1 | /////////////////////////////////////////////////////////////////////////// |
2 | // |
3 | // Copyright (c) 2004-2012, Industrial Light & Magic, a division of Lucas |
4 | // Digital Ltd. LLC |
5 | // |
6 | // All rights reserved. |
7 | // |
8 | // Redistribution and use in source and binary forms, with or without |
9 | // modification, are permitted provided that the following conditions are |
10 | // met: |
11 | // * Redistributions of source code must retain the above copyright |
12 | // notice, this list of conditions and the following disclaimer. |
13 | // * Redistributions in binary form must reproduce the above |
14 | // copyright notice, this list of conditions and the following disclaimer |
15 | // in the documentation and/or other materials provided with the |
16 | // distribution. |
17 | // * Neither the name of Industrial Light & Magic nor the names of |
18 | // its contributors may be used to endorse or promote products derived |
19 | // from this software without specific prior written permission. |
20 | // |
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
32 | // |
33 | /////////////////////////////////////////////////////////////////////////// |
34 | |
35 | |
36 | |
37 | #ifndef INCLUDED_IMATHVEC_H |
38 | #define INCLUDED_IMATHVEC_H |
39 | |
40 | //---------------------------------------------------- |
41 | // |
42 | // 2D, 3D and 4D point/vector class templates |
43 | // |
44 | //---------------------------------------------------- |
45 | |
46 | #include "ImathExc.h" |
47 | #include "ImathLimits.h" |
48 | #include "ImathMath.h" |
49 | #include "ImathNamespace.h" |
50 | |
51 | #include <iostream> |
52 | |
53 | #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER |
54 | // suppress exception specification warnings |
55 | #pragma warning(push) |
56 | #pragma warning(disable:4290) |
57 | #endif |
58 | |
59 | |
60 | IMATH_INTERNAL_NAMESPACE_HEADER_ENTER |
61 | |
62 | template <class T> class Vec2; |
63 | template <class T> class Vec3; |
64 | template <class T> class Vec4; |
65 | |
66 | enum InfException {INF_EXCEPTION}; |
67 | |
68 | |
69 | template <class T> class Vec2 |
70 | { |
71 | public: |
72 | |
73 | //------------------- |
74 | // Access to elements |
75 | //------------------- |
76 | |
77 | T x, y; |
78 | |
79 | T & operator [] (int i); |
80 | const T & operator [] (int i) const; |
81 | |
82 | |
83 | //------------- |
84 | // Constructors |
85 | //------------- |
86 | |
87 | Vec2 (); // no initialization |
88 | explicit Vec2 (T a); // (a a) |
89 | Vec2 (T a, T b); // (a b) |
90 | |
91 | |
92 | //--------------------------------- |
93 | // Copy constructors and assignment |
94 | //--------------------------------- |
95 | |
96 | Vec2 (const Vec2 &v); |
97 | template <class S> Vec2 (const Vec2<S> &v); |
98 | |
99 | const Vec2 & operator = (const Vec2 &v); |
100 | |
101 | //------------ |
102 | // Destructor |
103 | //------------ |
104 | |
105 | ~Vec2 () = default; |
106 | |
107 | //---------------------- |
108 | // Compatibility with Sb |
109 | //---------------------- |
110 | |
111 | template <class S> |
112 | void setValue (S a, S b); |
113 | |
114 | template <class S> |
115 | void setValue (const Vec2<S> &v); |
116 | |
117 | template <class S> |
118 | void getValue (S &a, S &b) const; |
119 | |
120 | template <class S> |
121 | void getValue (Vec2<S> &v) const; |
122 | |
123 | T * getValue (); |
124 | const T * getValue () const; |
125 | |
126 | |
127 | //--------- |
128 | // Equality |
129 | //--------- |
130 | |
131 | template <class S> |
132 | bool operator == (const Vec2<S> &v) const; |
133 | |
134 | template <class S> |
135 | bool operator != (const Vec2<S> &v) const; |
136 | |
137 | |
138 | //----------------------------------------------------------------------- |
139 | // Compare two vectors and test if they are "approximately equal": |
140 | // |
141 | // equalWithAbsError (v, e) |
142 | // |
143 | // Returns true if the coefficients of this and v are the same with |
144 | // an absolute error of no more than e, i.e., for all i |
145 | // |
146 | // abs (this[i] - v[i]) <= e |
147 | // |
148 | // equalWithRelError (v, e) |
149 | // |
150 | // Returns true if the coefficients of this and v are the same with |
151 | // a relative error of no more than e, i.e., for all i |
152 | // |
153 | // abs (this[i] - v[i]) <= e * abs (this[i]) |
154 | //----------------------------------------------------------------------- |
155 | |
156 | bool equalWithAbsError (const Vec2<T> &v, T e) const; |
157 | bool equalWithRelError (const Vec2<T> &v, T e) const; |
158 | |
159 | //------------ |
160 | // Dot product |
161 | //------------ |
162 | |
163 | T dot (const Vec2 &v) const; |
164 | T operator ^ (const Vec2 &v) const; |
165 | |
166 | |
167 | //------------------------------------------------ |
168 | // Right-handed cross product, i.e. z component of |
169 | // Vec3 (this->x, this->y, 0) % Vec3 (v.x, v.y, 0) |
170 | //------------------------------------------------ |
171 | |
172 | T cross (const Vec2 &v) const; |
173 | T operator % (const Vec2 &v) const; |
174 | |
175 | |
176 | //------------------------ |
177 | // Component-wise addition |
178 | //------------------------ |
179 | |
180 | const Vec2 & operator += (const Vec2 &v); |
181 | Vec2 operator + (const Vec2 &v) const; |
182 | |
183 | |
184 | //--------------------------- |
185 | // Component-wise subtraction |
186 | //--------------------------- |
187 | |
188 | const Vec2 & operator -= (const Vec2 &v); |
189 | Vec2 operator - (const Vec2 &v) const; |
190 | |
191 | |
192 | //------------------------------------ |
193 | // Component-wise multiplication by -1 |
194 | //------------------------------------ |
195 | |
196 | Vec2 operator - () const; |
197 | const Vec2 & negate (); |
198 | |
199 | |
200 | //------------------------------ |
201 | // Component-wise multiplication |
202 | //------------------------------ |
203 | |
204 | const Vec2 & operator *= (const Vec2 &v); |
205 | const Vec2 & operator *= (T a); |
206 | Vec2 operator * (const Vec2 &v) const; |
207 | Vec2 operator * (T a) const; |
208 | |
209 | |
210 | //------------------------ |
211 | // Component-wise division |
212 | //------------------------ |
213 | |
214 | const Vec2 & operator /= (const Vec2 &v); |
215 | const Vec2 & operator /= (T a); |
216 | Vec2 operator / (const Vec2 &v) const; |
217 | Vec2 operator / (T a) const; |
218 | |
219 | |
220 | //---------------------------------------------------------------- |
221 | // Length and normalization: If v.length() is 0.0, v.normalize() |
222 | // and v.normalized() produce a null vector; v.normalizeExc() and |
223 | // v.normalizedExc() throw a NullVecExc. |
224 | // v.normalizeNonNull() and v.normalizedNonNull() are slightly |
225 | // faster than the other normalization routines, but if v.length() |
226 | // is 0.0, the result is undefined. |
227 | //---------------------------------------------------------------- |
228 | |
229 | T length () const; |
230 | T length2 () const; |
231 | |
232 | const Vec2 & normalize (); // modifies *this |
233 | const Vec2 & normalizeExc (); |
234 | const Vec2 & normalizeNonNull (); |
235 | |
236 | Vec2<T> normalized () const; // does not modify *this |
237 | Vec2<T> normalizedExc () const; |
238 | Vec2<T> normalizedNonNull () const; |
239 | |
240 | |
241 | //-------------------------------------------------------- |
242 | // Number of dimensions, i.e. number of elements in a Vec2 |
243 | //-------------------------------------------------------- |
244 | |
245 | static unsigned int dimensions() {return 2;} |
246 | |
247 | |
248 | //------------------------------------------------- |
249 | // Limitations of type T (see also class limits<T>) |
250 | //------------------------------------------------- |
251 | |
252 | static T baseTypeMin() {return limits<T>::min();} |
253 | static T baseTypeMax() {return limits<T>::max();} |
254 | static T baseTypeSmallest() {return limits<T>::smallest();} |
255 | static T baseTypeEpsilon() {return limits<T>::epsilon();} |
256 | |
257 | |
258 | //-------------------------------------------------------------- |
259 | // Base type -- in templates, which accept a parameter, V, which |
260 | // could be either a Vec2<T>, a Vec3<T>, or a Vec4<T> you can |
261 | // refer to T as V::BaseType |
262 | //-------------------------------------------------------------- |
263 | |
264 | typedef T BaseType; |
265 | |
266 | private: |
267 | |
268 | T lengthTiny () const; |
269 | }; |
270 | |
271 | |
272 | template <class T> class Vec3 |
273 | { |
274 | public: |
275 | |
276 | //------------------- |
277 | // Access to elements |
278 | //------------------- |
279 | |
280 | T x, y, z; |
281 | |
282 | T & operator [] (int i); |
283 | const T & operator [] (int i) const; |
284 | |
285 | |
286 | //------------- |
287 | // Constructors |
288 | //------------- |
289 | |
290 | Vec3 (); // no initialization |
291 | explicit Vec3 (T a); // (a a a) |
292 | Vec3 (T a, T b, T c); // (a b c) |
293 | |
294 | |
295 | //--------------------------------- |
296 | // Copy constructors and assignment |
297 | //--------------------------------- |
298 | |
299 | Vec3 (const Vec3 &v); |
300 | template <class S> Vec3 (const Vec3<S> &v); |
301 | |
302 | const Vec3 & operator = (const Vec3 &v); |
303 | |
304 | //----------- |
305 | // Destructor |
306 | //----------- |
307 | |
308 | ~Vec3 () = default; |
309 | |
310 | //--------------------------------------------------------- |
311 | // Vec4 to Vec3 conversion, divides x, y and z by w: |
312 | // |
313 | // The one-argument conversion function divides by w even |
314 | // if w is zero. The result depends on how the environment |
315 | // handles floating-point exceptions. |
316 | // |
317 | // The two-argument version thows an InfPointExc exception |
318 | // if w is zero or if division by w would overflow. |
319 | //--------------------------------------------------------- |
320 | |
321 | template <class S> explicit Vec3 (const Vec4<S> &v); |
322 | template <class S> explicit Vec3 (const Vec4<S> &v, InfException); |
323 | |
324 | |
325 | //---------------------- |
326 | // Compatibility with Sb |
327 | //---------------------- |
328 | |
329 | template <class S> |
330 | void setValue (S a, S b, S c); |
331 | |
332 | template <class S> |
333 | void setValue (const Vec3<S> &v); |
334 | |
335 | template <class S> |
336 | void getValue (S &a, S &b, S &c) const; |
337 | |
338 | template <class S> |
339 | void getValue (Vec3<S> &v) const; |
340 | |
341 | T * getValue(); |
342 | const T * getValue() const; |
343 | |
344 | |
345 | //--------- |
346 | // Equality |
347 | //--------- |
348 | |
349 | template <class S> |
350 | bool operator == (const Vec3<S> &v) const; |
351 | |
352 | template <class S> |
353 | bool operator != (const Vec3<S> &v) const; |
354 | |
355 | //----------------------------------------------------------------------- |
356 | // Compare two vectors and test if they are "approximately equal": |
357 | // |
358 | // equalWithAbsError (v, e) |
359 | // |
360 | // Returns true if the coefficients of this and v are the same with |
361 | // an absolute error of no more than e, i.e., for all i |
362 | // |
363 | // abs (this[i] - v[i]) <= e |
364 | // |
365 | // equalWithRelError (v, e) |
366 | // |
367 | // Returns true if the coefficients of this and v are the same with |
368 | // a relative error of no more than e, i.e., for all i |
369 | // |
370 | // abs (this[i] - v[i]) <= e * abs (this[i]) |
371 | //----------------------------------------------------------------------- |
372 | |
373 | bool equalWithAbsError (const Vec3<T> &v, T e) const; |
374 | bool equalWithRelError (const Vec3<T> &v, T e) const; |
375 | |
376 | //------------ |
377 | // Dot product |
378 | //------------ |
379 | |
380 | T dot (const Vec3 &v) const; |
381 | T operator ^ (const Vec3 &v) const; |
382 | |
383 | |
384 | //--------------------------- |
385 | // Right-handed cross product |
386 | //--------------------------- |
387 | |
388 | Vec3 cross (const Vec3 &v) const; |
389 | const Vec3 & operator %= (const Vec3 &v); |
390 | Vec3 operator % (const Vec3 &v) const; |
391 | |
392 | |
393 | //------------------------ |
394 | // Component-wise addition |
395 | //------------------------ |
396 | |
397 | const Vec3 & operator += (const Vec3 &v); |
398 | Vec3 operator + (const Vec3 &v) const; |
399 | |
400 | |
401 | //--------------------------- |
402 | // Component-wise subtraction |
403 | //--------------------------- |
404 | |
405 | const Vec3 & operator -= (const Vec3 &v); |
406 | Vec3 operator - (const Vec3 &v) const; |
407 | |
408 | |
409 | //------------------------------------ |
410 | // Component-wise multiplication by -1 |
411 | //------------------------------------ |
412 | |
413 | Vec3 operator - () const; |
414 | const Vec3 & negate (); |
415 | |
416 | |
417 | //------------------------------ |
418 | // Component-wise multiplication |
419 | //------------------------------ |
420 | |
421 | const Vec3 & operator *= (const Vec3 &v); |
422 | const Vec3 & operator *= (T a); |
423 | Vec3 operator * (const Vec3 &v) const; |
424 | Vec3 operator * (T a) const; |
425 | |
426 | |
427 | //------------------------ |
428 | // Component-wise division |
429 | //------------------------ |
430 | |
431 | const Vec3 & operator /= (const Vec3 &v); |
432 | const Vec3 & operator /= (T a); |
433 | Vec3 operator / (const Vec3 &v) const; |
434 | Vec3 operator / (T a) const; |
435 | |
436 | |
437 | //---------------------------------------------------------------- |
438 | // Length and normalization: If v.length() is 0.0, v.normalize() |
439 | // and v.normalized() produce a null vector; v.normalizeExc() and |
440 | // v.normalizedExc() throw a NullVecExc. |
441 | // v.normalizeNonNull() and v.normalizedNonNull() are slightly |
442 | // faster than the other normalization routines, but if v.length() |
443 | // is 0.0, the result is undefined. |
444 | //---------------------------------------------------------------- |
445 | |
446 | T length () const; |
447 | T length2 () const; |
448 | |
449 | const Vec3 & normalize (); // modifies *this |
450 | const Vec3 & normalizeExc (); |
451 | const Vec3 & normalizeNonNull (); |
452 | |
453 | Vec3<T> normalized () const; // does not modify *this |
454 | Vec3<T> normalizedExc () const; |
455 | Vec3<T> normalizedNonNull () const; |
456 | |
457 | |
458 | //-------------------------------------------------------- |
459 | // Number of dimensions, i.e. number of elements in a Vec3 |
460 | //-------------------------------------------------------- |
461 | |
462 | static unsigned int dimensions() {return 3;} |
463 | |
464 | |
465 | //------------------------------------------------- |
466 | // Limitations of type T (see also class limits<T>) |
467 | //------------------------------------------------- |
468 | |
469 | static T baseTypeMin() {return limits<T>::min();} |
470 | static T baseTypeMax() {return limits<T>::max();} |
471 | static T baseTypeSmallest() {return limits<T>::smallest();} |
472 | static T baseTypeEpsilon() {return limits<T>::epsilon();} |
473 | |
474 | |
475 | //-------------------------------------------------------------- |
476 | // Base type -- in templates, which accept a parameter, V, which |
477 | // could be either a Vec2<T>, a Vec3<T>, or a Vec4<T> you can |
478 | // refer to T as V::BaseType |
479 | //-------------------------------------------------------------- |
480 | |
481 | typedef T BaseType; |
482 | |
483 | private: |
484 | |
485 | T lengthTiny () const; |
486 | }; |
487 | |
488 | |
489 | |
490 | template <class T> class Vec4 |
491 | { |
492 | public: |
493 | |
494 | //------------------- |
495 | // Access to elements |
496 | //------------------- |
497 | |
498 | T x, y, z, w; |
499 | |
500 | T & operator [] (int i); |
501 | const T & operator [] (int i) const; |
502 | |
503 | |
504 | //------------- |
505 | // Constructors |
506 | //------------- |
507 | |
508 | Vec4 (); // no initialization |
509 | explicit Vec4 (T a); // (a a a a) |
510 | Vec4 (T a, T b, T c, T d); // (a b c d) |
511 | |
512 | |
513 | //--------------------------------- |
514 | // Copy constructors and assignment |
515 | //--------------------------------- |
516 | |
517 | Vec4 (const Vec4 &v); |
518 | template <class S> Vec4 (const Vec4<S> &v); |
519 | |
520 | const Vec4 & operator = (const Vec4 &v); |
521 | |
522 | //----------- |
523 | // Destructor |
524 | //----------- |
525 | |
526 | ~Vec4 () = default; |
527 | |
528 | //------------------------------------- |
529 | // Vec3 to Vec4 conversion, sets w to 1 |
530 | //------------------------------------- |
531 | |
532 | template <class S> explicit Vec4 (const Vec3<S> &v); |
533 | |
534 | |
535 | //--------- |
536 | // Equality |
537 | //--------- |
538 | |
539 | template <class S> |
540 | bool operator == (const Vec4<S> &v) const; |
541 | |
542 | template <class S> |
543 | bool operator != (const Vec4<S> &v) const; |
544 | |
545 | |
546 | //----------------------------------------------------------------------- |
547 | // Compare two vectors and test if they are "approximately equal": |
548 | // |
549 | // equalWithAbsError (v, e) |
550 | // |
551 | // Returns true if the coefficients of this and v are the same with |
552 | // an absolute error of no more than e, i.e., for all i |
553 | // |
554 | // abs (this[i] - v[i]) <= e |
555 | // |
556 | // equalWithRelError (v, e) |
557 | // |
558 | // Returns true if the coefficients of this and v are the same with |
559 | // a relative error of no more than e, i.e., for all i |
560 | // |
561 | // abs (this[i] - v[i]) <= e * abs (this[i]) |
562 | //----------------------------------------------------------------------- |
563 | |
564 | bool equalWithAbsError (const Vec4<T> &v, T e) const; |
565 | bool equalWithRelError (const Vec4<T> &v, T e) const; |
566 | |
567 | |
568 | //------------ |
569 | // Dot product |
570 | //------------ |
571 | |
572 | T dot (const Vec4 &v) const; |
573 | T operator ^ (const Vec4 &v) const; |
574 | |
575 | |
576 | //----------------------------------- |
577 | // Cross product is not defined in 4D |
578 | //----------------------------------- |
579 | |
580 | //------------------------ |
581 | // Component-wise addition |
582 | //------------------------ |
583 | |
584 | const Vec4 & operator += (const Vec4 &v); |
585 | Vec4 operator + (const Vec4 &v) const; |
586 | |
587 | |
588 | //--------------------------- |
589 | // Component-wise subtraction |
590 | //--------------------------- |
591 | |
592 | const Vec4 & operator -= (const Vec4 &v); |
593 | Vec4 operator - (const Vec4 &v) const; |
594 | |
595 | |
596 | //------------------------------------ |
597 | // Component-wise multiplication by -1 |
598 | //------------------------------------ |
599 | |
600 | Vec4 operator - () const; |
601 | const Vec4 & negate (); |
602 | |
603 | |
604 | //------------------------------ |
605 | // Component-wise multiplication |
606 | //------------------------------ |
607 | |
608 | const Vec4 & operator *= (const Vec4 &v); |
609 | const Vec4 & operator *= (T a); |
610 | Vec4 operator * (const Vec4 &v) const; |
611 | Vec4 operator * (T a) const; |
612 | |
613 | |
614 | //------------------------ |
615 | // Component-wise division |
616 | //------------------------ |
617 | |
618 | const Vec4 & operator /= (const Vec4 &v); |
619 | const Vec4 & operator /= (T a); |
620 | Vec4 operator / (const Vec4 &v) const; |
621 | Vec4 operator / (T a) const; |
622 | |
623 | |
624 | //---------------------------------------------------------------- |
625 | // Length and normalization: If v.length() is 0.0, v.normalize() |
626 | // and v.normalized() produce a null vector; v.normalizeExc() and |
627 | // v.normalizedExc() throw a NullVecExc. |
628 | // v.normalizeNonNull() and v.normalizedNonNull() are slightly |
629 | // faster than the other normalization routines, but if v.length() |
630 | // is 0.0, the result is undefined. |
631 | //---------------------------------------------------------------- |
632 | |
633 | T length () const; |
634 | T length2 () const; |
635 | |
636 | const Vec4 & normalize (); // modifies *this |
637 | const Vec4 & normalizeExc (); |
638 | const Vec4 & normalizeNonNull (); |
639 | |
640 | Vec4<T> normalized () const; // does not modify *this |
641 | Vec4<T> normalizedExc () const; |
642 | Vec4<T> normalizedNonNull () const; |
643 | |
644 | |
645 | //-------------------------------------------------------- |
646 | // Number of dimensions, i.e. number of elements in a Vec4 |
647 | //-------------------------------------------------------- |
648 | |
649 | static unsigned int dimensions() {return 4;} |
650 | |
651 | |
652 | //------------------------------------------------- |
653 | // Limitations of type T (see also class limits<T>) |
654 | //------------------------------------------------- |
655 | |
656 | static T baseTypeMin() {return limits<T>::min();} |
657 | static T baseTypeMax() {return limits<T>::max();} |
658 | static T baseTypeSmallest() {return limits<T>::smallest();} |
659 | static T baseTypeEpsilon() {return limits<T>::epsilon();} |
660 | |
661 | |
662 | //-------------------------------------------------------------- |
663 | // Base type -- in templates, which accept a parameter, V, which |
664 | // could be either a Vec2<T>, a Vec3<T>, or a Vec4<T> you can |
665 | // refer to T as V::BaseType |
666 | //-------------------------------------------------------------- |
667 | |
668 | typedef T BaseType; |
669 | |
670 | private: |
671 | |
672 | T lengthTiny () const; |
673 | }; |
674 | |
675 | |
676 | //-------------- |
677 | // Stream output |
678 | //-------------- |
679 | |
680 | template <class T> |
681 | std::ostream & operator << (std::ostream &s, const Vec2<T> &v); |
682 | |
683 | template <class T> |
684 | std::ostream & operator << (std::ostream &s, const Vec3<T> &v); |
685 | |
686 | template <class T> |
687 | std::ostream & operator << (std::ostream &s, const Vec4<T> &v); |
688 | |
689 | //---------------------------------------------------- |
690 | // Reverse multiplication: S * Vec2<T> and S * Vec3<T> |
691 | //---------------------------------------------------- |
692 | |
693 | template <class T> Vec2<T> operator * (T a, const Vec2<T> &v); |
694 | template <class T> Vec3<T> operator * (T a, const Vec3<T> &v); |
695 | template <class T> Vec4<T> operator * (T a, const Vec4<T> &v); |
696 | |
697 | |
698 | //------------------------- |
699 | // Typedefs for convenience |
700 | //------------------------- |
701 | |
702 | typedef Vec2 <short> V2s; |
703 | typedef Vec2 <int> V2i; |
704 | typedef Vec2 <float> V2f; |
705 | typedef Vec2 <double> V2d; |
706 | typedef Vec3 <short> V3s; |
707 | typedef Vec3 <int> V3i; |
708 | typedef Vec3 <float> V3f; |
709 | typedef Vec3 <double> V3d; |
710 | typedef Vec4 <short> V4s; |
711 | typedef Vec4 <int> V4i; |
712 | typedef Vec4 <float> V4f; |
713 | typedef Vec4 <double> V4d; |
714 | |
715 | |
716 | //------------------------------------------- |
717 | // Specializations for VecN<short>, VecN<int> |
718 | //------------------------------------------- |
719 | |
720 | // Vec2<short> |
721 | |
722 | template <> short |
723 | Vec2<short>::length () const; |
724 | |
725 | template <> const Vec2<short> & |
726 | Vec2<short>::normalize (); |
727 | |
728 | template <> const Vec2<short> & |
729 | Vec2<short>::normalizeExc (); |
730 | |
731 | template <> const Vec2<short> & |
732 | Vec2<short>::normalizeNonNull (); |
733 | |
734 | template <> Vec2<short> |
735 | Vec2<short>::normalized () const; |
736 | |
737 | template <> Vec2<short> |
738 | Vec2<short>::normalizedExc () const; |
739 | |
740 | template <> Vec2<short> |
741 | Vec2<short>::normalizedNonNull () const; |
742 | |
743 | |
744 | // Vec2<int> |
745 | |
746 | template <> int |
747 | Vec2<int>::length () const; |
748 | |
749 | template <> const Vec2<int> & |
750 | Vec2<int>::normalize (); |
751 | |
752 | template <> const Vec2<int> & |
753 | Vec2<int>::normalizeExc (); |
754 | |
755 | template <> const Vec2<int> & |
756 | Vec2<int>::normalizeNonNull (); |
757 | |
758 | template <> Vec2<int> |
759 | Vec2<int>::normalized () const; |
760 | |
761 | template <> Vec2<int> |
762 | Vec2<int>::normalizedExc () const; |
763 | |
764 | template <> Vec2<int> |
765 | Vec2<int>::normalizedNonNull () const; |
766 | |
767 | |
768 | // Vec3<short> |
769 | |
770 | template <> short |
771 | Vec3<short>::length () const; |
772 | |
773 | template <> const Vec3<short> & |
774 | Vec3<short>::normalize (); |
775 | |
776 | template <> const Vec3<short> & |
777 | Vec3<short>::normalizeExc (); |
778 | |
779 | template <> const Vec3<short> & |
780 | Vec3<short>::normalizeNonNull (); |
781 | |
782 | template <> Vec3<short> |
783 | Vec3<short>::normalized () const; |
784 | |
785 | template <> Vec3<short> |
786 | Vec3<short>::normalizedExc () const; |
787 | |
788 | template <> Vec3<short> |
789 | Vec3<short>::normalizedNonNull () const; |
790 | |
791 | |
792 | // Vec3<int> |
793 | |
794 | template <> int |
795 | Vec3<int>::length () const; |
796 | |
797 | template <> const Vec3<int> & |
798 | Vec3<int>::normalize (); |
799 | |
800 | template <> const Vec3<int> & |
801 | Vec3<int>::normalizeExc (); |
802 | |
803 | template <> const Vec3<int> & |
804 | Vec3<int>::normalizeNonNull (); |
805 | |
806 | template <> Vec3<int> |
807 | Vec3<int>::normalized () const; |
808 | |
809 | template <> Vec3<int> |
810 | Vec3<int>::normalizedExc () const; |
811 | |
812 | template <> Vec3<int> |
813 | Vec3<int>::normalizedNonNull () const; |
814 | |
815 | // Vec4<short> |
816 | |
817 | template <> short |
818 | Vec4<short>::length () const; |
819 | |
820 | template <> const Vec4<short> & |
821 | Vec4<short>::normalize (); |
822 | |
823 | template <> const Vec4<short> & |
824 | Vec4<short>::normalizeExc (); |
825 | |
826 | template <> const Vec4<short> & |
827 | Vec4<short>::normalizeNonNull (); |
828 | |
829 | template <> Vec4<short> |
830 | Vec4<short>::normalized () const; |
831 | |
832 | template <> Vec4<short> |
833 | Vec4<short>::normalizedExc () const; |
834 | |
835 | template <> Vec4<short> |
836 | Vec4<short>::normalizedNonNull () const; |
837 | |
838 | |
839 | // Vec4<int> |
840 | |
841 | template <> int |
842 | Vec4<int>::length () const; |
843 | |
844 | template <> const Vec4<int> & |
845 | Vec4<int>::normalize (); |
846 | |
847 | template <> const Vec4<int> & |
848 | Vec4<int>::normalizeExc (); |
849 | |
850 | template <> const Vec4<int> & |
851 | Vec4<int>::normalizeNonNull (); |
852 | |
853 | template <> Vec4<int> |
854 | Vec4<int>::normalized () const; |
855 | |
856 | template <> Vec4<int> |
857 | Vec4<int>::normalizedExc () const; |
858 | |
859 | template <> Vec4<int> |
860 | Vec4<int>::normalizedNonNull () const; |
861 | |
862 | |
863 | //------------------------ |
864 | // Implementation of Vec2: |
865 | //------------------------ |
866 | |
867 | template <class T> |
868 | inline T & |
869 | Vec2<T>::operator [] (int i) |
870 | { |
871 | return (&x)[i]; // NOSONAR - suppress SonarCloud bug report. |
872 | } |
873 | |
874 | template <class T> |
875 | inline const T & |
876 | Vec2<T>::operator [] (int i) const |
877 | { |
878 | return (&x)[i]; // NOSONAR - suppress SonarCloud bug report. |
879 | } |
880 | |
881 | template <class T> |
882 | inline |
883 | Vec2<T>::Vec2 () |
884 | { |
885 | // empty |
886 | } |
887 | |
888 | template <class T> |
889 | inline |
890 | Vec2<T>::Vec2 (T a) |
891 | { |
892 | x = y = a; |
893 | } |
894 | |
895 | template <class T> |
896 | inline |
897 | Vec2<T>::Vec2 (T a, T b) |
898 | { |
899 | x = a; |
900 | y = b; |
901 | } |
902 | |
903 | template <class T> |
904 | inline |
905 | Vec2<T>::Vec2 (const Vec2 &v) |
906 | { |
907 | x = v.x; |
908 | y = v.y; |
909 | } |
910 | |
911 | template <class T> |
912 | template <class S> |
913 | inline |
914 | Vec2<T>::Vec2 (const Vec2<S> &v) |
915 | { |
916 | x = T (v.x); |
917 | y = T (v.y); |
918 | } |
919 | |
920 | template <class T> |
921 | inline const Vec2<T> & |
922 | Vec2<T>::operator = (const Vec2 &v) |
923 | { |
924 | x = v.x; |
925 | y = v.y; |
926 | return *this; |
927 | } |
928 | |
929 | template <class T> |
930 | template <class S> |
931 | inline void |
932 | Vec2<T>::setValue (S a, S b) |
933 | { |
934 | x = T (a); |
935 | y = T (b); |
936 | } |
937 | |
938 | template <class T> |
939 | template <class S> |
940 | inline void |
941 | Vec2<T>::setValue (const Vec2<S> &v) |
942 | { |
943 | x = T (v.x); |
944 | y = T (v.y); |
945 | } |
946 | |
947 | template <class T> |
948 | template <class S> |
949 | inline void |
950 | Vec2<T>::getValue (S &a, S &b) const |
951 | { |
952 | a = S (x); |
953 | b = S (y); |
954 | } |
955 | |
956 | template <class T> |
957 | template <class S> |
958 | inline void |
959 | Vec2<T>::getValue (Vec2<S> &v) const |
960 | { |
961 | v.x = S (x); |
962 | v.y = S (y); |
963 | } |
964 | |
965 | template <class T> |
966 | inline T * |
967 | Vec2<T>::getValue() |
968 | { |
969 | return (T *) &x; |
970 | } |
971 | |
972 | template <class T> |
973 | inline const T * |
974 | Vec2<T>::getValue() const |
975 | { |
976 | return (const T *) &x; |
977 | } |
978 | |
979 | template <class T> |
980 | template <class S> |
981 | inline bool |
982 | Vec2<T>::operator == (const Vec2<S> &v) const |
983 | { |
984 | return x == v.x && y == v.y; |
985 | } |
986 | |
987 | template <class T> |
988 | template <class S> |
989 | inline bool |
990 | Vec2<T>::operator != (const Vec2<S> &v) const |
991 | { |
992 | return x != v.x || y != v.y; |
993 | } |
994 | |
995 | template <class T> |
996 | bool |
997 | Vec2<T>::equalWithAbsError (const Vec2<T> &v, T e) const |
998 | { |
999 | for (int i = 0; i < 2; i++) |
1000 | if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i], v[i], e)) |
1001 | return false; |
1002 | |
1003 | return true; |
1004 | } |
1005 | |
1006 | template <class T> |
1007 | bool |
1008 | Vec2<T>::equalWithRelError (const Vec2<T> &v, T e) const |
1009 | { |
1010 | for (int i = 0; i < 2; i++) |
1011 | if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i], v[i], e)) |
1012 | return false; |
1013 | |
1014 | return true; |
1015 | } |
1016 | |
1017 | template <class T> |
1018 | inline T |
1019 | Vec2<T>::dot (const Vec2 &v) const |
1020 | { |
1021 | return x * v.x + y * v.y; |
1022 | } |
1023 | |
1024 | template <class T> |
1025 | inline T |
1026 | Vec2<T>::operator ^ (const Vec2 &v) const |
1027 | { |
1028 | return dot (v); |
1029 | } |
1030 | |
1031 | template <class T> |
1032 | inline T |
1033 | Vec2<T>::cross (const Vec2 &v) const |
1034 | { |
1035 | return x * v.y - y * v.x; |
1036 | |
1037 | } |
1038 | |
1039 | template <class T> |
1040 | inline T |
1041 | Vec2<T>::operator % (const Vec2 &v) const |
1042 | { |
1043 | return x * v.y - y * v.x; |
1044 | } |
1045 | |
1046 | template <class T> |
1047 | inline const Vec2<T> & |
1048 | Vec2<T>::operator += (const Vec2 &v) |
1049 | { |
1050 | x += v.x; |
1051 | y += v.y; |
1052 | return *this; |
1053 | } |
1054 | |
1055 | template <class T> |
1056 | inline Vec2<T> |
1057 | Vec2<T>::operator + (const Vec2 &v) const |
1058 | { |
1059 | return Vec2 (x + v.x, y + v.y); |
1060 | } |
1061 | |
1062 | template <class T> |
1063 | inline const Vec2<T> & |
1064 | Vec2<T>::operator -= (const Vec2 &v) |
1065 | { |
1066 | x -= v.x; |
1067 | y -= v.y; |
1068 | return *this; |
1069 | } |
1070 | |
1071 | template <class T> |
1072 | inline Vec2<T> |
1073 | Vec2<T>::operator - (const Vec2 &v) const |
1074 | { |
1075 | return Vec2 (x - v.x, y - v.y); |
1076 | } |
1077 | |
1078 | template <class T> |
1079 | inline Vec2<T> |
1080 | Vec2<T>::operator - () const |
1081 | { |
1082 | return Vec2 (-x, -y); |
1083 | } |
1084 | |
1085 | template <class T> |
1086 | inline const Vec2<T> & |
1087 | Vec2<T>::negate () |
1088 | { |
1089 | x = -x; |
1090 | y = -y; |
1091 | return *this; |
1092 | } |
1093 | |
1094 | template <class T> |
1095 | inline const Vec2<T> & |
1096 | Vec2<T>::operator *= (const Vec2 &v) |
1097 | { |
1098 | x *= v.x; |
1099 | y *= v.y; |
1100 | return *this; |
1101 | } |
1102 | |
1103 | template <class T> |
1104 | inline const Vec2<T> & |
1105 | Vec2<T>::operator *= (T a) |
1106 | { |
1107 | x *= a; |
1108 | y *= a; |
1109 | return *this; |
1110 | } |
1111 | |
1112 | template <class T> |
1113 | inline Vec2<T> |
1114 | Vec2<T>::operator * (const Vec2 &v) const |
1115 | { |
1116 | return Vec2 (x * v.x, y * v.y); |
1117 | } |
1118 | |
1119 | template <class T> |
1120 | inline Vec2<T> |
1121 | Vec2<T>::operator * (T a) const |
1122 | { |
1123 | return Vec2 (x * a, y * a); |
1124 | } |
1125 | |
1126 | template <class T> |
1127 | inline const Vec2<T> & |
1128 | Vec2<T>::operator /= (const Vec2 &v) |
1129 | { |
1130 | x /= v.x; |
1131 | y /= v.y; |
1132 | return *this; |
1133 | } |
1134 | |
1135 | template <class T> |
1136 | inline const Vec2<T> & |
1137 | Vec2<T>::operator /= (T a) |
1138 | { |
1139 | x /= a; |
1140 | y /= a; |
1141 | return *this; |
1142 | } |
1143 | |
1144 | template <class T> |
1145 | inline Vec2<T> |
1146 | Vec2<T>::operator / (const Vec2 &v) const |
1147 | { |
1148 | return Vec2 (x / v.x, y / v.y); |
1149 | } |
1150 | |
1151 | template <class T> |
1152 | inline Vec2<T> |
1153 | Vec2<T>::operator / (T a) const |
1154 | { |
1155 | return Vec2 (x / a, y / a); |
1156 | } |
1157 | |
1158 | template <class T> |
1159 | T |
1160 | Vec2<T>::lengthTiny () const |
1161 | { |
1162 | T absX = (x >= T (0))? x: -x; |
1163 | T absY = (y >= T (0))? y: -y; |
1164 | |
1165 | T max = absX; |
1166 | |
1167 | if (max < absY) |
1168 | max = absY; |
1169 | |
1170 | if (max == T (0)) |
1171 | return T (0); |
1172 | |
1173 | // |
1174 | // Do not replace the divisions by max with multiplications by 1/max. |
1175 | // Computing 1/max can overflow but the divisions below will always |
1176 | // produce results less than or equal to 1. |
1177 | // |
1178 | |
1179 | absX /= max; |
1180 | absY /= max; |
1181 | |
1182 | return max * Math<T>::sqrt (absX * absX + absY * absY); |
1183 | } |
1184 | |
1185 | template <class T> |
1186 | inline T |
1187 | Vec2<T>::length () const |
1188 | { |
1189 | T length2 = dot (v: *this); |
1190 | |
1191 | if (length2 < T (2) * limits<T>::smallest()) |
1192 | return lengthTiny(); |
1193 | |
1194 | return Math<T>::sqrt (length2); |
1195 | } |
1196 | |
1197 | template <class T> |
1198 | inline T |
1199 | Vec2<T>::length2 () const |
1200 | { |
1201 | return dot (v: *this); |
1202 | } |
1203 | |
1204 | template <class T> |
1205 | const Vec2<T> & |
1206 | Vec2<T>::normalize () |
1207 | { |
1208 | T l = length(); |
1209 | |
1210 | if (l != T (0)) |
1211 | { |
1212 | // |
1213 | // Do not replace the divisions by l with multiplications by 1/l. |
1214 | // Computing 1/l can overflow but the divisions below will always |
1215 | // produce results less than or equal to 1. |
1216 | // |
1217 | |
1218 | x /= l; |
1219 | y /= l; |
1220 | } |
1221 | |
1222 | return *this; |
1223 | } |
1224 | |
1225 | template <class T> |
1226 | const Vec2<T> & |
1227 | Vec2<T>::normalizeExc () |
1228 | { |
1229 | T l = length(); |
1230 | |
1231 | if (l == T (0)) |
1232 | throw NullVecExc ("Cannot normalize null vector." ); |
1233 | |
1234 | x /= l; |
1235 | y /= l; |
1236 | return *this; |
1237 | } |
1238 | |
1239 | template <class T> |
1240 | inline |
1241 | const Vec2<T> & |
1242 | Vec2<T>::normalizeNonNull () |
1243 | { |
1244 | T l = length(); |
1245 | x /= l; |
1246 | y /= l; |
1247 | return *this; |
1248 | } |
1249 | |
1250 | template <class T> |
1251 | Vec2<T> |
1252 | Vec2<T>::normalized () const |
1253 | { |
1254 | T l = length(); |
1255 | |
1256 | if (l == T (0)) |
1257 | return Vec2 (T (0)); |
1258 | |
1259 | return Vec2 (x / l, y / l); |
1260 | } |
1261 | |
1262 | template <class T> |
1263 | Vec2<T> |
1264 | Vec2<T>::normalizedExc () const |
1265 | { |
1266 | T l = length(); |
1267 | |
1268 | if (l == T (0)) |
1269 | throw NullVecExc ("Cannot normalize null vector." ); |
1270 | |
1271 | return Vec2 (x / l, y / l); |
1272 | } |
1273 | |
1274 | template <class T> |
1275 | inline |
1276 | Vec2<T> |
1277 | Vec2<T>::normalizedNonNull () const |
1278 | { |
1279 | T l = length(); |
1280 | return Vec2 (x / l, y / l); |
1281 | } |
1282 | |
1283 | |
1284 | //----------------------- |
1285 | // Implementation of Vec3 |
1286 | //----------------------- |
1287 | |
1288 | template <class T> |
1289 | inline T & |
1290 | Vec3<T>::operator [] (int i) |
1291 | { |
1292 | return (&x)[i]; // NOSONAR - suppress SonarCloud bug report. |
1293 | } |
1294 | |
1295 | template <class T> |
1296 | inline const T & |
1297 | Vec3<T>::operator [] (int i) const |
1298 | { |
1299 | return (&x)[i]; // NOSONAR - suppress SonarCloud bug report. |
1300 | } |
1301 | |
1302 | template <class T> |
1303 | inline |
1304 | Vec3<T>::Vec3 () |
1305 | { |
1306 | // empty |
1307 | } |
1308 | |
1309 | template <class T> |
1310 | inline |
1311 | Vec3<T>::Vec3 (T a) |
1312 | { |
1313 | x = y = z = a; |
1314 | } |
1315 | |
1316 | template <class T> |
1317 | inline |
1318 | Vec3<T>::Vec3 (T a, T b, T c) |
1319 | { |
1320 | x = a; |
1321 | y = b; |
1322 | z = c; |
1323 | } |
1324 | |
1325 | template <class T> |
1326 | inline |
1327 | Vec3<T>::Vec3 (const Vec3 &v) |
1328 | { |
1329 | x = v.x; |
1330 | y = v.y; |
1331 | z = v.z; |
1332 | } |
1333 | |
1334 | template <class T> |
1335 | template <class S> |
1336 | inline |
1337 | Vec3<T>::Vec3 (const Vec3<S> &v) |
1338 | { |
1339 | x = T (v.x); |
1340 | y = T (v.y); |
1341 | z = T (v.z); |
1342 | } |
1343 | |
1344 | template <class T> |
1345 | inline const Vec3<T> & |
1346 | Vec3<T>::operator = (const Vec3 &v) |
1347 | { |
1348 | x = v.x; |
1349 | y = v.y; |
1350 | z = v.z; |
1351 | return *this; |
1352 | } |
1353 | |
1354 | template <class T> |
1355 | template <class S> |
1356 | inline |
1357 | Vec3<T>::Vec3 (const Vec4<S> &v) |
1358 | { |
1359 | x = T (v.x / v.w); |
1360 | y = T (v.y / v.w); |
1361 | z = T (v.z / v.w); |
1362 | } |
1363 | |
1364 | template <class T> |
1365 | template <class S> |
1366 | Vec3<T>::Vec3 (const Vec4<S> &v, InfException) |
1367 | { |
1368 | T vx = T (v.x); |
1369 | T vy = T (v.y); |
1370 | T vz = T (v.z); |
1371 | T vw = T (v.w); |
1372 | |
1373 | T absW = (vw >= T (0))? vw: -vw; |
1374 | |
1375 | if (absW < 1) |
1376 | { |
1377 | T m = baseTypeMax() * absW; |
1378 | |
1379 | if (vx <= -m || vx >= m || vy <= -m || vy >= m || vz <= -m || vz >= m) |
1380 | throw InfPointExc ("Cannot normalize point at infinity." ); |
1381 | } |
1382 | |
1383 | x = vx / vw; |
1384 | y = vy / vw; |
1385 | z = vz / vw; |
1386 | } |
1387 | |
1388 | template <class T> |
1389 | template <class S> |
1390 | inline void |
1391 | Vec3<T>::setValue (S a, S b, S c) |
1392 | { |
1393 | x = T (a); |
1394 | y = T (b); |
1395 | z = T (c); |
1396 | } |
1397 | |
1398 | template <class T> |
1399 | template <class S> |
1400 | inline void |
1401 | Vec3<T>::setValue (const Vec3<S> &v) |
1402 | { |
1403 | x = T (v.x); |
1404 | y = T (v.y); |
1405 | z = T (v.z); |
1406 | } |
1407 | |
1408 | template <class T> |
1409 | template <class S> |
1410 | inline void |
1411 | Vec3<T>::getValue (S &a, S &b, S &c) const |
1412 | { |
1413 | a = S (x); |
1414 | b = S (y); |
1415 | c = S (z); |
1416 | } |
1417 | |
1418 | template <class T> |
1419 | template <class S> |
1420 | inline void |
1421 | Vec3<T>::getValue (Vec3<S> &v) const |
1422 | { |
1423 | v.x = S (x); |
1424 | v.y = S (y); |
1425 | v.z = S (z); |
1426 | } |
1427 | |
1428 | template <class T> |
1429 | inline T * |
1430 | Vec3<T>::getValue() |
1431 | { |
1432 | return (T *) &x; |
1433 | } |
1434 | |
1435 | template <class T> |
1436 | inline const T * |
1437 | Vec3<T>::getValue() const |
1438 | { |
1439 | return (const T *) &x; |
1440 | } |
1441 | |
1442 | template <class T> |
1443 | template <class S> |
1444 | inline bool |
1445 | Vec3<T>::operator == (const Vec3<S> &v) const |
1446 | { |
1447 | return x == v.x && y == v.y && z == v.z; |
1448 | } |
1449 | |
1450 | template <class T> |
1451 | template <class S> |
1452 | inline bool |
1453 | Vec3<T>::operator != (const Vec3<S> &v) const |
1454 | { |
1455 | return x != v.x || y != v.y || z != v.z; |
1456 | } |
1457 | |
1458 | template <class T> |
1459 | bool |
1460 | Vec3<T>::equalWithAbsError (const Vec3<T> &v, T e) const |
1461 | { |
1462 | for (int i = 0; i < 3; i++) |
1463 | if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i], v[i], e)) |
1464 | return false; |
1465 | |
1466 | return true; |
1467 | } |
1468 | |
1469 | template <class T> |
1470 | bool |
1471 | Vec3<T>::equalWithRelError (const Vec3<T> &v, T e) const |
1472 | { |
1473 | for (int i = 0; i < 3; i++) |
1474 | if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i], v[i], e)) |
1475 | return false; |
1476 | |
1477 | return true; |
1478 | } |
1479 | |
1480 | template <class T> |
1481 | inline T |
1482 | Vec3<T>::dot (const Vec3 &v) const |
1483 | { |
1484 | return x * v.x + y * v.y + z * v.z; |
1485 | } |
1486 | |
1487 | template <class T> |
1488 | inline T |
1489 | Vec3<T>::operator ^ (const Vec3 &v) const |
1490 | { |
1491 | return dot (v); |
1492 | } |
1493 | |
1494 | template <class T> |
1495 | inline Vec3<T> |
1496 | Vec3<T>::cross (const Vec3 &v) const |
1497 | { |
1498 | return Vec3 (y * v.z - z * v.y, |
1499 | z * v.x - x * v.z, |
1500 | x * v.y - y * v.x); |
1501 | } |
1502 | |
1503 | template <class T> |
1504 | inline const Vec3<T> & |
1505 | Vec3<T>::operator %= (const Vec3 &v) |
1506 | { |
1507 | T a = y * v.z - z * v.y; |
1508 | T b = z * v.x - x * v.z; |
1509 | T c = x * v.y - y * v.x; |
1510 | x = a; |
1511 | y = b; |
1512 | z = c; |
1513 | return *this; |
1514 | } |
1515 | |
1516 | template <class T> |
1517 | inline Vec3<T> |
1518 | Vec3<T>::operator % (const Vec3 &v) const |
1519 | { |
1520 | return Vec3 (y * v.z - z * v.y, |
1521 | z * v.x - x * v.z, |
1522 | x * v.y - y * v.x); |
1523 | } |
1524 | |
1525 | template <class T> |
1526 | inline const Vec3<T> & |
1527 | Vec3<T>::operator += (const Vec3 &v) |
1528 | { |
1529 | x += v.x; |
1530 | y += v.y; |
1531 | z += v.z; |
1532 | return *this; |
1533 | } |
1534 | |
1535 | template <class T> |
1536 | inline Vec3<T> |
1537 | Vec3<T>::operator + (const Vec3 &v) const |
1538 | { |
1539 | return Vec3 (x + v.x, y + v.y, z + v.z); |
1540 | } |
1541 | |
1542 | template <class T> |
1543 | inline const Vec3<T> & |
1544 | Vec3<T>::operator -= (const Vec3 &v) |
1545 | { |
1546 | x -= v.x; |
1547 | y -= v.y; |
1548 | z -= v.z; |
1549 | return *this; |
1550 | } |
1551 | |
1552 | template <class T> |
1553 | inline Vec3<T> |
1554 | Vec3<T>::operator - (const Vec3 &v) const |
1555 | { |
1556 | return Vec3 (x - v.x, y - v.y, z - v.z); |
1557 | } |
1558 | |
1559 | template <class T> |
1560 | inline Vec3<T> |
1561 | Vec3<T>::operator - () const |
1562 | { |
1563 | return Vec3 (-x, -y, -z); |
1564 | } |
1565 | |
1566 | template <class T> |
1567 | inline const Vec3<T> & |
1568 | Vec3<T>::negate () |
1569 | { |
1570 | x = -x; |
1571 | y = -y; |
1572 | z = -z; |
1573 | return *this; |
1574 | } |
1575 | |
1576 | template <class T> |
1577 | inline const Vec3<T> & |
1578 | Vec3<T>::operator *= (const Vec3 &v) |
1579 | { |
1580 | x *= v.x; |
1581 | y *= v.y; |
1582 | z *= v.z; |
1583 | return *this; |
1584 | } |
1585 | |
1586 | template <class T> |
1587 | inline const Vec3<T> & |
1588 | Vec3<T>::operator *= (T a) |
1589 | { |
1590 | x *= a; |
1591 | y *= a; |
1592 | z *= a; |
1593 | return *this; |
1594 | } |
1595 | |
1596 | template <class T> |
1597 | inline Vec3<T> |
1598 | Vec3<T>::operator * (const Vec3 &v) const |
1599 | { |
1600 | return Vec3 (x * v.x, y * v.y, z * v.z); |
1601 | } |
1602 | |
1603 | template <class T> |
1604 | inline Vec3<T> |
1605 | Vec3<T>::operator * (T a) const |
1606 | { |
1607 | return Vec3 (x * a, y * a, z * a); |
1608 | } |
1609 | |
1610 | template <class T> |
1611 | inline const Vec3<T> & |
1612 | Vec3<T>::operator /= (const Vec3 &v) |
1613 | { |
1614 | x /= v.x; |
1615 | y /= v.y; |
1616 | z /= v.z; |
1617 | return *this; |
1618 | } |
1619 | |
1620 | template <class T> |
1621 | inline const Vec3<T> & |
1622 | Vec3<T>::operator /= (T a) |
1623 | { |
1624 | x /= a; |
1625 | y /= a; |
1626 | z /= a; |
1627 | return *this; |
1628 | } |
1629 | |
1630 | template <class T> |
1631 | inline Vec3<T> |
1632 | Vec3<T>::operator / (const Vec3 &v) const |
1633 | { |
1634 | return Vec3 (x / v.x, y / v.y, z / v.z); |
1635 | } |
1636 | |
1637 | template <class T> |
1638 | inline Vec3<T> |
1639 | Vec3<T>::operator / (T a) const |
1640 | { |
1641 | return Vec3 (x / a, y / a, z / a); |
1642 | } |
1643 | |
1644 | template <class T> |
1645 | T |
1646 | Vec3<T>::lengthTiny () const |
1647 | { |
1648 | T absX = (x >= T (0))? x: -x; |
1649 | T absY = (y >= T (0))? y: -y; |
1650 | T absZ = (z >= T (0))? z: -z; |
1651 | |
1652 | T max = absX; |
1653 | |
1654 | if (max < absY) |
1655 | max = absY; |
1656 | |
1657 | if (max < absZ) |
1658 | max = absZ; |
1659 | |
1660 | if (max == T (0)) |
1661 | return T (0); |
1662 | |
1663 | // |
1664 | // Do not replace the divisions by max with multiplications by 1/max. |
1665 | // Computing 1/max can overflow but the divisions below will always |
1666 | // produce results less than or equal to 1. |
1667 | // |
1668 | |
1669 | absX /= max; |
1670 | absY /= max; |
1671 | absZ /= max; |
1672 | |
1673 | return max * Math<T>::sqrt (absX * absX + absY * absY + absZ * absZ); |
1674 | } |
1675 | |
1676 | template <class T> |
1677 | inline T |
1678 | Vec3<T>::length () const |
1679 | { |
1680 | T length2 = dot (v: *this); |
1681 | |
1682 | if (length2 < T (2) * limits<T>::smallest()) |
1683 | return lengthTiny(); |
1684 | |
1685 | return Math<T>::sqrt (length2); |
1686 | } |
1687 | |
1688 | template <class T> |
1689 | inline T |
1690 | Vec3<T>::length2 () const |
1691 | { |
1692 | return dot (v: *this); |
1693 | } |
1694 | |
1695 | template <class T> |
1696 | const Vec3<T> & |
1697 | Vec3<T>::normalize () |
1698 | { |
1699 | T l = length(); |
1700 | |
1701 | if (l != T (0)) |
1702 | { |
1703 | // |
1704 | // Do not replace the divisions by l with multiplications by 1/l. |
1705 | // Computing 1/l can overflow but the divisions below will always |
1706 | // produce results less than or equal to 1. |
1707 | // |
1708 | |
1709 | x /= l; |
1710 | y /= l; |
1711 | z /= l; |
1712 | } |
1713 | |
1714 | return *this; |
1715 | } |
1716 | |
1717 | template <class T> |
1718 | const Vec3<T> & |
1719 | Vec3<T>::normalizeExc () |
1720 | { |
1721 | T l = length(); |
1722 | |
1723 | if (l == T (0)) |
1724 | throw NullVecExc ("Cannot normalize null vector." ); |
1725 | |
1726 | x /= l; |
1727 | y /= l; |
1728 | z /= l; |
1729 | return *this; |
1730 | } |
1731 | |
1732 | template <class T> |
1733 | inline |
1734 | const Vec3<T> & |
1735 | Vec3<T>::normalizeNonNull () |
1736 | { |
1737 | T l = length(); |
1738 | x /= l; |
1739 | y /= l; |
1740 | z /= l; |
1741 | return *this; |
1742 | } |
1743 | |
1744 | template <class T> |
1745 | Vec3<T> |
1746 | Vec3<T>::normalized () const |
1747 | { |
1748 | T l = length(); |
1749 | |
1750 | if (l == T (0)) |
1751 | return Vec3 (T (0)); |
1752 | |
1753 | return Vec3 (x / l, y / l, z / l); |
1754 | } |
1755 | |
1756 | template <class T> |
1757 | Vec3<T> |
1758 | Vec3<T>::normalizedExc () const |
1759 | { |
1760 | T l = length(); |
1761 | |
1762 | if (l == T (0)) |
1763 | throw NullVecExc ("Cannot normalize null vector." ); |
1764 | |
1765 | return Vec3 (x / l, y / l, z / l); |
1766 | } |
1767 | |
1768 | template <class T> |
1769 | inline |
1770 | Vec3<T> |
1771 | Vec3<T>::normalizedNonNull () const |
1772 | { |
1773 | T l = length(); |
1774 | return Vec3 (x / l, y / l, z / l); |
1775 | } |
1776 | |
1777 | |
1778 | //----------------------- |
1779 | // Implementation of Vec4 |
1780 | //----------------------- |
1781 | |
1782 | template <class T> |
1783 | inline T & |
1784 | Vec4<T>::operator [] (int i) |
1785 | { |
1786 | return (&x)[i]; // NOSONAR - suppress SonarCloud bug report. |
1787 | } |
1788 | |
1789 | template <class T> |
1790 | inline const T & |
1791 | Vec4<T>::operator [] (int i) const |
1792 | { |
1793 | return (&x)[i]; // NOSONAR - suppress SonarCloud bug report. |
1794 | } |
1795 | |
1796 | template <class T> |
1797 | inline |
1798 | Vec4<T>::Vec4 () |
1799 | { |
1800 | // empty |
1801 | } |
1802 | |
1803 | template <class T> |
1804 | inline |
1805 | Vec4<T>::Vec4 (T a) |
1806 | { |
1807 | x = y = z = w = a; |
1808 | } |
1809 | |
1810 | template <class T> |
1811 | inline |
1812 | Vec4<T>::Vec4 (T a, T b, T c, T d) |
1813 | { |
1814 | x = a; |
1815 | y = b; |
1816 | z = c; |
1817 | w = d; |
1818 | } |
1819 | |
1820 | template <class T> |
1821 | inline |
1822 | Vec4<T>::Vec4 (const Vec4 &v) |
1823 | { |
1824 | x = v.x; |
1825 | y = v.y; |
1826 | z = v.z; |
1827 | w = v.w; |
1828 | } |
1829 | |
1830 | template <class T> |
1831 | template <class S> |
1832 | inline |
1833 | Vec4<T>::Vec4 (const Vec4<S> &v) |
1834 | { |
1835 | x = T (v.x); |
1836 | y = T (v.y); |
1837 | z = T (v.z); |
1838 | w = T (v.w); |
1839 | } |
1840 | |
1841 | template <class T> |
1842 | inline const Vec4<T> & |
1843 | Vec4<T>::operator = (const Vec4 &v) |
1844 | { |
1845 | x = v.x; |
1846 | y = v.y; |
1847 | z = v.z; |
1848 | w = v.w; |
1849 | return *this; |
1850 | } |
1851 | |
1852 | template <class T> |
1853 | template <class S> |
1854 | inline |
1855 | Vec4<T>::Vec4 (const Vec3<S> &v) |
1856 | { |
1857 | x = T (v.x); |
1858 | y = T (v.y); |
1859 | z = T (v.z); |
1860 | w = T (1); |
1861 | } |
1862 | |
1863 | template <class T> |
1864 | template <class S> |
1865 | inline bool |
1866 | Vec4<T>::operator == (const Vec4<S> &v) const |
1867 | { |
1868 | return x == v.x && y == v.y && z == v.z && w == v.w; |
1869 | } |
1870 | |
1871 | template <class T> |
1872 | template <class S> |
1873 | inline bool |
1874 | Vec4<T>::operator != (const Vec4<S> &v) const |
1875 | { |
1876 | return x != v.x || y != v.y || z != v.z || w != v.w; |
1877 | } |
1878 | |
1879 | template <class T> |
1880 | bool |
1881 | Vec4<T>::equalWithAbsError (const Vec4<T> &v, T e) const |
1882 | { |
1883 | for (int i = 0; i < 4; i++) |
1884 | if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i], v[i], e)) |
1885 | return false; |
1886 | |
1887 | return true; |
1888 | } |
1889 | |
1890 | template <class T> |
1891 | bool |
1892 | Vec4<T>::equalWithRelError (const Vec4<T> &v, T e) const |
1893 | { |
1894 | for (int i = 0; i < 4; i++) |
1895 | if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i], v[i], e)) |
1896 | return false; |
1897 | |
1898 | return true; |
1899 | } |
1900 | |
1901 | template <class T> |
1902 | inline T |
1903 | Vec4<T>::dot (const Vec4 &v) const |
1904 | { |
1905 | return x * v.x + y * v.y + z * v.z + w * v.w; |
1906 | } |
1907 | |
1908 | template <class T> |
1909 | inline T |
1910 | Vec4<T>::operator ^ (const Vec4 &v) const |
1911 | { |
1912 | return dot (v); |
1913 | } |
1914 | |
1915 | |
1916 | template <class T> |
1917 | inline const Vec4<T> & |
1918 | Vec4<T>::operator += (const Vec4 &v) |
1919 | { |
1920 | x += v.x; |
1921 | y += v.y; |
1922 | z += v.z; |
1923 | w += v.w; |
1924 | return *this; |
1925 | } |
1926 | |
1927 | template <class T> |
1928 | inline Vec4<T> |
1929 | Vec4<T>::operator + (const Vec4 &v) const |
1930 | { |
1931 | return Vec4 (x + v.x, y + v.y, z + v.z, w + v.w); |
1932 | } |
1933 | |
1934 | template <class T> |
1935 | inline const Vec4<T> & |
1936 | Vec4<T>::operator -= (const Vec4 &v) |
1937 | { |
1938 | x -= v.x; |
1939 | y -= v.y; |
1940 | z -= v.z; |
1941 | w -= v.w; |
1942 | return *this; |
1943 | } |
1944 | |
1945 | template <class T> |
1946 | inline Vec4<T> |
1947 | Vec4<T>::operator - (const Vec4 &v) const |
1948 | { |
1949 | return Vec4 (x - v.x, y - v.y, z - v.z, w - v.w); |
1950 | } |
1951 | |
1952 | template <class T> |
1953 | inline Vec4<T> |
1954 | Vec4<T>::operator - () const |
1955 | { |
1956 | return Vec4 (-x, -y, -z, -w); |
1957 | } |
1958 | |
1959 | template <class T> |
1960 | inline const Vec4<T> & |
1961 | Vec4<T>::negate () |
1962 | { |
1963 | x = -x; |
1964 | y = -y; |
1965 | z = -z; |
1966 | w = -w; |
1967 | return *this; |
1968 | } |
1969 | |
1970 | template <class T> |
1971 | inline const Vec4<T> & |
1972 | Vec4<T>::operator *= (const Vec4 &v) |
1973 | { |
1974 | x *= v.x; |
1975 | y *= v.y; |
1976 | z *= v.z; |
1977 | w *= v.w; |
1978 | return *this; |
1979 | } |
1980 | |
1981 | template <class T> |
1982 | inline const Vec4<T> & |
1983 | Vec4<T>::operator *= (T a) |
1984 | { |
1985 | x *= a; |
1986 | y *= a; |
1987 | z *= a; |
1988 | w *= a; |
1989 | return *this; |
1990 | } |
1991 | |
1992 | template <class T> |
1993 | inline Vec4<T> |
1994 | Vec4<T>::operator * (const Vec4 &v) const |
1995 | { |
1996 | return Vec4 (x * v.x, y * v.y, z * v.z, w * v.w); |
1997 | } |
1998 | |
1999 | template <class T> |
2000 | inline Vec4<T> |
2001 | Vec4<T>::operator * (T a) const |
2002 | { |
2003 | return Vec4 (x * a, y * a, z * a, w * a); |
2004 | } |
2005 | |
2006 | template <class T> |
2007 | inline const Vec4<T> & |
2008 | Vec4<T>::operator /= (const Vec4 &v) |
2009 | { |
2010 | x /= v.x; |
2011 | y /= v.y; |
2012 | z /= v.z; |
2013 | w /= v.w; |
2014 | return *this; |
2015 | } |
2016 | |
2017 | template <class T> |
2018 | inline const Vec4<T> & |
2019 | Vec4<T>::operator /= (T a) |
2020 | { |
2021 | x /= a; |
2022 | y /= a; |
2023 | z /= a; |
2024 | w /= a; |
2025 | return *this; |
2026 | } |
2027 | |
2028 | template <class T> |
2029 | inline Vec4<T> |
2030 | Vec4<T>::operator / (const Vec4 &v) const |
2031 | { |
2032 | return Vec4 (x / v.x, y / v.y, z / v.z, w / v.w); |
2033 | } |
2034 | |
2035 | template <class T> |
2036 | inline Vec4<T> |
2037 | Vec4<T>::operator / (T a) const |
2038 | { |
2039 | return Vec4 (x / a, y / a, z / a, w / a); |
2040 | } |
2041 | |
2042 | template <class T> |
2043 | T |
2044 | Vec4<T>::lengthTiny () const |
2045 | { |
2046 | T absX = (x >= T (0))? x: -x; |
2047 | T absY = (y >= T (0))? y: -y; |
2048 | T absZ = (z >= T (0))? z: -z; |
2049 | T absW = (w >= T (0))? w: -w; |
2050 | |
2051 | T max = absX; |
2052 | |
2053 | if (max < absY) |
2054 | max = absY; |
2055 | |
2056 | if (max < absZ) |
2057 | max = absZ; |
2058 | |
2059 | if (max < absW) |
2060 | max = absW; |
2061 | |
2062 | if (max == T (0)) |
2063 | return T (0); |
2064 | |
2065 | // |
2066 | // Do not replace the divisions by max with multiplications by 1/max. |
2067 | // Computing 1/max can overflow but the divisions below will always |
2068 | // produce results less than or equal to 1. |
2069 | // |
2070 | |
2071 | absX /= max; |
2072 | absY /= max; |
2073 | absZ /= max; |
2074 | absW /= max; |
2075 | |
2076 | return max * |
2077 | Math<T>::sqrt (absX * absX + absY * absY + absZ * absZ + absW * absW); |
2078 | } |
2079 | |
2080 | template <class T> |
2081 | inline T |
2082 | Vec4<T>::length () const |
2083 | { |
2084 | T length2 = dot (v: *this); |
2085 | |
2086 | if (length2 < T (2) * limits<T>::smallest()) |
2087 | return lengthTiny(); |
2088 | |
2089 | return Math<T>::sqrt (length2); |
2090 | } |
2091 | |
2092 | template <class T> |
2093 | inline T |
2094 | Vec4<T>::length2 () const |
2095 | { |
2096 | return dot (v: *this); |
2097 | } |
2098 | |
2099 | template <class T> |
2100 | const Vec4<T> & |
2101 | Vec4<T>::normalize () |
2102 | { |
2103 | T l = length(); |
2104 | |
2105 | if (l != T (0)) |
2106 | { |
2107 | // |
2108 | // Do not replace the divisions by l with multiplications by 1/l. |
2109 | // Computing 1/l can overflow but the divisions below will always |
2110 | // produce results less than or equal to 1. |
2111 | // |
2112 | |
2113 | x /= l; |
2114 | y /= l; |
2115 | z /= l; |
2116 | w /= l; |
2117 | } |
2118 | |
2119 | return *this; |
2120 | } |
2121 | |
2122 | template <class T> |
2123 | const Vec4<T> & |
2124 | Vec4<T>::normalizeExc () |
2125 | { |
2126 | T l = length(); |
2127 | |
2128 | if (l == T (0)) |
2129 | throw NullVecExc ("Cannot normalize null vector." ); |
2130 | |
2131 | x /= l; |
2132 | y /= l; |
2133 | z /= l; |
2134 | w /= l; |
2135 | return *this; |
2136 | } |
2137 | |
2138 | template <class T> |
2139 | inline |
2140 | const Vec4<T> & |
2141 | Vec4<T>::normalizeNonNull () |
2142 | { |
2143 | T l = length(); |
2144 | x /= l; |
2145 | y /= l; |
2146 | z /= l; |
2147 | w /= l; |
2148 | return *this; |
2149 | } |
2150 | |
2151 | template <class T> |
2152 | Vec4<T> |
2153 | Vec4<T>::normalized () const |
2154 | { |
2155 | T l = length(); |
2156 | |
2157 | if (l == T (0)) |
2158 | return Vec4 (T (0)); |
2159 | |
2160 | return Vec4 (x / l, y / l, z / l, w / l); |
2161 | } |
2162 | |
2163 | template <class T> |
2164 | Vec4<T> |
2165 | Vec4<T>::normalizedExc () const |
2166 | { |
2167 | T l = length(); |
2168 | |
2169 | if (l == T (0)) |
2170 | throw NullVecExc ("Cannot normalize null vector." ); |
2171 | |
2172 | return Vec4 (x / l, y / l, z / l, w / l); |
2173 | } |
2174 | |
2175 | template <class T> |
2176 | inline |
2177 | Vec4<T> |
2178 | Vec4<T>::normalizedNonNull () const |
2179 | { |
2180 | T l = length(); |
2181 | return Vec4 (x / l, y / l, z / l, w / l); |
2182 | } |
2183 | |
2184 | //----------------------------- |
2185 | // Stream output implementation |
2186 | //----------------------------- |
2187 | |
2188 | template <class T> |
2189 | std::ostream & |
2190 | operator << (std::ostream &s, const Vec2<T> &v) |
2191 | { |
2192 | return s << '(' << v.x << ' ' << v.y << ')'; |
2193 | } |
2194 | |
2195 | template <class T> |
2196 | std::ostream & |
2197 | operator << (std::ostream &s, const Vec3<T> &v) |
2198 | { |
2199 | return s << '(' << v.x << ' ' << v.y << ' ' << v.z << ')'; |
2200 | } |
2201 | |
2202 | template <class T> |
2203 | std::ostream & |
2204 | operator << (std::ostream &s, const Vec4<T> &v) |
2205 | { |
2206 | return s << '(' << v.x << ' ' << v.y << ' ' << v.z << ' ' << v.w << ')'; |
2207 | } |
2208 | |
2209 | |
2210 | //----------------------------------------- |
2211 | // Implementation of reverse multiplication |
2212 | //----------------------------------------- |
2213 | |
2214 | template <class T> |
2215 | inline Vec2<T> |
2216 | operator * (T a, const Vec2<T> &v) |
2217 | { |
2218 | return Vec2<T> (a * v.x, a * v.y); |
2219 | } |
2220 | |
2221 | template <class T> |
2222 | inline Vec3<T> |
2223 | operator * (T a, const Vec3<T> &v) |
2224 | { |
2225 | return Vec3<T> (a * v.x, a * v.y, a * v.z); |
2226 | } |
2227 | |
2228 | template <class T> |
2229 | inline Vec4<T> |
2230 | operator * (T a, const Vec4<T> &v) |
2231 | { |
2232 | return Vec4<T> (a * v.x, a * v.y, a * v.z, a * v.w); |
2233 | } |
2234 | |
2235 | |
2236 | #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER |
2237 | #pragma warning(pop) |
2238 | #endif |
2239 | |
2240 | IMATH_INTERNAL_NAMESPACE_HEADER_EXIT |
2241 | |
2242 | #endif // INCLUDED_IMATHVEC_H |
2243 | |