| 1 | // Special functions -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | // |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | // |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** @file tr1/beta_function.tcc |
| 26 | * This is an internal header file, included by other library headers. |
| 27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
| 28 | */ |
| 29 | |
| 30 | // |
| 31 | // ISO C++ 14882 TR1: 5.2 Special functions |
| 32 | // |
| 33 | |
| 34 | // Written by Edward Smith-Rowland based on: |
| 35 | // (1) Handbook of Mathematical Functions, |
| 36 | // ed. Milton Abramowitz and Irene A. Stegun, |
| 37 | // Dover Publications, |
| 38 | // Section 6, pp. 253-266 |
| 39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| 40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, |
| 41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), |
| 42 | // 2nd ed, pp. 213-216 |
| 43 | // (4) Gamma, Exploring Euler's Constant, Julian Havil, |
| 44 | // Princeton, 2003. |
| 45 | |
| 46 | #ifndef _GLIBCXX_TR1_BETA_FUNCTION_TCC |
| 47 | #define _GLIBCXX_TR1_BETA_FUNCTION_TCC 1 |
| 48 | |
| 49 | namespace std _GLIBCXX_VISIBILITY(default) |
| 50 | { |
| 51 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 52 | |
| 53 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
| 54 | # define _GLIBCXX_MATH_NS ::std |
| 55 | #elif defined(_GLIBCXX_TR1_CMATH) |
| 56 | namespace tr1 |
| 57 | { |
| 58 | # define _GLIBCXX_MATH_NS ::std::tr1 |
| 59 | #else |
| 60 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
| 61 | #endif |
| 62 | // [5.2] Special functions |
| 63 | |
| 64 | // Implementation-space details. |
| 65 | namespace __detail |
| 66 | { |
| 67 | /** |
| 68 | * @brief Return the beta function: \f$B(x,y)\f$. |
| 69 | * |
| 70 | * The beta function is defined by |
| 71 | * @f[ |
| 72 | * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} |
| 73 | * @f] |
| 74 | * |
| 75 | * @param __x The first argument of the beta function. |
| 76 | * @param __y The second argument of the beta function. |
| 77 | * @return The beta function. |
| 78 | */ |
| 79 | template<typename _Tp> |
| 80 | _Tp |
| 81 | __beta_gamma(_Tp __x, _Tp __y) |
| 82 | { |
| 83 | |
| 84 | _Tp __bet; |
| 85 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 86 | if (__x > __y) |
| 87 | { |
| 88 | __bet = _GLIBCXX_MATH_NS::tgamma(__x) |
| 89 | / _GLIBCXX_MATH_NS::tgamma(__x + __y); |
| 90 | __bet *= _GLIBCXX_MATH_NS::tgamma(__y); |
| 91 | } |
| 92 | else |
| 93 | { |
| 94 | __bet = _GLIBCXX_MATH_NS::tgamma(__y) |
| 95 | / _GLIBCXX_MATH_NS::tgamma(__x + __y); |
| 96 | __bet *= _GLIBCXX_MATH_NS::tgamma(__x); |
| 97 | } |
| 98 | #else |
| 99 | if (__x > __y) |
| 100 | { |
| 101 | __bet = __gamma(__x) / __gamma(__x + __y); |
| 102 | __bet *= __gamma(__y); |
| 103 | } |
| 104 | else |
| 105 | { |
| 106 | __bet = __gamma(__y) / __gamma(__x + __y); |
| 107 | __bet *= __gamma(__x); |
| 108 | } |
| 109 | #endif |
| 110 | |
| 111 | return __bet; |
| 112 | } |
| 113 | |
| 114 | /** |
| 115 | * @brief Return the beta function \f$B(x,y)\f$ using |
| 116 | * the log gamma functions. |
| 117 | * |
| 118 | * The beta function is defined by |
| 119 | * @f[ |
| 120 | * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} |
| 121 | * @f] |
| 122 | * |
| 123 | * @param __x The first argument of the beta function. |
| 124 | * @param __y The second argument of the beta function. |
| 125 | * @return The beta function. |
| 126 | */ |
| 127 | template<typename _Tp> |
| 128 | _Tp |
| 129 | __beta_lgamma(_Tp __x, _Tp __y) |
| 130 | { |
| 131 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 132 | _Tp __bet = _GLIBCXX_MATH_NS::lgamma(__x) |
| 133 | + _GLIBCXX_MATH_NS::lgamma(__y) |
| 134 | - _GLIBCXX_MATH_NS::lgamma(__x + __y); |
| 135 | #else |
| 136 | _Tp __bet = __log_gamma(__x) |
| 137 | + __log_gamma(__y) |
| 138 | - __log_gamma(__x + __y); |
| 139 | #endif |
| 140 | __bet = std::exp(__bet); |
| 141 | return __bet; |
| 142 | } |
| 143 | |
| 144 | |
| 145 | /** |
| 146 | * @brief Return the beta function \f$B(x,y)\f$ using |
| 147 | * the product form. |
| 148 | * |
| 149 | * The beta function is defined by |
| 150 | * @f[ |
| 151 | * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} |
| 152 | * @f] |
| 153 | * |
| 154 | * @param __x The first argument of the beta function. |
| 155 | * @param __y The second argument of the beta function. |
| 156 | * @return The beta function. |
| 157 | */ |
| 158 | template<typename _Tp> |
| 159 | _Tp |
| 160 | __beta_product(_Tp __x, _Tp __y) |
| 161 | { |
| 162 | |
| 163 | _Tp __bet = (__x + __y) / (__x * __y); |
| 164 | |
| 165 | unsigned int __max_iter = 1000000; |
| 166 | for (unsigned int __k = 1; __k < __max_iter; ++__k) |
| 167 | { |
| 168 | _Tp __term = (_Tp(1) + (__x + __y) / __k) |
| 169 | / ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k)); |
| 170 | __bet *= __term; |
| 171 | } |
| 172 | |
| 173 | return __bet; |
| 174 | } |
| 175 | |
| 176 | |
| 177 | /** |
| 178 | * @brief Return the beta function \f$ B(x,y) \f$. |
| 179 | * |
| 180 | * The beta function is defined by |
| 181 | * @f[ |
| 182 | * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} |
| 183 | * @f] |
| 184 | * |
| 185 | * @param __x The first argument of the beta function. |
| 186 | * @param __y The second argument of the beta function. |
| 187 | * @return The beta function. |
| 188 | */ |
| 189 | template<typename _Tp> |
| 190 | inline _Tp |
| 191 | __beta(_Tp __x, _Tp __y) |
| 192 | { |
| 193 | if (__isnan(__x) || __isnan(__y)) |
| 194 | return std::numeric_limits<_Tp>::quiet_NaN(); |
| 195 | else |
| 196 | return __beta_lgamma(__x, __y); |
| 197 | } |
| 198 | } // namespace __detail |
| 199 | #undef _GLIBCXX_MATH_NS |
| 200 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| 201 | } // namespace tr1 |
| 202 | #endif |
| 203 | |
| 204 | _GLIBCXX_END_NAMESPACE_VERSION |
| 205 | } |
| 206 | |
| 207 | #endif // _GLIBCXX_TR1_BETA_FUNCTION_TCC |
| 208 | |