| 1 | #include <string.h> |
| 2 | #include <float.h> |
| 3 | #include <math.h> |
| 4 | #include <glib.h> |
| 5 | #include <assert.h> |
| 6 | |
| 7 | /* See Golub and Reinsch, |
| 8 | * "Handbook for Automatic Computation vol II - Linear Algebra", |
| 9 | * Springer, 1971 |
| 10 | */ |
| 11 | |
| 12 | |
| 13 | #define MAX_ITERATION_COUNT 30 |
| 14 | |
| 15 | /* Perform Householder reduction to bidiagonal form |
| 16 | * |
| 17 | * Input: Matrix A of size nrows x ncols |
| 18 | * |
| 19 | * Output: Matrices and vectors such that |
| 20 | * A = U*Bidiag(diagonal, superdiagonal)*Vt |
| 21 | * |
| 22 | * All matrices are allocated by the caller |
| 23 | * |
| 24 | * Sizes: |
| 25 | * A, U: nrows x ncols |
| 26 | * diagonal, superdiagonal: ncols |
| 27 | * V: ncols x ncols |
| 28 | */ |
| 29 | static void |
| 30 | householder_reduction (double *A, |
| 31 | int nrows, |
| 32 | int ncols, |
| 33 | double *U, |
| 34 | double *V, |
| 35 | double *diagonal, |
| 36 | double *superdiagonal) |
| 37 | { |
| 38 | int i, j, k, ip1; |
| 39 | double s, s2, si, scale; |
| 40 | double *pu, *pui, *pv, *pvi; |
| 41 | double half_norm_squared; |
| 42 | |
| 43 | assert (nrows >= 2); |
| 44 | assert (ncols >= 2); |
| 45 | |
| 46 | memcpy (dest: U, src: A, n: sizeof (double) * nrows * ncols); |
| 47 | |
| 48 | diagonal[0] = 0.0; |
| 49 | s = 0.0; |
| 50 | scale = 0.0; |
| 51 | for (i = 0, pui = U, ip1 = 1; |
| 52 | i < ncols; |
| 53 | pui += ncols, i++, ip1++) |
| 54 | { |
| 55 | superdiagonal[i] = scale * s; |
| 56 | |
| 57 | for (j = i, pu = pui, scale = 0.0; |
| 58 | j < nrows; |
| 59 | j++, pu += ncols) |
| 60 | scale += fabs( x: *(pu + i) ); |
| 61 | |
| 62 | if (scale > 0.0) |
| 63 | { |
| 64 | for (j = i, pu = pui, s2 = 0.0; j < nrows; j++, pu += ncols) |
| 65 | { |
| 66 | *(pu + i) /= scale; |
| 67 | s2 += *(pu + i) * *(pu + i); |
| 68 | } |
| 69 | s = *(pui + i) < 0.0 ? sqrt (x: s2) : -sqrt (x: s2); |
| 70 | half_norm_squared = *(pui + i) * s - s2; |
| 71 | *(pui + i) -= s; |
| 72 | |
| 73 | for (j = ip1; j < ncols; j++) |
| 74 | { |
| 75 | for (k = i, si = 0.0, pu = pui; k < nrows; k++, pu += ncols) |
| 76 | si += *(pu + i) * *(pu + j); |
| 77 | si /= half_norm_squared; |
| 78 | for (k = i, pu = pui; k < nrows; k++, pu += ncols) |
| 79 | *(pu + j) += si * *(pu + i); |
| 80 | } |
| 81 | } |
| 82 | for (j = i, pu = pui; j < nrows; j++, pu += ncols) |
| 83 | *(pu + i) *= scale; |
| 84 | diagonal[i] = s * scale; |
| 85 | s = 0.0; |
| 86 | scale = 0.0; |
| 87 | if (i >= nrows || i == ncols - 1) |
| 88 | continue; |
| 89 | for (j = ip1; j < ncols; j++) |
| 90 | scale += fabs (x: *(pui + j)); |
| 91 | if (scale > 0.0) |
| 92 | { |
| 93 | for (j = ip1, s2 = 0.0; j < ncols; j++) |
| 94 | { |
| 95 | *(pui + j) /= scale; |
| 96 | s2 += *(pui + j) * *(pui + j); |
| 97 | } |
| 98 | s = *(pui + ip1) < 0.0 ? sqrt (x: s2) : -sqrt (x: s2); |
| 99 | half_norm_squared = *(pui + ip1) * s - s2; |
| 100 | *(pui + ip1) -= s; |
| 101 | for (k = ip1; k < ncols; k++) |
| 102 | superdiagonal[k] = *(pui + k) / half_norm_squared; |
| 103 | if (i < (nrows - 1)) |
| 104 | { |
| 105 | for (j = ip1, pu = pui + ncols; j < nrows; j++, pu += ncols) |
| 106 | { |
| 107 | for (k = ip1, si = 0.0; k < ncols; k++) |
| 108 | si += *(pui + k) * *(pu + k); |
| 109 | for (k = ip1; k < ncols; k++) |
| 110 | *(pu + k) += si * superdiagonal[k]; |
| 111 | } |
| 112 | } |
| 113 | for (k = ip1; k < ncols; k++) |
| 114 | *(pui + k) *= scale; |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | pui = U + ncols * (ncols - 2); |
| 119 | pvi = V + ncols * (ncols - 1); |
| 120 | *(pvi + ncols - 1) = 1.0; |
| 121 | s = superdiagonal[ncols - 1]; |
| 122 | pvi -= ncols; |
| 123 | for (i = ncols - 2, ip1 = ncols - 1; |
| 124 | i >= 0; |
| 125 | i--, pui -= ncols, pvi -= ncols, ip1--) |
| 126 | { |
| 127 | if (s != 0.0) |
| 128 | { |
| 129 | pv = pvi + ncols; |
| 130 | for (j = ip1; j < ncols; j++, pv += ncols) |
| 131 | *(pv + i) = ( *(pui + j) / *(pui + ip1) ) / s; |
| 132 | for (j = ip1; j < ncols; j++) |
| 133 | { |
| 134 | si = 0.0; |
| 135 | for (k = ip1, pv = pvi + ncols; k < ncols; k++, pv += ncols) |
| 136 | si += *(pui + k) * *(pv + j); |
| 137 | for (k = ip1, pv = pvi + ncols; k < ncols; k++, pv += ncols) |
| 138 | *(pv + j) += si * *(pv + i); |
| 139 | } |
| 140 | } |
| 141 | pv = pvi + ncols; |
| 142 | for (j = ip1; j < ncols; j++, pv += ncols) |
| 143 | { |
| 144 | *(pvi + j) = 0.0; |
| 145 | *(pv + i) = 0.0; |
| 146 | } |
| 147 | *(pvi + i) = 1.0; |
| 148 | s = superdiagonal[i]; |
| 149 | } |
| 150 | |
| 151 | pui = U + ncols * (ncols - 1); |
| 152 | for (i = ncols - 1, ip1 = ncols; |
| 153 | i >= 0; |
| 154 | ip1 = i, i--, pui -= ncols) |
| 155 | { |
| 156 | s = diagonal[i]; |
| 157 | for (j = ip1; j < ncols; j++) |
| 158 | *(pui + j) = 0.0; |
| 159 | if (s != 0.0) |
| 160 | { |
| 161 | for (j = ip1; j < ncols; j++) |
| 162 | { |
| 163 | si = 0.0; |
| 164 | pu = pui + ncols; |
| 165 | for (k = ip1; k < nrows; k++, pu += ncols) |
| 166 | si += *(pu + i) * *(pu + j); |
| 167 | si = (si / *(pui + i)) / s; |
| 168 | for (k = i, pu = pui; k < nrows; k++, pu += ncols) |
| 169 | *(pu + j) += si * *(pu + i); |
| 170 | } |
| 171 | for (j = i, pu = pui; j < nrows; j++, pu += ncols) |
| 172 | *(pu + i) /= s; |
| 173 | } |
| 174 | else |
| 175 | for (j = i, pu = pui; j < nrows; j++, pu += ncols) |
| 176 | *(pu + i) = 0.0; |
| 177 | *(pui + i) += 1.0; |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | /* Perform Givens reduction |
| 182 | * |
| 183 | * Input: Matrices such that |
| 184 | * A = U*Bidiag(diagonal,superdiagonal)*Vt |
| 185 | * |
| 186 | * Output: The same, with superdiagonal = 0 |
| 187 | * |
| 188 | * All matrices are allocated by the caller |
| 189 | * |
| 190 | * Sizes: |
| 191 | * U: nrows x ncols |
| 192 | * diagonal, superdiagonal: ncols |
| 193 | * V: ncols x ncols |
| 194 | */ |
| 195 | static int |
| 196 | givens_reduction (int nrows, |
| 197 | int ncols, |
| 198 | double *U, |
| 199 | double *V, |
| 200 | double *diagonal, |
| 201 | double *superdiagonal) |
| 202 | { |
| 203 | double epsilon; |
| 204 | double c, s; |
| 205 | double f,g,h; |
| 206 | double x,y,z; |
| 207 | double *pu, *pv; |
| 208 | int i,j,k,m; |
| 209 | int rotation_test; |
| 210 | int iteration_count; |
| 211 | |
| 212 | assert (nrows >= 2); |
| 213 | assert (ncols >= 2); |
| 214 | |
| 215 | for (i = 0, x = 0.0; i < ncols; i++) |
| 216 | { |
| 217 | y = fabs (x: diagonal[i]) + fabs (x: superdiagonal[i]); |
| 218 | if (x < y) |
| 219 | x = y; |
| 220 | } |
| 221 | epsilon = x * DBL_EPSILON; |
| 222 | for (k = ncols - 1; k >= 0; k--) |
| 223 | { |
| 224 | iteration_count = 0; |
| 225 | while (1) |
| 226 | { |
| 227 | rotation_test = 1; |
| 228 | for (m = k; m >= 0; m--) |
| 229 | { |
| 230 | if (fabs (x: superdiagonal[m]) <= epsilon) |
| 231 | { |
| 232 | rotation_test = 0; |
| 233 | break; |
| 234 | } |
| 235 | if (fabs (x: diagonal[m-1]) <= epsilon) |
| 236 | break; |
| 237 | } |
| 238 | if (rotation_test) |
| 239 | { |
| 240 | c = 0.0; |
| 241 | s = 1.0; |
| 242 | for (i = m; i <= k; i++) |
| 243 | { |
| 244 | f = s * superdiagonal[i]; |
| 245 | superdiagonal[i] *= c; |
| 246 | if (fabs (x: f) <= epsilon) |
| 247 | break; |
| 248 | g = diagonal[i]; |
| 249 | h = sqrt (x: f*f + g*g); |
| 250 | diagonal[i] = h; |
| 251 | c = g / h; |
| 252 | s = -f / h; |
| 253 | for (j = 0, pu = U; j < nrows; j++, pu += ncols) |
| 254 | { |
| 255 | y = *(pu + m - 1); |
| 256 | z = *(pu + i); |
| 257 | *(pu + m - 1 ) = y * c + z * s; |
| 258 | *(pu + i) = -y * s + z * c; |
| 259 | } |
| 260 | } |
| 261 | } |
| 262 | z = diagonal[k]; |
| 263 | if (m == k) |
| 264 | { |
| 265 | if (z < 0.0) |
| 266 | { |
| 267 | diagonal[k] = -z; |
| 268 | for (j = 0, pv = V; j < ncols; j++, pv += ncols) |
| 269 | *(pv + k) = - *(pv + k); |
| 270 | } |
| 271 | break; |
| 272 | } |
| 273 | else |
| 274 | { |
| 275 | if (iteration_count >= MAX_ITERATION_COUNT) |
| 276 | return -1; |
| 277 | iteration_count++; |
| 278 | x = diagonal[m]; |
| 279 | y = diagonal[k-1]; |
| 280 | g = superdiagonal[k-1]; |
| 281 | h = superdiagonal[k]; |
| 282 | f = ((y - z) * ( y + z ) + (g - h) * (g + h))/(2.0 * h * y); |
| 283 | g = sqrt (x: f * f + 1.0); |
| 284 | if (f < 0.0) |
| 285 | g = -g; |
| 286 | f = ((x - z) * (x + z) + h * (y / (f + g) - h)) / x; |
| 287 | c = 1.0; |
| 288 | s = 1.0; |
| 289 | for (i = m + 1; i <= k; i++) |
| 290 | { |
| 291 | g = superdiagonal[i]; |
| 292 | y = diagonal[i]; |
| 293 | h = s * g; |
| 294 | g *= c; |
| 295 | z = sqrt (x: f * f + h * h); |
| 296 | superdiagonal[i-1] = z; |
| 297 | c = f / z; |
| 298 | s = h / z; |
| 299 | f = x * c + g * s; |
| 300 | g = -x * s + g * c; |
| 301 | h = y * s; |
| 302 | y *= c; |
| 303 | for (j = 0, pv = V; j < ncols; j++, pv += ncols) |
| 304 | { |
| 305 | x = *(pv + i - 1); |
| 306 | z = *(pv + i); |
| 307 | *(pv + i - 1) = x * c + z * s; |
| 308 | *(pv + i) = -x * s + z * c; |
| 309 | } |
| 310 | z = sqrt (x: f * f + h * h); |
| 311 | diagonal[i - 1] = z; |
| 312 | if (z != 0.0) |
| 313 | { |
| 314 | c = f / z; |
| 315 | s = h / z; |
| 316 | } |
| 317 | f = c * g + s * y; |
| 318 | x = -s * g + c * y; |
| 319 | for (j = 0, pu = U; j < nrows; j++, pu += ncols) |
| 320 | { |
| 321 | y = *(pu + i - 1); |
| 322 | z = *(pu + i); |
| 323 | *(pu + i - 1) = c * y + s * z; |
| 324 | *(pu + i) = -s * y + c * z; |
| 325 | } |
| 326 | } |
| 327 | superdiagonal[m] = 0.0; |
| 328 | superdiagonal[k] = f; |
| 329 | diagonal[k] = x; |
| 330 | } |
| 331 | } |
| 332 | } |
| 333 | return 0; |
| 334 | } |
| 335 | |
| 336 | /* Given a singular value decomposition |
| 337 | * of an nrows x ncols matrix A = U*Diag(S)*Vt, |
| 338 | * sort the values of S by decreasing value, |
| 339 | * permuting V to match. |
| 340 | */ |
| 341 | static void |
| 342 | sort_singular_values (int nrows, |
| 343 | int ncols, |
| 344 | double *S, |
| 345 | double *U, |
| 346 | double *V) |
| 347 | { |
| 348 | int i, j, max_index; |
| 349 | double temp; |
| 350 | double *p1, *p2; |
| 351 | |
| 352 | assert (nrows >= 2); |
| 353 | assert (ncols >= 2); |
| 354 | |
| 355 | for (i = 0; i < ncols - 1; i++) |
| 356 | { |
| 357 | max_index = i; |
| 358 | for (j = i + 1; j < ncols; j++) |
| 359 | if (S[j] > S[max_index]) |
| 360 | max_index = j; |
| 361 | if (max_index == i) |
| 362 | continue; |
| 363 | temp = S[i]; |
| 364 | S[i] = S[max_index]; |
| 365 | S[max_index] = temp; |
| 366 | p1 = U + max_index; |
| 367 | p2 = U + i; |
| 368 | for (j = 0; j < nrows; j++, p1 += ncols, p2 += ncols) |
| 369 | { |
| 370 | temp = *p1; |
| 371 | *p1 = *p2; |
| 372 | *p2 = temp; |
| 373 | } |
| 374 | p1 = V + max_index; |
| 375 | p2 = V + i; |
| 376 | for (j = 0; j < ncols; j++, p1 += ncols, p2 += ncols) |
| 377 | { |
| 378 | temp = *p1; |
| 379 | *p1 = *p2; |
| 380 | *p2 = temp; |
| 381 | } |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | /* Compute a singular value decomposition of A, |
| 386 | * A = U*Diag(S)*Vt |
| 387 | * |
| 388 | * All matrices are allocated by the caller |
| 389 | * |
| 390 | * Sizes: |
| 391 | * A, U: nrows x ncols |
| 392 | * S: ncols |
| 393 | * V: ncols x ncols |
| 394 | */ |
| 395 | int |
| 396 | singular_value_decomposition (double *A, |
| 397 | int nrows, |
| 398 | int ncols, |
| 399 | double *U, |
| 400 | double *S, |
| 401 | double *V) |
| 402 | { |
| 403 | double *superdiagonal; |
| 404 | |
| 405 | superdiagonal = g_alloca (sizeof (double) * ncols); |
| 406 | |
| 407 | if (nrows < ncols) |
| 408 | return -1; |
| 409 | |
| 410 | householder_reduction (A, nrows, ncols, U, V, diagonal: S, superdiagonal); |
| 411 | |
| 412 | if (givens_reduction (nrows, ncols, U, V, diagonal: S, superdiagonal) < 0) |
| 413 | return -1; |
| 414 | |
| 415 | sort_singular_values (nrows, ncols, S, U, V); |
| 416 | |
| 417 | return 0; |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | * Given a singular value decomposition of A = U*Diag(S)*Vt, |
| 422 | * compute the best approximation x to A*x = B. |
| 423 | * |
| 424 | * All matrices are allocated by the caller |
| 425 | * |
| 426 | * Sizes: |
| 427 | * U: nrows x ncols |
| 428 | * S: ncols |
| 429 | * V: ncols x ncols |
| 430 | * B, x: ncols |
| 431 | */ |
| 432 | void |
| 433 | singular_value_decomposition_solve (double *U, |
| 434 | double *S, |
| 435 | double *V, |
| 436 | int nrows, |
| 437 | int ncols, |
| 438 | double *B, |
| 439 | double *x) |
| 440 | { |
| 441 | int i, j, k; |
| 442 | double *pu, *pv; |
| 443 | double d; |
| 444 | double tolerance; |
| 445 | |
| 446 | assert (nrows >= 2); |
| 447 | assert (ncols >= 2); |
| 448 | |
| 449 | tolerance = DBL_EPSILON * S[0] * (double) ncols; |
| 450 | |
| 451 | for (i = 0, pv = V; i < ncols; i++, pv += ncols) |
| 452 | { |
| 453 | x[i] = 0.0; |
| 454 | for (j = 0; j < ncols; j++) |
| 455 | { |
| 456 | if (S[j] > tolerance) |
| 457 | { |
| 458 | for (k = 0, d = 0.0, pu = U; k < nrows; k++, pu += ncols) |
| 459 | d += *(pu + j) * B[k]; |
| 460 | x[i] += d * *(pv + j) / S[j]; |
| 461 | } |
| 462 | } |
| 463 | } |
| 464 | } |
| 465 | |