| 1 | /* |
| 2 | * Copyright © 2003 Davide Libenzi |
| 3 | * 2018 Benjamin Otte |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2.1 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public |
| 16 | * License along with this library. If not, see <http://www.gnu.org/licenses/>. |
| 17 | * |
| 18 | * Authors: Davide Libenzi <davidel@xmailserver.org> |
| 19 | * Benjamin Otte <otte@gnome.org> |
| 20 | */ |
| 21 | |
| 22 | #include "config.h" |
| 23 | |
| 24 | #include "gskdiffprivate.h" |
| 25 | |
| 26 | |
| 27 | #define XDL_MAX_COST_MIN 256 |
| 28 | #define XDL_HEUR_MIN_COST 256 |
| 29 | #define XDL_LINE_MAX G_MAXSSIZE |
| 30 | #define XDL_SNAKE_CNT 20 |
| 31 | #define XDL_K_HEUR 4 |
| 32 | #define MAXCOST 20 |
| 33 | |
| 34 | struct _GskDiffSettings { |
| 35 | GCompareDataFunc compare_func; |
| 36 | GskKeepFunc keep_func; |
| 37 | GskDeleteFunc delete_func; |
| 38 | GskInsertFunc insert_func; |
| 39 | |
| 40 | guint allow_abort : 1; |
| 41 | }; |
| 42 | |
| 43 | typedef struct _SplitResult { |
| 44 | long i1, i2; |
| 45 | int min_lo, min_hi; |
| 46 | } SplitResult; |
| 47 | |
| 48 | GskDiffSettings * |
| 49 | gsk_diff_settings_new (GCompareDataFunc compare_func, |
| 50 | GskKeepFunc keep_func, |
| 51 | GskDeleteFunc delete_func, |
| 52 | GskInsertFunc insert_func) |
| 53 | { |
| 54 | GskDiffSettings *settings; |
| 55 | |
| 56 | settings = g_slice_new0 (GskDiffSettings); |
| 57 | |
| 58 | settings->compare_func = compare_func; |
| 59 | settings->keep_func = keep_func; |
| 60 | settings->delete_func = delete_func; |
| 61 | settings->insert_func = insert_func; |
| 62 | |
| 63 | return settings; |
| 64 | } |
| 65 | |
| 66 | void |
| 67 | gsk_diff_settings_set_allow_abort (GskDiffSettings *settings, |
| 68 | gboolean allow_abort) |
| 69 | { |
| 70 | settings->allow_abort = allow_abort; |
| 71 | } |
| 72 | |
| 73 | void |
| 74 | gsk_diff_settings_free (GskDiffSettings *settings) |
| 75 | { |
| 76 | g_slice_free (GskDiffSettings, settings); |
| 77 | } |
| 78 | |
| 79 | /* |
| 80 | * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers. |
| 81 | * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both |
| 82 | * the forward diagonal starting from (off1, off2) and the backward diagonal |
| 83 | * starting from (lim1, lim2). If the K values on the same diagonal crosses |
| 84 | * returns the furthest point of reach. We might end up having to expensive |
| 85 | * cases using this algorithm is full, so a little bit of heuristic is needed |
| 86 | * to cut the search and to return a suboptimal point. |
| 87 | */ |
| 88 | static GskDiffResult |
| 89 | split (gconstpointer *elem1, |
| 90 | gssize off1, |
| 91 | gssize lim1, |
| 92 | gconstpointer *elem2, |
| 93 | gssize off2, |
| 94 | gssize lim2, |
| 95 | gssize *kvdf, |
| 96 | gssize *kvdb, |
| 97 | gboolean need_min, |
| 98 | const GskDiffSettings *settings, |
| 99 | gpointer data, |
| 100 | SplitResult *spl) |
| 101 | { |
| 102 | gssize dmin = off1 - lim2, dmax = lim1 - off2; |
| 103 | gssize fmid = off1 - off2, bmid = lim1 - lim2; |
| 104 | gboolean odd = (fmid - bmid) & 1; |
| 105 | gssize fmin = fmid, fmax = fmid; |
| 106 | gssize bmin = bmid, bmax = bmid; |
| 107 | gssize ec, d, i1, i2, prev1, best, dd, v, k; |
| 108 | |
| 109 | /* |
| 110 | * Set initial diagonal values for both forward and backward path. |
| 111 | */ |
| 112 | kvdf[fmid] = off1; |
| 113 | kvdb[bmid] = lim1; |
| 114 | |
| 115 | for (ec = 1;; ec++) |
| 116 | { |
| 117 | gboolean got_snake = FALSE; |
| 118 | |
| 119 | /* |
| 120 | * We need to extent the diagonal "domain" by one. If the next |
| 121 | * values exits the box boundaries we need to change it in the |
| 122 | * opposite direction because (max - min) must be a power of two. |
| 123 | * Also we initialize the external K value to -1 so that we can |
| 124 | * avoid extra conditions check inside the core loop. |
| 125 | */ |
| 126 | if (fmin > dmin) |
| 127 | kvdf[--fmin - 1] = -1; |
| 128 | else |
| 129 | ++fmin; |
| 130 | if (fmax < dmax) |
| 131 | kvdf[++fmax + 1] = -1; |
| 132 | else |
| 133 | --fmax; |
| 134 | |
| 135 | for (d = fmax; d >= fmin; d -= 2) |
| 136 | { |
| 137 | if (kvdf[d - 1] >= kvdf[d + 1]) |
| 138 | i1 = kvdf[d - 1] + 1; |
| 139 | else |
| 140 | i1 = kvdf[d + 1]; |
| 141 | prev1 = i1; |
| 142 | i2 = i1 - d; |
| 143 | for (; i1 < lim1 && i2 < lim2; i1++, i2++) |
| 144 | { |
| 145 | if (settings->compare_func (elem1[i1], elem2[i2], data) != 0) |
| 146 | break; |
| 147 | } |
| 148 | if (i1 - prev1 > XDL_SNAKE_CNT) |
| 149 | got_snake = TRUE; |
| 150 | kvdf[d] = i1; |
| 151 | if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) |
| 152 | { |
| 153 | spl->i1 = i1; |
| 154 | spl->i2 = i2; |
| 155 | spl->min_lo = spl->min_hi = 1; |
| 156 | return GSK_DIFF_OK; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * We need to extent the diagonal "domain" by one. If the next |
| 162 | * values exits the box boundaries we need to change it in the |
| 163 | * opposite direction because (max - min) must be a power of two. |
| 164 | * Also we initialize the external K value to -1 so that we can |
| 165 | * avoid extra conditions check inside the core loop. |
| 166 | */ |
| 167 | if (bmin > dmin) |
| 168 | kvdb[--bmin - 1] = XDL_LINE_MAX; |
| 169 | else |
| 170 | ++bmin; |
| 171 | if (bmax < dmax) |
| 172 | kvdb[++bmax + 1] = XDL_LINE_MAX; |
| 173 | else |
| 174 | --bmax; |
| 175 | |
| 176 | for (d = bmax; d >= bmin; d -= 2) |
| 177 | { |
| 178 | if (kvdb[d - 1] < kvdb[d + 1]) |
| 179 | i1 = kvdb[d - 1]; |
| 180 | else |
| 181 | i1 = kvdb[d + 1] - 1; |
| 182 | prev1 = i1; |
| 183 | i2 = i1 - d; |
| 184 | for (; i1 > off1 && i2 > off2; i1--, i2--) |
| 185 | { |
| 186 | if (settings->compare_func (elem1[i1 - 1], elem2[i2 - 1], data) != 0) |
| 187 | break; |
| 188 | } |
| 189 | if (prev1 - i1 > XDL_SNAKE_CNT) |
| 190 | got_snake = TRUE; |
| 191 | kvdb[d] = i1; |
| 192 | if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) |
| 193 | { |
| 194 | spl->i1 = i1; |
| 195 | spl->i2 = i2; |
| 196 | spl->min_lo = spl->min_hi = 1; |
| 197 | return GSK_DIFF_OK; |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | if (need_min) |
| 202 | continue; |
| 203 | |
| 204 | /* |
| 205 | * If the edit cost is above the heuristic trigger and if |
| 206 | * we got a good snake, we sample current diagonals to see |
| 207 | * if some of them have reached an "interesting" path. Our |
| 208 | * measure is a function of the distance from the diagonal |
| 209 | * corner (i1 + i2) penalized with the distance from the |
| 210 | * mid diagonal itself. If this value is above the current |
| 211 | * edit cost times a magic factor (XDL_K_HEUR) we consider |
| 212 | * it interesting. |
| 213 | */ |
| 214 | if (got_snake && ec > XDL_HEUR_MIN_COST) |
| 215 | { |
| 216 | for (best = 0, d = fmax; d >= fmin; d -= 2) |
| 217 | { |
| 218 | dd = d > fmid ? d - fmid: fmid - d; |
| 219 | i1 = kvdf[d]; |
| 220 | i2 = i1 - d; |
| 221 | v = (i1 - off1) + (i2 - off2) - dd; |
| 222 | |
| 223 | if (v > XDL_K_HEUR * ec && v > best && |
| 224 | off1 + XDL_SNAKE_CNT <= i1 && i1 < lim1 && |
| 225 | off2 + XDL_SNAKE_CNT <= i2 && i2 < lim2) |
| 226 | { |
| 227 | for (k = 1; ; k++) |
| 228 | { |
| 229 | if (settings->compare_func (elem1[i1 - k], elem2[i2 - k], data) != 0) |
| 230 | break; |
| 231 | if (k == XDL_SNAKE_CNT) |
| 232 | { |
| 233 | best = v; |
| 234 | spl->i1 = i1; |
| 235 | spl->i2 = i2; |
| 236 | break; |
| 237 | } |
| 238 | } |
| 239 | } |
| 240 | } |
| 241 | if (best > 0) |
| 242 | { |
| 243 | spl->min_lo = 1; |
| 244 | spl->min_hi = 0; |
| 245 | return GSK_DIFF_OK; |
| 246 | } |
| 247 | |
| 248 | for (best = 0, d = bmax; d >= bmin; d -= 2) |
| 249 | { |
| 250 | dd = d > bmid ? d - bmid: bmid - d; |
| 251 | i1 = kvdb[d]; |
| 252 | i2 = i1 - d; |
| 253 | v = (lim1 - i1) + (lim2 - i2) - dd; |
| 254 | |
| 255 | if (v > XDL_K_HEUR * ec && v > best && |
| 256 | off1 < i1 && i1 <= lim1 - XDL_SNAKE_CNT && |
| 257 | off2 < i2 && i2 <= lim2 - XDL_SNAKE_CNT) |
| 258 | { |
| 259 | for (k = 0; ; k++) |
| 260 | { |
| 261 | if (settings->compare_func (elem1[i1 + k], elem2[i2 + k], data) != 0) |
| 262 | break; |
| 263 | |
| 264 | if (k == XDL_SNAKE_CNT - 1) |
| 265 | { |
| 266 | best = v; |
| 267 | spl->i1 = i1; |
| 268 | spl->i2 = i2; |
| 269 | break; |
| 270 | } |
| 271 | } |
| 272 | } |
| 273 | } |
| 274 | if (best > 0) |
| 275 | { |
| 276 | spl->min_lo = 0; |
| 277 | spl->min_hi = 1; |
| 278 | return GSK_DIFF_OK; |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * Enough is enough. We spent too much time here and now we collect |
| 284 | * the furthest reaching path using the (i1 + i2) measure. |
| 285 | */ |
| 286 | if (ec >= MAXCOST) |
| 287 | { |
| 288 | gssize fbest, fbest1, bbest, bbest1; |
| 289 | |
| 290 | if (settings->allow_abort) |
| 291 | return GSK_DIFF_ABORTED; |
| 292 | |
| 293 | fbest = fbest1 = -1; |
| 294 | for (d = fmax; d >= fmin; d -= 2) |
| 295 | { |
| 296 | i1 = MIN (kvdf[d], lim1); |
| 297 | i2 = i1 - d; |
| 298 | if (lim2 < i2) |
| 299 | i1 = lim2 + d, i2 = lim2; |
| 300 | if (fbest < i1 + i2) |
| 301 | { |
| 302 | fbest = i1 + i2; |
| 303 | fbest1 = i1; |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | bbest = bbest1 = XDL_LINE_MAX; |
| 308 | for (d = bmax; d >= bmin; d -= 2) |
| 309 | { |
| 310 | i1 = MAX (off1, kvdb[d]); |
| 311 | i2 = i1 - d; |
| 312 | if (i2 < off2) |
| 313 | i1 = off2 + d, i2 = off2; |
| 314 | if (i1 + i2 < bbest) |
| 315 | { |
| 316 | bbest = i1 + i2; |
| 317 | bbest1 = i1; |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) |
| 322 | { |
| 323 | spl->i1 = fbest1; |
| 324 | spl->i2 = fbest - fbest1; |
| 325 | spl->min_lo = 1; |
| 326 | spl->min_hi = 0; |
| 327 | } |
| 328 | else |
| 329 | { |
| 330 | spl->i1 = bbest1; |
| 331 | spl->i2 = bbest - bbest1; |
| 332 | spl->min_lo = 0; |
| 333 | spl->min_hi = 1; |
| 334 | } |
| 335 | |
| 336 | return GSK_DIFF_OK; |
| 337 | } |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling |
| 343 | * the box splitting function. Note that the real job (marking changed lines) |
| 344 | * is done in the two boundary reaching checks. |
| 345 | */ |
| 346 | static GskDiffResult |
| 347 | compare (gconstpointer *elem1, |
| 348 | gssize off1, |
| 349 | gssize lim1, |
| 350 | gconstpointer *elem2, |
| 351 | gssize off2, |
| 352 | gssize lim2, |
| 353 | gssize *kvdf, |
| 354 | gssize *kvdb, |
| 355 | gboolean need_min, |
| 356 | const GskDiffSettings *settings, |
| 357 | gpointer data) |
| 358 | { |
| 359 | GskDiffResult res; |
| 360 | |
| 361 | /* |
| 362 | * Shrink the box by walking through each diagonal snake (SW and NE). |
| 363 | */ |
| 364 | for (; off1 < lim1 && off2 < lim2; off1++, off2++) |
| 365 | { |
| 366 | if (settings->compare_func (elem1[off1], elem2[off2], data) != 0) |
| 367 | break; |
| 368 | |
| 369 | res = settings->keep_func (elem1[off1], elem2[off2], data); |
| 370 | if (res != GSK_DIFF_OK) |
| 371 | return res; |
| 372 | } |
| 373 | |
| 374 | for (; off1 < lim1 && off2 < lim2; lim1--, lim2--) |
| 375 | { |
| 376 | if (settings->compare_func (elem1[lim1 - 1], elem2[lim2 - 1], data) != 0) |
| 377 | break; |
| 378 | |
| 379 | res = settings->keep_func (elem1[lim1 - 1], elem2[lim2 - 1], data); |
| 380 | if (res != GSK_DIFF_OK) |
| 381 | return res; |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * If one dimension is empty, then all records on the other one must |
| 386 | * be obviously changed. |
| 387 | */ |
| 388 | if (off1 == lim1) |
| 389 | { |
| 390 | for (; off2 < lim2; off2++) |
| 391 | { |
| 392 | res = settings->insert_func (elem2[off2], off2, data); |
| 393 | if (res != GSK_DIFF_OK) |
| 394 | return res; |
| 395 | } |
| 396 | } |
| 397 | else if (off2 == lim2) |
| 398 | { |
| 399 | for (; off1 < lim1; off1++) |
| 400 | { |
| 401 | res = settings->delete_func (elem1[off1], off1, data); |
| 402 | if (res != GSK_DIFF_OK) |
| 403 | return res; |
| 404 | } |
| 405 | } |
| 406 | else |
| 407 | { |
| 408 | SplitResult spl = { 0, }; |
| 409 | |
| 410 | /* |
| 411 | * Divide ... |
| 412 | */ |
| 413 | res = split (elem1, off1, lim1, |
| 414 | elem2, off2, lim2, |
| 415 | kvdf, kvdb, need_min, |
| 416 | settings, data, |
| 417 | spl: &spl); |
| 418 | if (res != GSK_DIFF_OK) |
| 419 | return res; |
| 420 | |
| 421 | /* |
| 422 | * ... et Impera. |
| 423 | */ |
| 424 | res = compare (elem1, off1, lim1: spl.i1, |
| 425 | elem2, off2, lim2: spl.i2, |
| 426 | kvdf, kvdb, need_min: spl.min_lo, |
| 427 | settings, data); |
| 428 | if (res != GSK_DIFF_OK) |
| 429 | return res; |
| 430 | res = compare (elem1, off1: spl.i1, lim1, |
| 431 | elem2, off2: spl.i2, lim2, |
| 432 | kvdf, kvdb, need_min: spl.min_hi, |
| 433 | settings, data); |
| 434 | if (res != GSK_DIFF_OK) |
| 435 | return res; |
| 436 | } |
| 437 | |
| 438 | return GSK_DIFF_OK; |
| 439 | } |
| 440 | |
| 441 | #if 0 |
| 442 | ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3; |
| 443 | if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) { |
| 444 | |
| 445 | xdl_free_env(xe); |
| 446 | return -1; |
| 447 | } |
| 448 | kvdf = kvd; |
| 449 | kvdb = kvdf + ndiags; |
| 450 | kvdf += xe->xdf2.nreff + 1; |
| 451 | kvdb += xe->xdf2.nreff + 1; |
| 452 | |
| 453 | xenv.mxcost = xdl_bogosqrt(ndiags); |
| 454 | if (xenv.mxcost < XDL_MAX_COST_MIN) |
| 455 | xenv.mxcost = XDL_MAX_COST_MIN; |
| 456 | xenv.snake_cnt = XDL_SNAKE_CNT; |
| 457 | xenv.heur_min = XDL_HEUR_MIN_COST; |
| 458 | |
| 459 | dd1.nrec = xe->xdf1.nreff; |
| 460 | dd1.ha = xe->xdf1.ha; |
| 461 | dd1.rchg = xe->xdf1.rchg; |
| 462 | dd1.rindex = xe->xdf1.rindex; |
| 463 | dd2.nrec = xe->xdf2.nreff; |
| 464 | dd2.ha = xe->xdf2.ha; |
| 465 | dd2.rchg = xe->xdf2.rchg; |
| 466 | dd2.rindex = xe->xdf2.rindex; |
| 467 | #endif |
| 468 | |
| 469 | GskDiffResult |
| 470 | gsk_diff (gconstpointer *elem1, |
| 471 | gsize n1, |
| 472 | gconstpointer *elem2, |
| 473 | gsize n2, |
| 474 | const GskDiffSettings *settings, |
| 475 | gpointer data) |
| 476 | { |
| 477 | gsize ndiags; |
| 478 | gssize *kvd, *kvdf, *kvdb; |
| 479 | GskDiffResult res; |
| 480 | |
| 481 | ndiags = n1 + n2 + 3; |
| 482 | |
| 483 | kvd = g_new (gssize, 2 * ndiags + 2); |
| 484 | kvdf = kvd; |
| 485 | kvdb = kvd + ndiags; |
| 486 | kvdf += n2 + 1; |
| 487 | kvdb += n2 + 1; |
| 488 | |
| 489 | res = compare (elem1, off1: 0, lim1: n1, |
| 490 | elem2, off2: 0, lim2: n2, |
| 491 | kvdf, kvdb, FALSE, |
| 492 | settings, data); |
| 493 | |
| 494 | g_free (mem: kvd); |
| 495 | |
| 496 | return res; |
| 497 | } |
| 498 | |
| 499 | |