 | |
| 131 | /* |
| 132 | * Now we feed into the log1p code, using H in place of _VARG1 and |
| 133 | * later incorporating L into the reduced argument. |
| 134 | * compute 1+x as high, low parts |
| 135 | */ |
| 136 | vmaxps %ymm2, %ymm5, %ymm0 |
| 137 | vminps %ymm2, %ymm5, %ymm6 |
| 138 | |
| 139 | /* This is needed for rounding (see `vaddps %ymm1, %ymm4, %ymm2`). */ |
| 140 | vsubps %ymm2, %ymm4, %ymm2 |
| 141 | vaddps %ymm6, %ymm0, %ymm4 |
| 142 | vpsubd %ymm9, %ymm4, %ymm7 |
| 143 | vsubps %ymm4, %ymm0, %ymm4 |
| 144 | vaddps %ymm2, %ymm1, %ymm2 |
| 145 | vmovaps ATANHF_DATA(iOffExpoMask)(%rip), %ymm1 |
| 146 | |
| 147 | vandps %ymm1, %ymm7, %ymm0 |
| 148 | vaddps %ymm4, %ymm6, %ymm4 |
| 149 | vandnps %ymm7, %ymm1, %ymm6 |
| 150 | vmovups ATANHF_DATA(sPoly+0)(%rip), %ymm1 |
| 151 | vpaddd %ymm9, %ymm0, %ymm0 |
| 152 | vaddps %ymm4, %ymm2, %ymm4 |
| 153 | vpsubd %ymm6, %ymm5, %ymm6 |
| 154 | |
| 155 | /* polynomial evaluation */ |
| 156 | vsubps %ymm5, %ymm0, %ymm2 |
| 157 | vfmadd231ps %ymm4, %ymm6, %ymm2 |
| 158 | vfmadd213ps ATANHF_DATA(sPoly+32)(%rip), %ymm2, %ymm1 |
| 159 | vfmadd213ps ATANHF_DATA(sPoly+64)(%rip), %ymm2, %ymm1 |
| 160 | vfmadd213ps ATANHF_DATA(sPoly+96)(%rip), %ymm2, %ymm1 |
| 161 | vfmadd213ps ATANHF_DATA(sPoly+128)(%rip), %ymm2, %ymm1 |
| 162 | vfmadd213ps ATANHF_DATA(sPoly+160)(%rip), %ymm2, %ymm1 |
| 163 | vfmadd213ps ATANHF_DATA(sPoly+192)(%rip), %ymm2, %ymm1 |
| 164 | vfmadd213ps ATANHF_DATA(sPoly+224)(%rip), %ymm2, %ymm1 |
| 165 | |
| 166 | vmulps %ymm1, %ymm2, %ymm1 |
| 167 | vfmadd213ps %ymm2, %ymm2, %ymm1 |
| 168 | |
| 169 | /* final reconstruction */ |
| 170 | vpsrad $23, %ymm7, %ymm6 |
| 171 | vcvtdq2ps %ymm6, %ymm2 |
| 172 | vfmadd132ps ATANHF_DATA(sLn2)(%rip), %ymm1, %ymm2 |
| 173 | |
| 174 | /* Finally, halve the result and reincorporate the sign */ |
| 175 | vxorps ATANHF_DATA(sHalf)(%rip), %ymm3, %ymm3 |
| 176 | vmulps %ymm2, %ymm3, %ymm2 |
| 177 | vmovmskps %ymm14, %edx |
| 178 | testl %edx, %edx |
| 179 | |
| 180 | vblendvps %ymm15, %ymm13, %ymm2, %ymm0 |
| 181 | /* Go to special inputs processing branch */ |
| 182 | jne L(SPECIAL_VALUES_BRANCH) |
| 183 | # LOE rbx rdx r12 r13 r14 r15 ymm0 |
| 184 | /* No registers to restore on fast path. */ |
| 185 | ret |
| 186 | |
| 187 | |
| 188 | /* Cold case. edx has 1s where there was a special value that |
| 189 | needs to be handled by a atanhf call. Optimize for code size |
| 190 | more so than speed here. */ |
| 191 | L(SPECIAL_VALUES_BRANCH): |
| 192 | # LOE rbx rdx r12 r13 r14 r15 ymm0 ymm8 |
| 193 | /* Use r13 to save/restore the stack. This allows us to use rbp as |
| 194 | callee save register saving code size. */ |
| 195 | pushq %r13 |
| 196 | cfi_adjust_cfa_offset(8) |
| 197 | cfi_offset(r13, -16) |
| 198 | /* Need to callee save registers to preserve state across tanhf calls. |
| 199 | */ |
| 200 | pushq %rbx |
| 201 | cfi_adjust_cfa_offset(8) |
| 202 | cfi_offset(rbx, -24) |
| 203 | pushq %rbp |
| 204 | cfi_adjust_cfa_offset(8) |
| 205 | cfi_offset(rbp, -32) |
| 206 | movq %rsp, %r13 |
| 207 | cfi_def_cfa_register(r13) |
| 208 | |
| 209 | /* Align stack and make room for 2x ymm vectors. */ |
| 210 | andq $-32, %rsp |
| 211 | addq $-64, %rsp |
| 212 | |
| 213 | /* Save all already computed inputs. */ |
| 214 | vmovups %ymm0, (%rsp) |
| 215 | /* Save original input (ymm8 unchanged up to this point). */ |
| 216 | vmovups %ymm8, 32(%rsp) |
| 217 | |
| 218 | vzeroupper |
| 219 | |
| 220 | /* edx has 1s where there was a special value that needs to be handled |
| 221 | by a atanhf call. */ |
| 222 | movl %edx, %ebx |
| 223 | L(SPECIAL_VALUES_LOOP): |
| 224 | # LOE rbx rbp r12 r13 r14 r15 |
| 225 | /* use rbp as index for special value that is saved across calls to |
| 226 | atanhf. We technically don't need a callee save register here as offset |
| 227 | to rsp is always [0, 28] so we can restore rsp by realigning to 64. |
| 228 | Essentially the tradeoff is 1 extra save/restore vs 2 extra instructions |
| 229 | in the loop. Realigning also costs more code size. */ |
| 230 | xorl %ebp, %ebp |
| 231 | tzcntl %ebx, %ebp |
| 232 | |
| 233 | /* Scalar math function call to process special input. */ |
| 234 | vmovss 32(%rsp, %rbp, 4), %xmm0 |
| 235 | call atanhf@PLT |
| 236 | |
| 237 | /* No good way to avoid the store-forwarding fault this will cause on |
| 238 | return. `lfence` avoids the SF fault but at greater cost as it |
| 239 | serialized stack/callee save restoration. */ |
| 240 | vmovss %xmm0, (%rsp, %rbp, 4) |
| 241 | |
| 242 | blsrl %ebx, %ebx |
| 243 | jnz L(SPECIAL_VALUES_LOOP) |
| 244 | # LOE r12 r13 r14 r15 |
| 245 | |
| 246 | |
| 247 | /* All results have been written to (%rsp). */ |
| 248 | vmovups (%rsp), %ymm0 |
| 249 | /* Restore rsp. */ |
| 250 | movq %r13, %rsp |
| 251 | cfi_def_cfa_register(rsp) |
| 252 | /* Restore callee save registers. */ |
| 253 | popq %rbp |
| 254 | cfi_adjust_cfa_offset(-8) |
| 255 | cfi_restore(rbp) |
| 256 | popq %rbx |
| 257 | cfi_adjust_cfa_offset(-8) |
| 258 | cfi_restore(rbp) |
| 259 | popq %r13 |
| 260 | cfi_adjust_cfa_offset(-8) |
| 261 | cfi_restore(r13) |
| 262 | ret |
| 263 | END(_ZGVdN8v_atanhf_avx2) |
| 264 | |
| 265 | .section .rodata, "a" |
| 266 | .align 32 |
| 267 | #ifdef __svml_satanh_data_internal_typedef |
| 268 | typedef unsigned int VUINT32; |
| 269 | typedef struct{ |
| 270 | __declspec(align(32)) VUINT32 SgnMask[8][1]; |
| 271 | __declspec(align(32)) VUINT32 sOne[8][1]; |
| 272 | __declspec(align(32)) VUINT32 sTopMask12[8][1]; |
| 273 | __declspec(align(32)) VUINT32 TinyRange[8][1]; |
| 274 | __declspec(align(32)) VUINT32 iBrkValue[8][1]; |
| 275 | __declspec(align(32)) VUINT32 iOffExpoMask[8][1]; |
| 276 | __declspec(align(32)) VUINT32 sPoly[8][8][1]; |
| 277 | __declspec(align(32)) VUINT32 sLn2[8][1]; |
| 278 | __declspec(align(32)) VUINT32 sHalf[8][1]; |
| 279 | } __svml_satanh_data_internal; |
| 280 | #endif |
| 281 | __svml_satanh_data_internal: |
| 282 | /* SgnMask */ |
| 283 | .long 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff |
| 284 | .long 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff |
| 285 | /* sOne = SP 1.0 */ |
| 286 | .align 32 |
| 287 | .long 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 |
| 288 | .long 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 |
| 289 | /* sTopMask12 */ |
| 290 | .align 32 |
| 291 | .long 0xFFFFF000, 0xFFFFF000, 0xFFFFF000, 0xFFFFF000 |
| 292 | .long 0xFFFFF000, 0xFFFFF000, 0xFFFFF000, 0xFFFFF000 |
| 293 | /* TinyRange */ |
| 294 | .align 32 |
| 295 | .long 0x0C000000, 0x0C000000, 0x0C000000, 0x0C000000 |
| 296 | .long 0x0C000000, 0x0C000000, 0x0C000000, 0x0C000000 |
| 297 | /* iBrkValue = SP 2/3 */ |
| 298 | .align 32 |
| 299 | .long 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab |
| 300 | .long 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab |
| 301 | /* iOffExpoMask = SP significand mask */ |
| 302 | .align 32 |
| 303 | .long 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff |
| 304 | .long 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff |
| 305 | /* sPoly[] = SP polynomial */ |
| 306 | .align 32 |
| 307 | .long 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed |
| 308 | .long 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed /* 1.3820238411426544189453125e-01 P7 */ |
| 309 | .long 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3 |
| 310 | .long 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3 /* -1.5122179687023162841796875e-01 P6 */ |
| 311 | .long 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12 |
| 312 | .long 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12 /* 1.4042308926582336425781250e-01 P5 */ |
| 313 | .long 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37 |
| 314 | .long 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37 /* -1.6472326219081878662109375e-01 P4 */ |
| 315 | .long 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190 |
| 316 | .long 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190 /* 2.0007920265197753906250000e-01 P3 */ |
| 317 | .long 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e |
| 318 | .long 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e /* -2.5004237890243530273437500e-01 P2 */ |
| 319 | .long 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94 |
| 320 | .long 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94 /* 3.3333265781402587890625000e-01 P1 */ |
| 321 | .long 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000 |
| 322 | .long 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000 /* -5.0000000000000000000000000e-01 P0 */ |
| 323 | /* sLn2 = SP ln(2) */ |
| 324 | .align 32 |
| 325 | .long 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218 |
| 326 | .long 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218 |
| 327 | /* sHalf */ |
| 328 | .align 32 |
| 329 | .long 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000 |
| 330 | .long 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000 |
| 331 | .align 32 |
| 332 | .type __svml_satanh_data_internal, @object |
| 333 | .size __svml_satanh_data_internal, .-__svml_satanh_data_internal |
| 334 | |