1 | /* GSK - The GTK Scene Kit |
2 | * |
3 | * Copyright 2016 Endless |
4 | * |
5 | * This library is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU Lesser General Public |
7 | * License as published by the Free Software Foundation; either |
8 | * version 2 of the License, or (at your option) any later version. |
9 | * |
10 | * This library is distributed in the hope that it will be useful, |
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | * Lesser General Public License for more details. |
14 | * |
15 | * You should have received a copy of the GNU Lesser General Public |
16 | * License along with this library. If not, see <http://www.gnu.org/licenses/>. |
17 | */ |
18 | |
19 | /** |
20 | * GskRoundedRect: |
21 | * @bounds: the bounds of the rectangle |
22 | * @corner: the size of the 4 rounded corners |
23 | * |
24 | * A rectangular region with rounded corners. |
25 | * |
26 | * Application code should normalize rectangles using |
27 | * [method@Gsk.RoundedRect.normalize]; this function will ensure that |
28 | * the bounds of the rectangle are normalized and ensure that the corner |
29 | * values are positive and the corners do not overlap. |
30 | * |
31 | * All functions taking a `GskRoundedRect` as an argument will internally |
32 | * operate on a normalized copy; all functions returning a `GskRoundedRect` |
33 | * will always return a normalized one. |
34 | * |
35 | * The algorithm used for normalizing corner sizes is described in |
36 | * [the CSS specification](https://drafts.csswg.org/css-backgrounds-3/#border-radius). |
37 | */ |
38 | |
39 | #include "config.h" |
40 | |
41 | #include "gskroundedrect.h" |
42 | #include "gskroundedrectprivate.h" |
43 | |
44 | #include "gskdebugprivate.h" |
45 | |
46 | #include <math.h> |
47 | |
48 | static void |
49 | gsk_rounded_rect_normalize_in_place (GskRoundedRect *self) |
50 | { |
51 | float factor = 1.0; |
52 | float corners; |
53 | guint i; |
54 | |
55 | graphene_rect_normalize (r: &self->bounds); |
56 | |
57 | for (i = 0; i < 4; i++) |
58 | { |
59 | self->corner[i].width = MAX (self->corner[i].width, 0); |
60 | self->corner[i].height = MAX (self->corner[i].height, 0); |
61 | } |
62 | |
63 | /* clamp border radius, following CSS specs */ |
64 | corners = self->corner[GSK_CORNER_TOP_LEFT].width + self->corner[GSK_CORNER_TOP_RIGHT].width; |
65 | if (corners > self->bounds.size.width) |
66 | factor = MIN (factor, self->bounds.size.width / corners); |
67 | |
68 | corners = self->corner[GSK_CORNER_TOP_RIGHT].height + self->corner[GSK_CORNER_BOTTOM_RIGHT].height; |
69 | if (corners > self->bounds.size.height) |
70 | factor = MIN (factor, self->bounds.size.height / corners); |
71 | |
72 | corners = self->corner[GSK_CORNER_BOTTOM_RIGHT].width + self->corner[GSK_CORNER_BOTTOM_LEFT].width; |
73 | if (corners > self->bounds.size.width) |
74 | factor = MIN (factor, self->bounds.size.width / corners); |
75 | |
76 | corners = self->corner[GSK_CORNER_TOP_LEFT].height + self->corner[GSK_CORNER_BOTTOM_LEFT].height; |
77 | if (corners > self->bounds.size.height) |
78 | factor = MIN (factor, self->bounds.size.height / corners); |
79 | |
80 | for (i = 0; i < 4; i++) |
81 | graphene_size_scale (s: &self->corner[i], factor, res: &self->corner[i]); |
82 | } |
83 | |
84 | /** |
85 | * gsk_rounded_rect_init: |
86 | * @self: The `GskRoundedRect` to initialize |
87 | * @bounds: a `graphene_rect_t` describing the bounds |
88 | * @top_left: the rounding radius of the top left corner |
89 | * @top_right: the rounding radius of the top right corner |
90 | * @bottom_right: the rounding radius of the bottom right corner |
91 | * @bottom_left: the rounding radius of the bottom left corner |
92 | * |
93 | * Initializes the given `GskRoundedRect` with the given values. |
94 | * |
95 | * This function will implicitly normalize the `GskRoundedRect` |
96 | * before returning. |
97 | * |
98 | * Returns: (transfer none): the initialized rectangle |
99 | */ |
100 | GskRoundedRect * |
101 | gsk_rounded_rect_init (GskRoundedRect *self, |
102 | const graphene_rect_t *bounds, |
103 | const graphene_size_t *top_left, |
104 | const graphene_size_t *top_right, |
105 | const graphene_size_t *bottom_right, |
106 | const graphene_size_t *bottom_left) |
107 | { |
108 | graphene_rect_init_from_rect (r: &self->bounds, src: bounds); |
109 | graphene_size_init_from_size (s: &self->corner[GSK_CORNER_TOP_LEFT], src: top_left); |
110 | graphene_size_init_from_size (s: &self->corner[GSK_CORNER_TOP_RIGHT], src: top_right); |
111 | graphene_size_init_from_size (s: &self->corner[GSK_CORNER_BOTTOM_RIGHT], src: bottom_right); |
112 | graphene_size_init_from_size (s: &self->corner[GSK_CORNER_BOTTOM_LEFT], src: bottom_left); |
113 | |
114 | gsk_rounded_rect_normalize_in_place (self); |
115 | |
116 | return self; |
117 | } |
118 | |
119 | /** |
120 | * gsk_rounded_rect_init_copy: |
121 | * @self: a `GskRoundedRect` |
122 | * @src: a `GskRoundedRect` |
123 | * |
124 | * Initializes @self using the given @src rectangle. |
125 | * |
126 | * This function will not normalize the `GskRoundedRect`, |
127 | * so make sure the source is normalized. |
128 | * |
129 | * Returns: (transfer none): the initialized rectangle |
130 | */ |
131 | GskRoundedRect * |
132 | gsk_rounded_rect_init_copy (GskRoundedRect *self, |
133 | const GskRoundedRect *src) |
134 | { |
135 | *self = *src; |
136 | |
137 | return self; |
138 | } |
139 | |
140 | /** |
141 | * gsk_rounded_rect_init_from_rect: |
142 | * @self: a `GskRoundedRect` |
143 | * @bounds: a `graphene_rect_t` |
144 | * @radius: the border radius |
145 | * |
146 | * Initializes @self to the given @bounds and sets the radius |
147 | * of all four corners to @radius. |
148 | * |
149 | * Returns: (transfer none): the initialized rectangle |
150 | **/ |
151 | GskRoundedRect * |
152 | gsk_rounded_rect_init_from_rect (GskRoundedRect *self, |
153 | const graphene_rect_t *bounds, |
154 | float radius) |
155 | { |
156 | graphene_size_t corner = GRAPHENE_SIZE_INIT(radius, radius); |
157 | |
158 | return gsk_rounded_rect_init (self, bounds, top_left: &corner, top_right: &corner, bottom_right: &corner, bottom_left: &corner); |
159 | } |
160 | |
161 | /** |
162 | * gsk_rounded_rect_normalize: |
163 | * @self: a `GskRoundedRect` |
164 | * |
165 | * Normalizes the passed rectangle. |
166 | * |
167 | * This function will ensure that the bounds of the rectangle |
168 | * are normalized and ensure that the corner values are positive |
169 | * and the corners do not overlap. |
170 | * |
171 | * Returns: (transfer none): the normalized rectangle |
172 | */ |
173 | GskRoundedRect * |
174 | gsk_rounded_rect_normalize (GskRoundedRect *self) |
175 | { |
176 | gsk_rounded_rect_normalize_in_place (self); |
177 | |
178 | return self; |
179 | } |
180 | |
181 | /** |
182 | * gsk_rounded_rect_offset: |
183 | * @self: a `GskRoundedRect` |
184 | * @dx: the horizontal offset |
185 | * @dy: the vertical offset |
186 | * |
187 | * Offsets the bound's origin by @dx and @dy. |
188 | * |
189 | * The size and corners of the rectangle are unchanged. |
190 | * |
191 | * Returns: (transfer none): the offset rectangle |
192 | */ |
193 | GskRoundedRect * |
194 | gsk_rounded_rect_offset (GskRoundedRect *self, |
195 | float dx, |
196 | float dy) |
197 | { |
198 | gsk_rounded_rect_normalize (self); |
199 | |
200 | self->bounds.origin.x += dx; |
201 | self->bounds.origin.y += dy; |
202 | |
203 | return self; |
204 | } |
205 | |
206 | static inline void |
207 | border_radius_shrink (graphene_size_t *corner, |
208 | double width, |
209 | double height, |
210 | const graphene_size_t *max) |
211 | { |
212 | if (corner->width > 0) |
213 | corner->width -= width; |
214 | if (corner->height > 0) |
215 | corner->height -= height; |
216 | |
217 | if (corner->width <= 0 || corner->height <= 0) |
218 | { |
219 | corner->width = 0; |
220 | corner->height = 0; |
221 | } |
222 | else |
223 | { |
224 | corner->width = MIN (corner->width, max->width); |
225 | corner->height = MIN (corner->height, max->height); |
226 | } |
227 | } |
228 | |
229 | /** |
230 | * gsk_rounded_rect_shrink: |
231 | * @self: The `GskRoundedRect` to shrink or grow |
232 | * @top: How far to move the top side downwards |
233 | * @right: How far to move the right side to the left |
234 | * @bottom: How far to move the bottom side upwards |
235 | * @left: How far to move the left side to the right |
236 | * |
237 | * Shrinks (or grows) the given rectangle by moving the 4 sides |
238 | * according to the offsets given. |
239 | * |
240 | * The corner radii will be changed in a way that tries to keep |
241 | * the center of the corner circle intact. This emulates CSS behavior. |
242 | * |
243 | * This function also works for growing rectangles if you pass |
244 | * negative values for the @top, @right, @bottom or @left. |
245 | * |
246 | * Returns: (transfer none): the resized `GskRoundedRect` |
247 | **/ |
248 | GskRoundedRect * |
249 | gsk_rounded_rect_shrink (GskRoundedRect *self, |
250 | float top, |
251 | float right, |
252 | float bottom, |
253 | float left) |
254 | { |
255 | float width = left + right; |
256 | float height = top + bottom; |
257 | |
258 | if (self->bounds.size.width - width < 0) |
259 | { |
260 | self->bounds.origin.x += left * self->bounds.size.width / width; |
261 | self->bounds.size.width = 0; |
262 | } |
263 | else |
264 | { |
265 | self->bounds.origin.x += left; |
266 | self->bounds.size.width -= width; |
267 | } |
268 | |
269 | if (self->bounds.size.height - height < 0) |
270 | { |
271 | self->bounds.origin.y += top * self->bounds.size.height / height; |
272 | self->bounds.size.height = 0; |
273 | } |
274 | else |
275 | { |
276 | self->bounds.origin.y += top; |
277 | self->bounds.size.height -= height; |
278 | } |
279 | |
280 | border_radius_shrink (corner: &self->corner[GSK_CORNER_TOP_LEFT], width: left, height: top, max: &self->bounds.size); |
281 | border_radius_shrink (corner: &self->corner[GSK_CORNER_TOP_RIGHT], width: right, height: top, max: &self->bounds.size); |
282 | border_radius_shrink (corner: &self->corner[GSK_CORNER_BOTTOM_RIGHT], width: right, height: bottom, max: &self->bounds.size); |
283 | border_radius_shrink (corner: &self->corner[GSK_CORNER_BOTTOM_LEFT], width: left, height: bottom, max: &self->bounds.size); |
284 | |
285 | return self; |
286 | } |
287 | |
288 | void |
289 | gsk_rounded_rect_scale_affine (GskRoundedRect *dest, |
290 | const GskRoundedRect *src, |
291 | float scale_x, |
292 | float scale_y, |
293 | float dx, |
294 | float dy) |
295 | { |
296 | guint flip = ((scale_x < 0) ? 1 : 0) + (scale_y < 0 ? 2 : 0); |
297 | |
298 | g_assert (dest != src); |
299 | |
300 | graphene_rect_scale (r: &src->bounds, s_h: scale_x, s_v: scale_y, res: &dest->bounds); |
301 | graphene_rect_offset (r: &dest->bounds, d_x: dx, d_y: dy); |
302 | |
303 | scale_x = fabs (x: scale_x); |
304 | scale_y = fabs (x: scale_y); |
305 | |
306 | for (guint i = 0; i < 4; i++) |
307 | { |
308 | dest->corner[i].width = src->corner[i ^ flip].width * scale_x; |
309 | dest->corner[i].height = src->corner[i ^ flip].height * scale_y; |
310 | } |
311 | } |
312 | |
313 | /*<private> |
314 | * gsk_rounded_rect_is_circular: |
315 | * @self: the `GskRoundedRect` to check |
316 | * |
317 | * Checks if all corners of @self are quarter-circles (as |
318 | * opposed to quarter-ellipses). |
319 | * |
320 | * Note that different corners can still have different radii. |
321 | * |
322 | * Returns: %TRUE if the rectangle is circular. |
323 | */ |
324 | gboolean |
325 | gsk_rounded_rect_is_circular (const GskRoundedRect *self) |
326 | { |
327 | for (guint i = 0; i < 4; i++) |
328 | { |
329 | if (self->corner[i].width != self->corner[i].height) |
330 | return FALSE; |
331 | } |
332 | |
333 | return TRUE; |
334 | } |
335 | |
336 | /** |
337 | * gsk_rounded_rect_is_rectilinear: |
338 | * @self: the `GskRoundedRect` to check |
339 | * |
340 | * Checks if all corners of @self are right angles and the |
341 | * rectangle covers all of its bounds. |
342 | * |
343 | * This information can be used to decide if [ctor@Gsk.ClipNode.new] |
344 | * or [ctor@Gsk.RoundedClipNode.new] should be called. |
345 | * |
346 | * Returns: %TRUE if the rectangle is rectilinear |
347 | **/ |
348 | gboolean |
349 | gsk_rounded_rect_is_rectilinear (const GskRoundedRect *self) |
350 | { |
351 | for (guint i = 0; i < 4; i++) |
352 | { |
353 | if (self->corner[i].width > 0 || |
354 | self->corner[i].height > 0) |
355 | return FALSE; |
356 | } |
357 | |
358 | return TRUE; |
359 | } |
360 | |
361 | static inline gboolean |
362 | ellipsis_contains_point (const graphene_size_t *ellipsis, |
363 | const graphene_point_t *point) |
364 | { |
365 | return (point->x * point->x) / (ellipsis->width * ellipsis->width) |
366 | + (point->y * point->y) / (ellipsis->height * ellipsis->height) <= 1; |
367 | } |
368 | |
369 | typedef enum |
370 | { |
371 | INSIDE, |
372 | OUTSIDE_TOP_LEFT, |
373 | OUTSIDE_TOP_RIGHT, |
374 | OUTSIDE_BOTTOM_LEFT, |
375 | OUTSIDE_BOTTOM_RIGHT, |
376 | OUTSIDE |
377 | } Location; |
378 | |
379 | static Location |
380 | gsk_rounded_rect_locate_point (const GskRoundedRect *self, |
381 | const graphene_point_t *point) |
382 | { |
383 | float px, py; |
384 | float ox, oy; |
385 | |
386 | ox = self->bounds.origin.x + self->bounds.size.width; |
387 | oy = self->bounds.origin.y + self->bounds.size.height; |
388 | |
389 | if (point->x < self->bounds.origin.x || |
390 | point->y < self->bounds.origin.y || |
391 | point->x > ox || |
392 | point->y > oy) |
393 | return OUTSIDE; |
394 | |
395 | px = self->bounds.origin.x + self->corner[GSK_CORNER_TOP_LEFT].width - point->x; |
396 | py = self->bounds.origin.y + self->corner[GSK_CORNER_TOP_LEFT].height - point->y; |
397 | if (px > 0 && py > 0 && |
398 | !ellipsis_contains_point (ellipsis: &self->corner[GSK_CORNER_TOP_LEFT], point: &GRAPHENE_POINT_INIT (px, py))) |
399 | return OUTSIDE_TOP_LEFT; |
400 | |
401 | px = ox - self->corner[GSK_CORNER_TOP_RIGHT].width - point->x; |
402 | py = self->bounds.origin.y + self->corner[GSK_CORNER_TOP_RIGHT].height - point->y; |
403 | if (px < 0 && py > 0 && |
404 | !ellipsis_contains_point (ellipsis: &self->corner[GSK_CORNER_TOP_RIGHT], point: &GRAPHENE_POINT_INIT (px, py))) |
405 | return OUTSIDE_TOP_RIGHT; |
406 | |
407 | px = self->bounds.origin.x + self->corner[GSK_CORNER_BOTTOM_LEFT].width - point->x; |
408 | py = oy - self->corner[GSK_CORNER_BOTTOM_LEFT].height - point->y; |
409 | if (px > 0 && py < 0 && |
410 | !ellipsis_contains_point (ellipsis: &self->corner[GSK_CORNER_BOTTOM_LEFT], |
411 | point: &GRAPHENE_POINT_INIT (px, py))) |
412 | return OUTSIDE_BOTTOM_LEFT; |
413 | |
414 | px = ox - self->corner[GSK_CORNER_BOTTOM_RIGHT].width - point->x; |
415 | py = oy - self->corner[GSK_CORNER_BOTTOM_RIGHT].height - point->y; |
416 | if (px < 0 && py < 0 && |
417 | !ellipsis_contains_point (ellipsis: &self->corner[GSK_CORNER_BOTTOM_RIGHT], |
418 | point: &GRAPHENE_POINT_INIT (px, py))) |
419 | return OUTSIDE_BOTTOM_RIGHT; |
420 | |
421 | return INSIDE; |
422 | } |
423 | |
424 | /** |
425 | * gsk_rounded_rect_contains_point: |
426 | * @self: a `GskRoundedRect` |
427 | * @point: the point to check |
428 | * |
429 | * Checks if the given @point is inside the rounded rectangle. |
430 | * |
431 | * Returns: %TRUE if the @point is inside the rounded rectangle |
432 | **/ |
433 | gboolean |
434 | gsk_rounded_rect_contains_point (const GskRoundedRect *self, |
435 | const graphene_point_t *point) |
436 | { |
437 | return gsk_rounded_rect_locate_point (self, point) == INSIDE; |
438 | } |
439 | |
440 | /** |
441 | * gsk_rounded_rect_contains_rect: |
442 | * @self: a `GskRoundedRect` |
443 | * @rect: the rectangle to check |
444 | * |
445 | * Checks if the given @rect is contained inside the rounded rectangle. |
446 | * |
447 | * Returns: %TRUE if the @rect is fully contained inside the rounded rectangle |
448 | **/ |
449 | gboolean |
450 | gsk_rounded_rect_contains_rect (const GskRoundedRect *self, |
451 | const graphene_rect_t *rect) |
452 | { |
453 | float tx, ty; |
454 | float px, py; |
455 | float ox, oy; |
456 | |
457 | tx = rect->origin.x + rect->size.width; |
458 | ty = rect->origin.y + rect->size.height; |
459 | ox = self->bounds.origin.x + self->bounds.size.width; |
460 | oy = self->bounds.origin.y + self->bounds.size.height; |
461 | |
462 | if (rect->origin.x < self->bounds.origin.x || |
463 | rect->origin.y < self->bounds.origin.y || |
464 | tx > ox || |
465 | ty > oy) |
466 | return FALSE; |
467 | |
468 | px = self->bounds.origin.x + self->corner[GSK_CORNER_TOP_LEFT].width - rect->origin.x; |
469 | py = self->bounds.origin.y + self->corner[GSK_CORNER_TOP_LEFT].height - rect->origin.y; |
470 | if (px > 0 && py > 0 && |
471 | !ellipsis_contains_point (ellipsis: &self->corner[GSK_CORNER_TOP_LEFT], point: &GRAPHENE_POINT_INIT (px, py))) |
472 | return FALSE; |
473 | |
474 | px = ox - self->corner[GSK_CORNER_TOP_RIGHT].width - tx; |
475 | py = self->bounds.origin.y + self->corner[GSK_CORNER_TOP_RIGHT].height - rect->origin.y; |
476 | if (px < 0 && py > 0 && |
477 | !ellipsis_contains_point (ellipsis: &self->corner[GSK_CORNER_TOP_RIGHT], point: &GRAPHENE_POINT_INIT (px, py))) |
478 | return FALSE; |
479 | |
480 | px = self->bounds.origin.x + self->corner[GSK_CORNER_BOTTOM_LEFT].width - rect->origin.x; |
481 | py = oy - self->corner[GSK_CORNER_BOTTOM_LEFT].height - ty; |
482 | if (px > 0 && py < 0 && |
483 | !ellipsis_contains_point (ellipsis: &self->corner[GSK_CORNER_BOTTOM_LEFT], |
484 | point: &GRAPHENE_POINT_INIT (px, py))) |
485 | return FALSE; |
486 | |
487 | px = ox - self->corner[GSK_CORNER_BOTTOM_RIGHT].width - tx; |
488 | py = oy - self->corner[GSK_CORNER_BOTTOM_RIGHT].height - ty; |
489 | if (px < 0 && py < 0 && |
490 | !ellipsis_contains_point (ellipsis: &self->corner[GSK_CORNER_BOTTOM_RIGHT], |
491 | point: &GRAPHENE_POINT_INIT (px, py))) |
492 | return FALSE; |
493 | |
494 | return TRUE; |
495 | } |
496 | |
497 | /** |
498 | * gsk_rounded_rect_intersects_rect: |
499 | * @self: a `GskRoundedRect` |
500 | * @rect: the rectangle to check |
501 | * |
502 | * Checks if part of the given @rect is contained inside the rounded rectangle. |
503 | * |
504 | * Returns: %TRUE if the @rect intersects with the rounded rectangle |
505 | */ |
506 | gboolean |
507 | gsk_rounded_rect_intersects_rect (const GskRoundedRect *self, |
508 | const graphene_rect_t *rect) |
509 | { |
510 | if (!graphene_rect_intersection (a: &self->bounds, b: rect, NULL)) |
511 | return FALSE; |
512 | |
513 | /* If the bounding boxes intersect but the rectangles don't, |
514 | * one of the rect's corners must be in the opposite corner's |
515 | * outside region |
516 | */ |
517 | if (gsk_rounded_rect_locate_point (self, point: &rect->origin) == OUTSIDE_BOTTOM_RIGHT || |
518 | gsk_rounded_rect_locate_point (self, point: &GRAPHENE_POINT_INIT (rect->origin.x + rect->size.width, rect->origin.y)) == OUTSIDE_BOTTOM_LEFT || |
519 | gsk_rounded_rect_locate_point (self, point: &GRAPHENE_POINT_INIT (rect->origin.x, rect->origin.y + rect->size.height)) == OUTSIDE_TOP_RIGHT || |
520 | gsk_rounded_rect_locate_point (self, point: &GRAPHENE_POINT_INIT (rect->origin.x + rect->size.width, rect->origin.y + rect->size.height)) == OUTSIDE_TOP_LEFT) |
521 | return FALSE; |
522 | |
523 | return TRUE; |
524 | } |
525 | |
526 | static void |
527 | append_arc (cairo_t *cr, double angle1, double angle2, gboolean negative) |
528 | { |
529 | if (negative) |
530 | cairo_arc_negative (cr, xc: 0.0, yc: 0.0, radius: 1.0, angle1, angle2); |
531 | else |
532 | cairo_arc (cr, xc: 0.0, yc: 0.0, radius: 1.0, angle1, angle2); |
533 | } |
534 | |
535 | static void |
536 | _cairo_ellipsis (cairo_t *cr, |
537 | double xc, double yc, |
538 | double xradius, double yradius, |
539 | double angle1, double angle2) |
540 | { |
541 | cairo_matrix_t save; |
542 | |
543 | if (xradius <= 0.0 || yradius <= 0.0) |
544 | { |
545 | cairo_line_to (cr, x: xc, y: yc); |
546 | return; |
547 | } |
548 | |
549 | cairo_get_matrix (cr, matrix: &save); |
550 | cairo_translate (cr, tx: xc, ty: yc); |
551 | cairo_scale (cr, sx: xradius, sy: yradius); |
552 | append_arc (cr, angle1, angle2, FALSE); |
553 | cairo_set_matrix (cr, matrix: &save); |
554 | } |
555 | |
556 | void |
557 | gsk_rounded_rect_path (const GskRoundedRect *self, |
558 | cairo_t *cr) |
559 | { |
560 | cairo_new_sub_path (cr); |
561 | |
562 | _cairo_ellipsis (cr, |
563 | xc: self->bounds.origin.x + self->corner[GSK_CORNER_TOP_LEFT].width, |
564 | yc: self->bounds.origin.y + self->corner[GSK_CORNER_TOP_LEFT].height, |
565 | xradius: self->corner[GSK_CORNER_TOP_LEFT].width, |
566 | yradius: self->corner[GSK_CORNER_TOP_LEFT].height, |
567 | G_PI, angle2: 3 * G_PI_2); |
568 | _cairo_ellipsis (cr, |
569 | xc: self->bounds.origin.x + self->bounds.size.width - self->corner[GSK_CORNER_TOP_RIGHT].width, |
570 | yc: self->bounds.origin.y + self->corner[GSK_CORNER_TOP_RIGHT].height, |
571 | xradius: self->corner[GSK_CORNER_TOP_RIGHT].width, |
572 | yradius: self->corner[GSK_CORNER_TOP_RIGHT].height, |
573 | angle1: - G_PI_2, angle2: 0); |
574 | _cairo_ellipsis (cr, |
575 | xc: self->bounds.origin.x + self->bounds.size.width - self->corner[GSK_CORNER_BOTTOM_RIGHT].width, |
576 | yc: self->bounds.origin.y + self->bounds.size.height - self->corner[GSK_CORNER_BOTTOM_RIGHT].height, |
577 | xradius: self->corner[GSK_CORNER_BOTTOM_RIGHT].width, |
578 | yradius: self->corner[GSK_CORNER_BOTTOM_RIGHT].height, |
579 | angle1: 0, G_PI_2); |
580 | _cairo_ellipsis (cr, |
581 | xc: self->bounds.origin.x + self->corner[GSK_CORNER_BOTTOM_LEFT].width, |
582 | yc: self->bounds.origin.y + self->bounds.size.height - self->corner[GSK_CORNER_BOTTOM_LEFT].height, |
583 | xradius: self->corner[GSK_CORNER_BOTTOM_LEFT].width, |
584 | yradius: self->corner[GSK_CORNER_BOTTOM_LEFT].height, |
585 | G_PI_2, G_PI); |
586 | |
587 | cairo_close_path (cr); |
588 | } |
589 | |
590 | /*< private > |
591 | * Converts to the format we use in our shaders: |
592 | * vec4 rect; |
593 | * vec4 corner_widths; |
594 | * vec4 corner_heights; |
595 | * rect is (x, y, width, height), the corners are the same |
596 | * order as in the rounded rect. |
597 | * |
598 | * This is so that shaders can use just the first vec4 for |
599 | * rectilinear rects, the 2nd vec4 for circular rects and |
600 | * only look at the last vec4 if they have to. |
601 | */ |
602 | void |
603 | gsk_rounded_rect_to_float (const GskRoundedRect *self, |
604 | float rect[12]) |
605 | { |
606 | guint i; |
607 | |
608 | rect[0] = self->bounds.origin.x; |
609 | rect[1] = self->bounds.origin.y; |
610 | rect[2] = self->bounds.size.width; |
611 | rect[3] = self->bounds.size.height; |
612 | |
613 | for (i = 0; i < 4; i++) |
614 | { |
615 | rect[4 + i] = self->corner[i].width; |
616 | rect[8 + i] = self->corner[i].height; |
617 | } |
618 | } |
619 | |
620 | gboolean |
621 | gsk_rounded_rect_equal (gconstpointer rect1, |
622 | gconstpointer rect2) |
623 | { |
624 | const GskRoundedRect *self1 = rect1; |
625 | const GskRoundedRect *self2 = rect2; |
626 | |
627 | return graphene_rect_equal (a: &self1->bounds, b: &self2->bounds) |
628 | && graphene_size_equal (a: &self1->corner[0], b: &self2->corner[0]) |
629 | && graphene_size_equal (a: &self1->corner[1], b: &self2->corner[1]) |
630 | && graphene_size_equal (a: &self1->corner[2], b: &self2->corner[2]) |
631 | && graphene_size_equal (a: &self1->corner[3], b: &self2->corner[3]); |
632 | } |
633 | |
634 | char * |
635 | gsk_rounded_rect_to_string (const GskRoundedRect *self) |
636 | { |
637 | return g_strdup_printf (format: "GskRoundedRect %p: Bounds: (%f, %f, %f, %f)" |
638 | " Corners: (%f, %f) (%f, %f) (%f, %f) (%f, %f)" , |
639 | self, |
640 | self->bounds.origin.x, |
641 | self->bounds.origin.y, |
642 | self->bounds.size.width, |
643 | self->bounds.size.height, |
644 | self->corner[0].width, |
645 | self->corner[0].height, |
646 | self->corner[1].width, |
647 | self->corner[1].height, |
648 | self->corner[2].width, |
649 | self->corner[2].height, |
650 | self->corner[3].width, |
651 | self->corner[3].height); |
652 | |
653 | } |
654 | |