1/* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18/*
19 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
20 * file for a list of people on the GLib Team. See the ChangeLog
21 * files for a list of changes. These files are distributed with
22 * GLib at ftp://ftp.gtk.org/pub/gtk/.
23 */
24
25/*
26 * MT safe
27 */
28
29#include "config.h"
30
31#include <stdlib.h>
32#include <string.h>
33#include <signal.h>
34
35#include "glib.h"
36
37/* notes on macros:
38 * if ENABLE_GC_FRIENDLY is defined, freed memory should be 0-wiped.
39 */
40
41#define MEM_PROFILE_TABLE_SIZE 4096
42
43#define MEM_AREA_SIZE 4L
44
45static guint mem_chunk_recursion = 0;
46# define MEM_CHUNK_ROUTINE_COUNT() (mem_chunk_recursion)
47# define ENTER_MEM_CHUNK_ROUTINE() (mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () + 1)
48# define LEAVE_MEM_CHUNK_ROUTINE() (mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () - 1)
49
50/* --- old memchunk prototypes --- */
51GMemChunk* old_mem_chunk_new (const gchar *name,
52 gint atom_size,
53 gulong area_size,
54 gint type);
55void old_mem_chunk_destroy (GMemChunk *mem_chunk);
56gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk);
57gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk);
58void old_mem_chunk_free (GMemChunk *mem_chunk,
59 gpointer mem);
60void old_mem_chunk_clean (GMemChunk *mem_chunk);
61void old_mem_chunk_reset (GMemChunk *mem_chunk);
62void old_mem_chunk_print (GMemChunk *mem_chunk);
63void old_mem_chunk_info (void);
64
65
66/* --- MemChunks --- */
67#ifndef G_ALLOC_AND_FREE
68typedef struct _GAllocator GAllocator;
69typedef struct _GMemChunk GMemChunk;
70#define G_ALLOC_ONLY 1
71#define G_ALLOC_AND_FREE 2
72#endif
73
74typedef struct _GFreeAtom GFreeAtom;
75typedef struct _GMemArea GMemArea;
76
77struct _GFreeAtom
78{
79 GFreeAtom *next;
80};
81
82struct _GMemArea
83{
84 GMemArea *next; /* the next mem area */
85 GMemArea *prev; /* the previous mem area */
86 gulong index; /* the current index into the "mem" array */
87 gulong free; /* the number of free bytes in this mem area */
88 gulong allocated; /* the number of atoms allocated from this area */
89 gulong mark; /* is this mem area marked for deletion */
90 gchar mem[MEM_AREA_SIZE]; /* the mem array from which atoms get allocated
91 * the actual size of this array is determined by
92 * the mem chunk "area_size". ANSI says that it
93 * must be declared to be the maximum size it
94 * can possibly be (even though the actual size
95 * may be less).
96 */
97};
98
99struct _GMemChunk
100{
101 const gchar *name; /* name of this MemChunk...used for debugging output */
102 gint type; /* the type of MemChunk: ALLOC_ONLY or ALLOC_AND_FREE */
103 gint num_mem_areas; /* the number of memory areas */
104 gint num_marked_areas; /* the number of areas marked for deletion */
105 guint atom_size; /* the size of an atom */
106 gulong area_size; /* the size of a memory area */
107 GMemArea *mem_area; /* the current memory area */
108 GMemArea *mem_areas; /* a list of all the mem areas owned by this chunk */
109 GMemArea *free_mem_area; /* the free area...which is about to be destroyed */
110 GFreeAtom *free_atoms; /* the free atoms list */
111 GTree *mem_tree; /* tree of mem areas sorted by memory address */
112 GMemChunk *next; /* pointer to the next chunk */
113 GMemChunk *prev; /* pointer to the previous chunk */
114};
115
116
117static gulong old_mem_chunk_compute_size (gulong size,
118 gulong min_size) G_GNUC_CONST;
119static gint old_mem_chunk_area_compare (GMemArea *a,
120 GMemArea *b);
121static gint old_mem_chunk_area_search (GMemArea *a,
122 gchar *addr);
123
124/* here we can't use StaticMutexes, as they depend upon a working
125 * g_malloc, the same holds true for StaticPrivate
126 */
127static GMutex mem_chunks_lock;
128static GMemChunk *mem_chunks = NULL;
129
130GMemChunk*
131old_mem_chunk_new (const gchar *name,
132 gint atom_size,
133 gulong area_size,
134 gint type)
135{
136 GMemChunk *mem_chunk;
137 gulong rarea_size;
138
139 g_return_val_if_fail (atom_size > 0, NULL);
140 g_return_val_if_fail (area_size >= atom_size, NULL);
141
142 ENTER_MEM_CHUNK_ROUTINE ();
143
144 area_size = (area_size + atom_size - 1) / atom_size;
145 area_size *= atom_size;
146
147 mem_chunk = g_new (GMemChunk, 1);
148 mem_chunk->name = name;
149 mem_chunk->type = type;
150 mem_chunk->num_mem_areas = 0;
151 mem_chunk->num_marked_areas = 0;
152 mem_chunk->mem_area = NULL;
153 mem_chunk->free_mem_area = NULL;
154 mem_chunk->free_atoms = NULL;
155 mem_chunk->mem_tree = NULL;
156 mem_chunk->mem_areas = NULL;
157 mem_chunk->atom_size = atom_size;
158
159 if (mem_chunk->type == G_ALLOC_AND_FREE)
160 mem_chunk->mem_tree = g_tree_new (key_compare_func: (GCompareFunc) old_mem_chunk_area_compare);
161
162 if (mem_chunk->atom_size % G_MEM_ALIGN)
163 mem_chunk->atom_size += G_MEM_ALIGN - (mem_chunk->atom_size % G_MEM_ALIGN);
164
165 rarea_size = area_size + sizeof (GMemArea) - MEM_AREA_SIZE;
166 rarea_size = old_mem_chunk_compute_size (size: rarea_size, min_size: atom_size + sizeof (GMemArea) - MEM_AREA_SIZE);
167 mem_chunk->area_size = rarea_size - (sizeof (GMemArea) - MEM_AREA_SIZE);
168
169 g_mutex_lock (mutex: &mem_chunks_lock);
170 mem_chunk->next = mem_chunks;
171 mem_chunk->prev = NULL;
172 if (mem_chunks)
173 mem_chunks->prev = mem_chunk;
174 mem_chunks = mem_chunk;
175 g_mutex_unlock (mutex: &mem_chunks_lock);
176
177 LEAVE_MEM_CHUNK_ROUTINE ();
178
179 return mem_chunk;
180}
181
182void
183old_mem_chunk_destroy (GMemChunk *mem_chunk)
184{
185 GMemArea *mem_areas;
186 GMemArea *temp_area;
187
188 g_return_if_fail (mem_chunk != NULL);
189
190 ENTER_MEM_CHUNK_ROUTINE ();
191
192 mem_areas = mem_chunk->mem_areas;
193 while (mem_areas)
194 {
195 temp_area = mem_areas;
196 mem_areas = mem_areas->next;
197 g_free (mem: temp_area);
198 }
199
200 g_mutex_lock (mutex: &mem_chunks_lock);
201 if (mem_chunk->next)
202 mem_chunk->next->prev = mem_chunk->prev;
203 if (mem_chunk->prev)
204 mem_chunk->prev->next = mem_chunk->next;
205
206 if (mem_chunk == mem_chunks)
207 mem_chunks = mem_chunks->next;
208 g_mutex_unlock (mutex: &mem_chunks_lock);
209
210 if (mem_chunk->type == G_ALLOC_AND_FREE)
211 g_tree_destroy (tree: mem_chunk->mem_tree);
212
213 g_free (mem: mem_chunk);
214
215 LEAVE_MEM_CHUNK_ROUTINE ();
216}
217
218gpointer
219old_mem_chunk_alloc (GMemChunk *mem_chunk)
220{
221 GMemArea *temp_area;
222 gpointer mem;
223
224 ENTER_MEM_CHUNK_ROUTINE ();
225
226 g_return_val_if_fail (mem_chunk != NULL, NULL);
227
228 while (mem_chunk->free_atoms)
229 {
230 /* Get the first piece of memory on the "free_atoms" list.
231 * We can go ahead and destroy the list node we used to keep
232 * track of it with and to update the "free_atoms" list to
233 * point to its next element.
234 */
235 mem = mem_chunk->free_atoms;
236 mem_chunk->free_atoms = mem_chunk->free_atoms->next;
237
238 /* Determine which area this piece of memory is allocated from */
239 temp_area = g_tree_search (tree: mem_chunk->mem_tree,
240 search_func: (GCompareFunc) old_mem_chunk_area_search,
241 user_data: mem);
242
243 /* If the area has been marked, then it is being destroyed.
244 * (ie marked to be destroyed).
245 * We check to see if all of the segments on the free list that
246 * reference this area have been removed. This occurs when
247 * the amount of free memory is less than the allocatable size.
248 * If the chunk should be freed, then we place it in the "free_mem_area".
249 * This is so we make sure not to free the mem area here and then
250 * allocate it again a few lines down.
251 * If we don't allocate a chunk a few lines down then the "free_mem_area"
252 * will be freed.
253 * If there is already a "free_mem_area" then we'll just free this mem area.
254 */
255 if (temp_area->mark)
256 {
257 /* Update the "free" memory available in that area */
258 temp_area->free += mem_chunk->atom_size;
259
260 if (temp_area->free == mem_chunk->area_size)
261 {
262 if (temp_area == mem_chunk->mem_area)
263 mem_chunk->mem_area = NULL;
264
265 if (mem_chunk->free_mem_area)
266 {
267 mem_chunk->num_mem_areas -= 1;
268
269 if (temp_area->next)
270 temp_area->next->prev = temp_area->prev;
271 if (temp_area->prev)
272 temp_area->prev->next = temp_area->next;
273 if (temp_area == mem_chunk->mem_areas)
274 mem_chunk->mem_areas = mem_chunk->mem_areas->next;
275
276 if (mem_chunk->type == G_ALLOC_AND_FREE)
277 g_tree_remove (tree: mem_chunk->mem_tree, key: temp_area);
278 g_free (mem: temp_area);
279 }
280 else
281 mem_chunk->free_mem_area = temp_area;
282
283 mem_chunk->num_marked_areas -= 1;
284 }
285 }
286 else
287 {
288 /* Update the number of allocated atoms count.
289 */
290 temp_area->allocated += 1;
291
292 /* The area wasn't marked...return the memory
293 */
294 goto outa_here;
295 }
296 }
297
298 /* If there isn't a current mem area or the current mem area is out of space
299 * then allocate a new mem area. We'll first check and see if we can use
300 * the "free_mem_area". Otherwise we'll just malloc the mem area.
301 */
302 if ((!mem_chunk->mem_area) ||
303 ((mem_chunk->mem_area->index + mem_chunk->atom_size) > mem_chunk->area_size))
304 {
305 if (mem_chunk->free_mem_area)
306 {
307 mem_chunk->mem_area = mem_chunk->free_mem_area;
308 mem_chunk->free_mem_area = NULL;
309 }
310 else
311 {
312#ifdef ENABLE_GC_FRIENDLY
313 mem_chunk->mem_area = (GMemArea*) g_malloc0 (sizeof (GMemArea) -
314 MEM_AREA_SIZE +
315 mem_chunk->area_size);
316#else /* !ENABLE_GC_FRIENDLY */
317 mem_chunk->mem_area = (GMemArea*) g_malloc (n_bytes: sizeof (GMemArea) -
318 MEM_AREA_SIZE +
319 mem_chunk->area_size);
320#endif /* ENABLE_GC_FRIENDLY */
321
322 mem_chunk->num_mem_areas += 1;
323 mem_chunk->mem_area->next = mem_chunk->mem_areas;
324 mem_chunk->mem_area->prev = NULL;
325
326 if (mem_chunk->mem_areas)
327 mem_chunk->mem_areas->prev = mem_chunk->mem_area;
328 mem_chunk->mem_areas = mem_chunk->mem_area;
329
330 if (mem_chunk->type == G_ALLOC_AND_FREE)
331 g_tree_insert (tree: mem_chunk->mem_tree, key: mem_chunk->mem_area, value: mem_chunk->mem_area);
332 }
333
334 mem_chunk->mem_area->index = 0;
335 mem_chunk->mem_area->free = mem_chunk->area_size;
336 mem_chunk->mem_area->allocated = 0;
337 mem_chunk->mem_area->mark = 0;
338 }
339
340 /* Get the memory and modify the state variables appropriately.
341 */
342 mem = (gpointer) &mem_chunk->mem_area->mem[mem_chunk->mem_area->index];
343 mem_chunk->mem_area->index += mem_chunk->atom_size;
344 mem_chunk->mem_area->free -= mem_chunk->atom_size;
345 mem_chunk->mem_area->allocated += 1;
346
347 outa_here:
348
349 LEAVE_MEM_CHUNK_ROUTINE ();
350
351 return mem;
352}
353
354gpointer
355old_mem_chunk_alloc0 (GMemChunk *mem_chunk)
356{
357 gpointer mem;
358
359 mem = old_mem_chunk_alloc (mem_chunk);
360 if (mem)
361 {
362 memset (s: mem, c: 0, n: mem_chunk->atom_size);
363 }
364
365 return mem;
366}
367
368void
369old_mem_chunk_free (GMemChunk *mem_chunk,
370 gpointer mem)
371{
372 GMemArea *temp_area;
373 GFreeAtom *free_atom;
374
375 g_return_if_fail (mem_chunk != NULL);
376 g_return_if_fail (mem != NULL);
377
378 ENTER_MEM_CHUNK_ROUTINE ();
379
380#ifdef ENABLE_GC_FRIENDLY
381 memset (mem, 0, mem_chunk->atom_size);
382#endif /* ENABLE_GC_FRIENDLY */
383
384 /* Don't do anything if this is an ALLOC_ONLY chunk
385 */
386 if (mem_chunk->type == G_ALLOC_AND_FREE)
387 {
388 /* Place the memory on the "free_atoms" list
389 */
390 free_atom = (GFreeAtom*) mem;
391 free_atom->next = mem_chunk->free_atoms;
392 mem_chunk->free_atoms = free_atom;
393
394 temp_area = g_tree_search (tree: mem_chunk->mem_tree,
395 search_func: (GCompareFunc) old_mem_chunk_area_search,
396 user_data: mem);
397
398 temp_area->allocated -= 1;
399
400 if (temp_area->allocated == 0)
401 {
402 temp_area->mark = 1;
403 mem_chunk->num_marked_areas += 1;
404 }
405 }
406
407 LEAVE_MEM_CHUNK_ROUTINE ();
408}
409
410/* This doesn't free the free_area if there is one */
411void
412old_mem_chunk_clean (GMemChunk *mem_chunk)
413{
414 GMemArea *mem_area;
415 GFreeAtom *prev_free_atom;
416 GFreeAtom *temp_free_atom;
417 gpointer mem;
418
419 g_return_if_fail (mem_chunk != NULL);
420
421 ENTER_MEM_CHUNK_ROUTINE ();
422
423 if (mem_chunk->type == G_ALLOC_AND_FREE)
424 {
425 prev_free_atom = NULL;
426 temp_free_atom = mem_chunk->free_atoms;
427
428 while (temp_free_atom)
429 {
430 mem = (gpointer) temp_free_atom;
431
432 mem_area = g_tree_search (tree: mem_chunk->mem_tree,
433 search_func: (GCompareFunc) old_mem_chunk_area_search,
434 user_data: mem);
435
436 /* If this mem area is marked for destruction then delete the
437 * area and list node and decrement the free mem.
438 */
439 if (mem_area->mark)
440 {
441 if (prev_free_atom)
442 prev_free_atom->next = temp_free_atom->next;
443 else
444 mem_chunk->free_atoms = temp_free_atom->next;
445 temp_free_atom = temp_free_atom->next;
446
447 mem_area->free += mem_chunk->atom_size;
448 if (mem_area->free == mem_chunk->area_size)
449 {
450 mem_chunk->num_mem_areas -= 1;
451 mem_chunk->num_marked_areas -= 1;
452
453 if (mem_area->next)
454 mem_area->next->prev = mem_area->prev;
455 if (mem_area->prev)
456 mem_area->prev->next = mem_area->next;
457 if (mem_area == mem_chunk->mem_areas)
458 mem_chunk->mem_areas = mem_chunk->mem_areas->next;
459 if (mem_area == mem_chunk->mem_area)
460 mem_chunk->mem_area = NULL;
461
462 if (mem_chunk->type == G_ALLOC_AND_FREE)
463 g_tree_remove (tree: mem_chunk->mem_tree, key: mem_area);
464 g_free (mem: mem_area);
465 }
466 }
467 else
468 {
469 prev_free_atom = temp_free_atom;
470 temp_free_atom = temp_free_atom->next;
471 }
472 }
473 }
474 LEAVE_MEM_CHUNK_ROUTINE ();
475}
476
477void
478old_mem_chunk_reset (GMemChunk *mem_chunk)
479{
480 GMemArea *mem_areas;
481 GMemArea *temp_area;
482
483 g_return_if_fail (mem_chunk != NULL);
484
485 ENTER_MEM_CHUNK_ROUTINE ();
486
487 mem_areas = mem_chunk->mem_areas;
488 mem_chunk->num_mem_areas = 0;
489 mem_chunk->mem_areas = NULL;
490 mem_chunk->mem_area = NULL;
491
492 while (mem_areas)
493 {
494 temp_area = mem_areas;
495 mem_areas = mem_areas->next;
496 g_free (mem: temp_area);
497 }
498
499 mem_chunk->free_atoms = NULL;
500
501 if (mem_chunk->mem_tree)
502 {
503 g_tree_destroy (tree: mem_chunk->mem_tree);
504 mem_chunk->mem_tree = g_tree_new (key_compare_func: (GCompareFunc) old_mem_chunk_area_compare);
505 }
506
507 LEAVE_MEM_CHUNK_ROUTINE ();
508}
509
510void
511old_mem_chunk_print (GMemChunk *mem_chunk)
512{
513 GMemArea *mem_areas;
514 gulong mem;
515
516 g_return_if_fail (mem_chunk != NULL);
517
518 mem_areas = mem_chunk->mem_areas;
519 mem = 0;
520
521 while (mem_areas)
522 {
523 mem += mem_chunk->area_size - mem_areas->free;
524 mem_areas = mem_areas->next;
525 }
526
527 g_log (G_LOG_DOMAIN, log_level: G_LOG_LEVEL_INFO,
528 format: "%s: %ld bytes using %d mem areas",
529 mem_chunk->name, mem, mem_chunk->num_mem_areas);
530}
531
532void
533old_mem_chunk_info (void)
534{
535 GMemChunk *mem_chunk;
536 gint count;
537
538 count = 0;
539 g_mutex_lock (mutex: &mem_chunks_lock);
540 mem_chunk = mem_chunks;
541 while (mem_chunk)
542 {
543 count += 1;
544 mem_chunk = mem_chunk->next;
545 }
546 g_mutex_unlock (mutex: &mem_chunks_lock);
547
548 g_log (G_LOG_DOMAIN, log_level: G_LOG_LEVEL_INFO, format: "%d mem chunks", count);
549
550 g_mutex_lock (mutex: &mem_chunks_lock);
551 mem_chunk = mem_chunks;
552 g_mutex_unlock (mutex: &mem_chunks_lock);
553
554 while (mem_chunk)
555 {
556 old_mem_chunk_print (mem_chunk: (GMemChunk*) mem_chunk);
557 mem_chunk = mem_chunk->next;
558 }
559}
560
561static gulong
562old_mem_chunk_compute_size (gulong size,
563 gulong min_size)
564{
565 gulong power_of_2;
566 gulong lower, upper;
567
568 power_of_2 = 16;
569 while (power_of_2 < size)
570 power_of_2 <<= 1;
571
572 lower = power_of_2 >> 1;
573 upper = power_of_2;
574
575 if (size - lower < upper - size && lower >= min_size)
576 return lower;
577 else
578 return upper;
579}
580
581static gint
582old_mem_chunk_area_compare (GMemArea *a,
583 GMemArea *b)
584{
585 if (a->mem > b->mem)
586 return 1;
587 else if (a->mem < b->mem)
588 return -1;
589 return 0;
590}
591
592static gint
593old_mem_chunk_area_search (GMemArea *a,
594 gchar *addr)
595{
596 if (a->mem <= addr)
597 {
598 if (addr < &a->mem[a->index])
599 return 0;
600 return 1;
601 }
602 return -1;
603}
604

source code of gtk/subprojects/glib/tests/memchunks.c