| 1 | // Special functions -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | // |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | // |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** @file tr1/exp_integral.tcc |
| 26 | * This is an internal header file, included by other library headers. |
| 27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
| 28 | */ |
| 29 | |
| 30 | // |
| 31 | // ISO C++ 14882 TR1: 5.2 Special functions |
| 32 | // |
| 33 | |
| 34 | // Written by Edward Smith-Rowland based on: |
| 35 | // |
| 36 | // (1) Handbook of Mathematical Functions, |
| 37 | // Ed. by Milton Abramowitz and Irene A. Stegun, |
| 38 | // Dover Publications, New-York, Section 5, pp. 228-251. |
| 39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| 40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, |
| 41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), |
| 42 | // 2nd ed, pp. 222-225. |
| 43 | // |
| 44 | |
| 45 | #ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC |
| 46 | #define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1 |
| 47 | |
| 48 | #include <tr1/special_function_util.h> |
| 49 | |
| 50 | namespace std _GLIBCXX_VISIBILITY(default) |
| 51 | { |
| 52 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 53 | |
| 54 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
| 55 | #elif defined(_GLIBCXX_TR1_CMATH) |
| 56 | namespace tr1 |
| 57 | { |
| 58 | #else |
| 59 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
| 60 | #endif |
| 61 | // [5.2] Special functions |
| 62 | |
| 63 | // Implementation-space details. |
| 64 | namespace __detail |
| 65 | { |
| 66 | template<typename _Tp> _Tp __expint_E1(_Tp); |
| 67 | |
| 68 | /** |
| 69 | * @brief Return the exponential integral @f$ E_1(x) @f$ |
| 70 | * by series summation. This should be good |
| 71 | * for @f$ x < 1 @f$. |
| 72 | * |
| 73 | * The exponential integral is given by |
| 74 | * \f[ |
| 75 | * E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt |
| 76 | * \f] |
| 77 | * |
| 78 | * @param __x The argument of the exponential integral function. |
| 79 | * @return The exponential integral. |
| 80 | */ |
| 81 | template<typename _Tp> |
| 82 | _Tp |
| 83 | __expint_E1_series(_Tp __x) |
| 84 | { |
| 85 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 86 | _Tp __term = _Tp(1); |
| 87 | _Tp __esum = _Tp(0); |
| 88 | _Tp __osum = _Tp(0); |
| 89 | const unsigned int __max_iter = 1000; |
| 90 | for (unsigned int __i = 1; __i < __max_iter; ++__i) |
| 91 | { |
| 92 | __term *= - __x / __i; |
| 93 | if (std::abs(__term) < __eps) |
| 94 | break; |
| 95 | if (__term >= _Tp(0)) |
| 96 | __esum += __term / __i; |
| 97 | else |
| 98 | __osum += __term / __i; |
| 99 | } |
| 100 | |
| 101 | return - __esum - __osum |
| 102 | - __numeric_constants<_Tp>::__gamma_e() - std::log(__x); |
| 103 | } |
| 104 | |
| 105 | |
| 106 | /** |
| 107 | * @brief Return the exponential integral @f$ E_1(x) @f$ |
| 108 | * by asymptotic expansion. |
| 109 | * |
| 110 | * The exponential integral is given by |
| 111 | * \f[ |
| 112 | * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt |
| 113 | * \f] |
| 114 | * |
| 115 | * @param __x The argument of the exponential integral function. |
| 116 | * @return The exponential integral. |
| 117 | */ |
| 118 | template<typename _Tp> |
| 119 | _Tp |
| 120 | __expint_E1_asymp(_Tp __x) |
| 121 | { |
| 122 | _Tp __term = _Tp(1); |
| 123 | _Tp __esum = _Tp(1); |
| 124 | _Tp __osum = _Tp(0); |
| 125 | const unsigned int __max_iter = 1000; |
| 126 | for (unsigned int __i = 1; __i < __max_iter; ++__i) |
| 127 | { |
| 128 | _Tp __prev = __term; |
| 129 | __term *= - __i / __x; |
| 130 | if (std::abs(__term) > std::abs(__prev)) |
| 131 | break; |
| 132 | if (__term >= _Tp(0)) |
| 133 | __esum += __term; |
| 134 | else |
| 135 | __osum += __term; |
| 136 | } |
| 137 | |
| 138 | return std::exp(- __x) * (__esum + __osum) / __x; |
| 139 | } |
| 140 | |
| 141 | |
| 142 | /** |
| 143 | * @brief Return the exponential integral @f$ E_n(x) @f$ |
| 144 | * by series summation. |
| 145 | * |
| 146 | * The exponential integral is given by |
| 147 | * \f[ |
| 148 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
| 149 | * \f] |
| 150 | * |
| 151 | * @param __n The order of the exponential integral function. |
| 152 | * @param __x The argument of the exponential integral function. |
| 153 | * @return The exponential integral. |
| 154 | */ |
| 155 | template<typename _Tp> |
| 156 | _Tp |
| 157 | __expint_En_series(unsigned int __n, _Tp __x) |
| 158 | { |
| 159 | const unsigned int __max_iter = 1000; |
| 160 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 161 | const int __nm1 = __n - 1; |
| 162 | _Tp __ans = (__nm1 != 0 |
| 163 | ? _Tp(1) / __nm1 : -std::log(__x) |
| 164 | - __numeric_constants<_Tp>::__gamma_e()); |
| 165 | _Tp __fact = _Tp(1); |
| 166 | for (int __i = 1; __i <= __max_iter; ++__i) |
| 167 | { |
| 168 | __fact *= -__x / _Tp(__i); |
| 169 | _Tp __del; |
| 170 | if ( __i != __nm1 ) |
| 171 | __del = -__fact / _Tp(__i - __nm1); |
| 172 | else |
| 173 | { |
| 174 | _Tp __psi = -__numeric_constants<_Tp>::gamma_e(); |
| 175 | for (int __ii = 1; __ii <= __nm1; ++__ii) |
| 176 | __psi += _Tp(1) / _Tp(__ii); |
| 177 | __del = __fact * (__psi - std::log(__x)); |
| 178 | } |
| 179 | __ans += __del; |
| 180 | if (std::abs(__del) < __eps * std::abs(__ans)) |
| 181 | return __ans; |
| 182 | } |
| 183 | std::__throw_runtime_error(__N("Series summation failed " |
| 184 | "in __expint_En_series." )); |
| 185 | } |
| 186 | |
| 187 | |
| 188 | /** |
| 189 | * @brief Return the exponential integral @f$ E_n(x) @f$ |
| 190 | * by continued fractions. |
| 191 | * |
| 192 | * The exponential integral is given by |
| 193 | * \f[ |
| 194 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
| 195 | * \f] |
| 196 | * |
| 197 | * @param __n The order of the exponential integral function. |
| 198 | * @param __x The argument of the exponential integral function. |
| 199 | * @return The exponential integral. |
| 200 | */ |
| 201 | template<typename _Tp> |
| 202 | _Tp |
| 203 | __expint_En_cont_frac(unsigned int __n, _Tp __x) |
| 204 | { |
| 205 | const unsigned int __max_iter = 1000; |
| 206 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 207 | const _Tp __fp_min = std::numeric_limits<_Tp>::min(); |
| 208 | const int __nm1 = __n - 1; |
| 209 | _Tp __b = __x + _Tp(__n); |
| 210 | _Tp __c = _Tp(1) / __fp_min; |
| 211 | _Tp __d = _Tp(1) / __b; |
| 212 | _Tp __h = __d; |
| 213 | for ( unsigned int __i = 1; __i <= __max_iter; ++__i ) |
| 214 | { |
| 215 | _Tp __a = -_Tp(__i * (__nm1 + __i)); |
| 216 | __b += _Tp(2); |
| 217 | __d = _Tp(1) / (__a * __d + __b); |
| 218 | __c = __b + __a / __c; |
| 219 | const _Tp __del = __c * __d; |
| 220 | __h *= __del; |
| 221 | if (std::abs(__del - _Tp(1)) < __eps) |
| 222 | { |
| 223 | const _Tp __ans = __h * std::exp(-__x); |
| 224 | return __ans; |
| 225 | } |
| 226 | } |
| 227 | std::__throw_runtime_error(__N("Continued fraction failed " |
| 228 | "in __expint_En_cont_frac." )); |
| 229 | } |
| 230 | |
| 231 | |
| 232 | /** |
| 233 | * @brief Return the exponential integral @f$ E_n(x) @f$ |
| 234 | * by recursion. Use upward recursion for @f$ x < n @f$ |
| 235 | * and downward recursion (Miller's algorithm) otherwise. |
| 236 | * |
| 237 | * The exponential integral is given by |
| 238 | * \f[ |
| 239 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
| 240 | * \f] |
| 241 | * |
| 242 | * @param __n The order of the exponential integral function. |
| 243 | * @param __x The argument of the exponential integral function. |
| 244 | * @return The exponential integral. |
| 245 | */ |
| 246 | template<typename _Tp> |
| 247 | _Tp |
| 248 | __expint_En_recursion(unsigned int __n, _Tp __x) |
| 249 | { |
| 250 | _Tp __En; |
| 251 | _Tp __E1 = __expint_E1(__x); |
| 252 | if (__x < _Tp(__n)) |
| 253 | { |
| 254 | // Forward recursion is stable only for n < x. |
| 255 | __En = __E1; |
| 256 | for (unsigned int __j = 2; __j < __n; ++__j) |
| 257 | __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1); |
| 258 | } |
| 259 | else |
| 260 | { |
| 261 | // Backward recursion is stable only for n >= x. |
| 262 | __En = _Tp(1); |
| 263 | const int __N = __n + 20; // TODO: Check this starting number. |
| 264 | _Tp __save = _Tp(0); |
| 265 | for (int __j = __N; __j > 0; --__j) |
| 266 | { |
| 267 | __En = (std::exp(-__x) - __j * __En) / __x; |
| 268 | if (__j == __n) |
| 269 | __save = __En; |
| 270 | } |
| 271 | _Tp __norm = __En / __E1; |
| 272 | __En /= __norm; |
| 273 | } |
| 274 | |
| 275 | return __En; |
| 276 | } |
| 277 | |
| 278 | /** |
| 279 | * @brief Return the exponential integral @f$ Ei(x) @f$ |
| 280 | * by series summation. |
| 281 | * |
| 282 | * The exponential integral is given by |
| 283 | * \f[ |
| 284 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
| 285 | * \f] |
| 286 | * |
| 287 | * @param __x The argument of the exponential integral function. |
| 288 | * @return The exponential integral. |
| 289 | */ |
| 290 | template<typename _Tp> |
| 291 | _Tp |
| 292 | __expint_Ei_series(_Tp __x) |
| 293 | { |
| 294 | _Tp __term = _Tp(1); |
| 295 | _Tp __sum = _Tp(0); |
| 296 | const unsigned int __max_iter = 1000; |
| 297 | for (unsigned int __i = 1; __i < __max_iter; ++__i) |
| 298 | { |
| 299 | __term *= __x / __i; |
| 300 | __sum += __term / __i; |
| 301 | if (__term < std::numeric_limits<_Tp>::epsilon() * __sum) |
| 302 | break; |
| 303 | } |
| 304 | |
| 305 | return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x); |
| 306 | } |
| 307 | |
| 308 | |
| 309 | /** |
| 310 | * @brief Return the exponential integral @f$ Ei(x) @f$ |
| 311 | * by asymptotic expansion. |
| 312 | * |
| 313 | * The exponential integral is given by |
| 314 | * \f[ |
| 315 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
| 316 | * \f] |
| 317 | * |
| 318 | * @param __x The argument of the exponential integral function. |
| 319 | * @return The exponential integral. |
| 320 | */ |
| 321 | template<typename _Tp> |
| 322 | _Tp |
| 323 | __expint_Ei_asymp(_Tp __x) |
| 324 | { |
| 325 | _Tp __term = _Tp(1); |
| 326 | _Tp __sum = _Tp(1); |
| 327 | const unsigned int __max_iter = 1000; |
| 328 | for (unsigned int __i = 1; __i < __max_iter; ++__i) |
| 329 | { |
| 330 | _Tp __prev = __term; |
| 331 | __term *= __i / __x; |
| 332 | if (__term < std::numeric_limits<_Tp>::epsilon()) |
| 333 | break; |
| 334 | if (__term >= __prev) |
| 335 | break; |
| 336 | __sum += __term; |
| 337 | } |
| 338 | |
| 339 | return std::exp(__x) * __sum / __x; |
| 340 | } |
| 341 | |
| 342 | |
| 343 | /** |
| 344 | * @brief Return the exponential integral @f$ Ei(x) @f$. |
| 345 | * |
| 346 | * The exponential integral is given by |
| 347 | * \f[ |
| 348 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
| 349 | * \f] |
| 350 | * |
| 351 | * @param __x The argument of the exponential integral function. |
| 352 | * @return The exponential integral. |
| 353 | */ |
| 354 | template<typename _Tp> |
| 355 | _Tp |
| 356 | __expint_Ei(_Tp __x) |
| 357 | { |
| 358 | if (__x < _Tp(0)) |
| 359 | return -__expint_E1(-__x); |
| 360 | else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon())) |
| 361 | return __expint_Ei_series(__x); |
| 362 | else |
| 363 | return __expint_Ei_asymp(__x); |
| 364 | } |
| 365 | |
| 366 | |
| 367 | /** |
| 368 | * @brief Return the exponential integral @f$ E_1(x) @f$. |
| 369 | * |
| 370 | * The exponential integral is given by |
| 371 | * \f[ |
| 372 | * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt |
| 373 | * \f] |
| 374 | * |
| 375 | * @param __x The argument of the exponential integral function. |
| 376 | * @return The exponential integral. |
| 377 | */ |
| 378 | template<typename _Tp> |
| 379 | _Tp |
| 380 | __expint_E1(_Tp __x) |
| 381 | { |
| 382 | if (__x < _Tp(0)) |
| 383 | return -__expint_Ei(-__x); |
| 384 | else if (__x < _Tp(1)) |
| 385 | return __expint_E1_series(__x); |
| 386 | else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point. |
| 387 | return __expint_En_cont_frac(1, __x); |
| 388 | else |
| 389 | return __expint_E1_asymp(__x); |
| 390 | } |
| 391 | |
| 392 | |
| 393 | /** |
| 394 | * @brief Return the exponential integral @f$ E_n(x) @f$ |
| 395 | * for large argument. |
| 396 | * |
| 397 | * The exponential integral is given by |
| 398 | * \f[ |
| 399 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
| 400 | * \f] |
| 401 | * |
| 402 | * This is something of an extension. |
| 403 | * |
| 404 | * @param __n The order of the exponential integral function. |
| 405 | * @param __x The argument of the exponential integral function. |
| 406 | * @return The exponential integral. |
| 407 | */ |
| 408 | template<typename _Tp> |
| 409 | _Tp |
| 410 | __expint_asymp(unsigned int __n, _Tp __x) |
| 411 | { |
| 412 | _Tp __term = _Tp(1); |
| 413 | _Tp __sum = _Tp(1); |
| 414 | for (unsigned int __i = 1; __i <= __n; ++__i) |
| 415 | { |
| 416 | _Tp __prev = __term; |
| 417 | __term *= -(__n - __i + 1) / __x; |
| 418 | if (std::abs(__term) > std::abs(__prev)) |
| 419 | break; |
| 420 | __sum += __term; |
| 421 | } |
| 422 | |
| 423 | return std::exp(-__x) * __sum / __x; |
| 424 | } |
| 425 | |
| 426 | |
| 427 | /** |
| 428 | * @brief Return the exponential integral @f$ E_n(x) @f$ |
| 429 | * for large order. |
| 430 | * |
| 431 | * The exponential integral is given by |
| 432 | * \f[ |
| 433 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
| 434 | * \f] |
| 435 | * |
| 436 | * This is something of an extension. |
| 437 | * |
| 438 | * @param __n The order of the exponential integral function. |
| 439 | * @param __x The argument of the exponential integral function. |
| 440 | * @return The exponential integral. |
| 441 | */ |
| 442 | template<typename _Tp> |
| 443 | _Tp |
| 444 | __expint_large_n(unsigned int __n, _Tp __x) |
| 445 | { |
| 446 | const _Tp __xpn = __x + __n; |
| 447 | const _Tp __xpn2 = __xpn * __xpn; |
| 448 | _Tp __term = _Tp(1); |
| 449 | _Tp __sum = _Tp(1); |
| 450 | for (unsigned int __i = 1; __i <= __n; ++__i) |
| 451 | { |
| 452 | _Tp __prev = __term; |
| 453 | __term *= (__n - 2 * (__i - 1) * __x) / __xpn2; |
| 454 | if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) |
| 455 | break; |
| 456 | __sum += __term; |
| 457 | } |
| 458 | |
| 459 | return std::exp(-__x) * __sum / __xpn; |
| 460 | } |
| 461 | |
| 462 | |
| 463 | /** |
| 464 | * @brief Return the exponential integral @f$ E_n(x) @f$. |
| 465 | * |
| 466 | * The exponential integral is given by |
| 467 | * \f[ |
| 468 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt |
| 469 | * \f] |
| 470 | * This is something of an extension. |
| 471 | * |
| 472 | * @param __n The order of the exponential integral function. |
| 473 | * @param __x The argument of the exponential integral function. |
| 474 | * @return The exponential integral. |
| 475 | */ |
| 476 | template<typename _Tp> |
| 477 | _Tp |
| 478 | __expint(unsigned int __n, _Tp __x) |
| 479 | { |
| 480 | // Return NaN on NaN input. |
| 481 | if (__isnan(__x)) |
| 482 | return std::numeric_limits<_Tp>::quiet_NaN(); |
| 483 | else if (__n <= 1 && __x == _Tp(0)) |
| 484 | return std::numeric_limits<_Tp>::infinity(); |
| 485 | else |
| 486 | { |
| 487 | _Tp __E0 = std::exp(__x) / __x; |
| 488 | if (__n == 0) |
| 489 | return __E0; |
| 490 | |
| 491 | _Tp __E1 = __expint_E1(__x); |
| 492 | if (__n == 1) |
| 493 | return __E1; |
| 494 | |
| 495 | if (__x == _Tp(0)) |
| 496 | return _Tp(1) / static_cast<_Tp>(__n - 1); |
| 497 | |
| 498 | _Tp __En = __expint_En_recursion(__n, __x); |
| 499 | |
| 500 | return __En; |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | |
| 505 | /** |
| 506 | * @brief Return the exponential integral @f$ Ei(x) @f$. |
| 507 | * |
| 508 | * The exponential integral is given by |
| 509 | * \f[ |
| 510 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
| 511 | * \f] |
| 512 | * |
| 513 | * @param __x The argument of the exponential integral function. |
| 514 | * @return The exponential integral. |
| 515 | */ |
| 516 | template<typename _Tp> |
| 517 | inline _Tp |
| 518 | __expint(_Tp __x) |
| 519 | { |
| 520 | if (__isnan(__x)) |
| 521 | return std::numeric_limits<_Tp>::quiet_NaN(); |
| 522 | else |
| 523 | return __expint_Ei(__x); |
| 524 | } |
| 525 | } // namespace __detail |
| 526 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| 527 | } // namespace tr1 |
| 528 | #endif |
| 529 | |
| 530 | _GLIBCXX_END_NAMESPACE_VERSION |
| 531 | } |
| 532 | |
| 533 | #endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC |
| 534 | |