1 | /////////////////////////////////////////////////////////////////////////// |
2 | // |
3 | // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas |
4 | // Digital Ltd. LLC |
5 | // |
6 | // All rights reserved. |
7 | // |
8 | // Redistribution and use in source and binary forms, with or without |
9 | // modification, are permitted provided that the following conditions are |
10 | // met: |
11 | // * Redistributions of source code must retain the above copyright |
12 | // notice, this list of conditions and the following disclaimer. |
13 | // * Redistributions in binary form must reproduce the above |
14 | // copyright notice, this list of conditions and the following disclaimer |
15 | // in the documentation and/or other materials provided with the |
16 | // distribution. |
17 | // * Neither the name of Industrial Light & Magic nor the names of |
18 | // its contributors may be used to endorse or promote products derived |
19 | // from this software without specific prior written permission. |
20 | // |
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
32 | // |
33 | /////////////////////////////////////////////////////////////////////////// |
34 | |
35 | |
36 | |
37 | #ifndef INCLUDED_IMATHFUN_H |
38 | #define INCLUDED_IMATHFUN_H |
39 | |
40 | //----------------------------------------------------------------------------- |
41 | // |
42 | // Miscellaneous utility functions |
43 | // |
44 | //----------------------------------------------------------------------------- |
45 | |
46 | #include "ImathExport.h" |
47 | #include "ImathLimits.h" |
48 | #include "ImathInt64.h" |
49 | #include "ImathNamespace.h" |
50 | |
51 | IMATH_INTERNAL_NAMESPACE_HEADER_ENTER |
52 | |
53 | template <class T> |
54 | inline T |
55 | abs (T a) |
56 | { |
57 | return (a > T(0)) ? a : -a; |
58 | } |
59 | |
60 | |
61 | template <class T> |
62 | inline int |
63 | sign (T a) |
64 | { |
65 | return (a > T(0))? 1 : ((a < T(0)) ? -1 : 0); |
66 | } |
67 | |
68 | |
69 | template <class T, class Q> |
70 | inline T |
71 | lerp (T a, T b, Q t) |
72 | { |
73 | return (T) (a * (1 - t) + b * t); |
74 | } |
75 | |
76 | |
77 | template <class T, class Q> |
78 | inline T |
79 | ulerp (T a, T b, Q t) |
80 | { |
81 | return (T) ((a > b)? (a - (a - b) * t): (a + (b - a) * t)); |
82 | } |
83 | |
84 | |
85 | template <class T> |
86 | inline T |
87 | lerpfactor(T m, T a, T b) |
88 | { |
89 | // |
90 | // Return how far m is between a and b, that is return t such that |
91 | // if: |
92 | // t = lerpfactor(m, a, b); |
93 | // then: |
94 | // m = lerp(a, b, t); |
95 | // |
96 | // If a==b, return 0. |
97 | // |
98 | |
99 | T d = b - a; |
100 | T n = m - a; |
101 | |
102 | if (abs(d) > T(1) || abs(n) < limits<T>::max() * abs(d)) |
103 | return n / d; |
104 | |
105 | return T(0); |
106 | } |
107 | |
108 | |
109 | template <class T> |
110 | inline T |
111 | clamp (T a, T l, T h) |
112 | { |
113 | return (a < l)? l : ((a > h)? h : a); |
114 | } |
115 | |
116 | |
117 | template <class T> |
118 | inline int |
119 | cmp (T a, T b) |
120 | { |
121 | return IMATH_INTERNAL_NAMESPACE::sign (a - b); |
122 | } |
123 | |
124 | |
125 | template <class T> |
126 | inline int |
127 | cmpt (T a, T b, T t) |
128 | { |
129 | return (IMATH_INTERNAL_NAMESPACE::abs (a - b) <= t)? 0 : cmp (a, b); |
130 | } |
131 | |
132 | |
133 | template <class T> |
134 | inline bool |
135 | iszero (T a, T t) |
136 | { |
137 | return (IMATH_INTERNAL_NAMESPACE::abs (a) <= t) ? 1 : 0; |
138 | } |
139 | |
140 | |
141 | template <class T1, class T2, class T3> |
142 | inline bool |
143 | equal (T1 a, T2 b, T3 t) |
144 | { |
145 | return IMATH_INTERNAL_NAMESPACE::abs (a - b) <= t; |
146 | } |
147 | |
148 | template <class T> |
149 | inline int |
150 | floor (T x) |
151 | { |
152 | return (x >= 0)? int (x): -(int (-x) + (-x > int (-x))); |
153 | } |
154 | |
155 | |
156 | template <class T> |
157 | inline int |
158 | ceil (T x) |
159 | { |
160 | return -floor (-x); |
161 | } |
162 | |
163 | template <class T> |
164 | inline int |
165 | trunc (T x) |
166 | { |
167 | return (x >= 0) ? int(x) : -int(-x); |
168 | } |
169 | |
170 | |
171 | // |
172 | // Integer division and remainder where the |
173 | // remainder of x/y has the same sign as x: |
174 | // |
175 | // divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y)) |
176 | // mods(x,y) == x - y * divs(x,y) |
177 | // |
178 | |
179 | inline int |
180 | divs (int x, int y) |
181 | { |
182 | return (x >= 0)? ((y >= 0)? ( x / y): -( x / -y)): |
183 | ((y >= 0)? -(-x / y): (-x / -y)); |
184 | } |
185 | |
186 | |
187 | inline int |
188 | mods (int x, int y) |
189 | { |
190 | return (x >= 0)? ((y >= 0)? ( x % y): ( x % -y)): |
191 | ((y >= 0)? -(-x % y): -(-x % -y)); |
192 | } |
193 | |
194 | |
195 | // |
196 | // Integer division and remainder where the |
197 | // remainder of x/y is always positive: |
198 | // |
199 | // divp(x,y) == floor (double(x) / double (y)) |
200 | // modp(x,y) == x - y * divp(x,y) |
201 | // |
202 | |
203 | inline int |
204 | divp (int x, int y) |
205 | { |
206 | return (x >= 0)? ((y >= 0)? ( x / y): -( x / -y)): |
207 | ((y >= 0)? -((y-1-x) / y): ((-y-1-x) / -y)); |
208 | } |
209 | |
210 | |
211 | inline int |
212 | modp (int x, int y) |
213 | { |
214 | return x - y * divp (x, y); |
215 | } |
216 | |
217 | //---------------------------------------------------------- |
218 | // Successor and predecessor for floating-point numbers: |
219 | // |
220 | // succf(f) returns float(f+e), where e is the smallest |
221 | // positive number such that float(f+e) != f. |
222 | // |
223 | // predf(f) returns float(f-e), where e is the smallest |
224 | // positive number such that float(f-e) != f. |
225 | // |
226 | // succd(d) returns double(d+e), where e is the smallest |
227 | // positive number such that double(d+e) != d. |
228 | // |
229 | // predd(d) returns double(d-e), where e is the smallest |
230 | // positive number such that double(d-e) != d. |
231 | // |
232 | // Exceptions: If the input value is an infinity or a nan, |
233 | // succf(), predf(), succd(), and predd() all |
234 | // return the input value without changing it. |
235 | // |
236 | //---------------------------------------------------------- |
237 | |
238 | IMATH_EXPORT float succf (float f); |
239 | IMATH_EXPORT float predf (float f); |
240 | |
241 | IMATH_EXPORT double succd (double d); |
242 | IMATH_EXPORT double predd (double d); |
243 | |
244 | // |
245 | // Return true if the number is not a NaN or Infinity. |
246 | // |
247 | |
248 | inline bool |
249 | finitef (float f) |
250 | { |
251 | union {float f; int i;} u; |
252 | u.f = f; |
253 | |
254 | return (u.i & 0x7f800000) != 0x7f800000; |
255 | } |
256 | |
257 | inline bool |
258 | finited (double d) |
259 | { |
260 | union {double d; Int64 i;} u; |
261 | u.d = d; |
262 | |
263 | return (u.i & 0x7ff0000000000000LL) != 0x7ff0000000000000LL; |
264 | } |
265 | |
266 | |
267 | IMATH_INTERNAL_NAMESPACE_HEADER_EXIT |
268 | |
269 | #endif // INCLUDED_IMATHFUN_H |
270 | |