| 1 | // Special functions -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | // |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | // |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** @file tr1/hypergeometric.tcc |
| 26 | * This is an internal header file, included by other library headers. |
| 27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
| 28 | */ |
| 29 | |
| 30 | // |
| 31 | // ISO C++ 14882 TR1: 5.2 Special functions |
| 32 | // |
| 33 | |
| 34 | // Written by Edward Smith-Rowland based: |
| 35 | // (1) Handbook of Mathematical Functions, |
| 36 | // ed. Milton Abramowitz and Irene A. Stegun, |
| 37 | // Dover Publications, |
| 38 | // Section 6, pp. 555-566 |
| 39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| 40 | |
| 41 | #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC |
| 42 | #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1 |
| 43 | |
| 44 | namespace std _GLIBCXX_VISIBILITY(default) |
| 45 | { |
| 46 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 47 | |
| 48 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
| 49 | # define _GLIBCXX_MATH_NS ::std |
| 50 | #elif defined(_GLIBCXX_TR1_CMATH) |
| 51 | namespace tr1 |
| 52 | { |
| 53 | # define _GLIBCXX_MATH_NS ::std::tr1 |
| 54 | #else |
| 55 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
| 56 | #endif |
| 57 | // [5.2] Special functions |
| 58 | |
| 59 | // Implementation-space details. |
| 60 | namespace __detail |
| 61 | { |
| 62 | /** |
| 63 | * @brief This routine returns the confluent hypergeometric function |
| 64 | * by series expansion. |
| 65 | * |
| 66 | * @f[ |
| 67 | * _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)} |
| 68 | * \sum_{n=0}^{\infty} |
| 69 | * \frac{\Gamma(a+n)}{\Gamma(c+n)} |
| 70 | * \frac{x^n}{n!} |
| 71 | * @f] |
| 72 | * |
| 73 | * If a and b are integers and a < 0 and either b > 0 or b < a |
| 74 | * then the series is a polynomial with a finite number of |
| 75 | * terms. If b is an integer and b <= 0 the confluent |
| 76 | * hypergeometric function is undefined. |
| 77 | * |
| 78 | * @param __a The "numerator" parameter. |
| 79 | * @param __c The "denominator" parameter. |
| 80 | * @param __x The argument of the confluent hypergeometric function. |
| 81 | * @return The confluent hypergeometric function. |
| 82 | */ |
| 83 | template<typename _Tp> |
| 84 | _Tp |
| 85 | __conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x) |
| 86 | { |
| 87 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 88 | |
| 89 | _Tp __term = _Tp(1); |
| 90 | _Tp __Fac = _Tp(1); |
| 91 | const unsigned int __max_iter = 100000; |
| 92 | unsigned int __i; |
| 93 | for (__i = 0; __i < __max_iter; ++__i) |
| 94 | { |
| 95 | __term *= (__a + _Tp(__i)) * __x |
| 96 | / ((__c + _Tp(__i)) * _Tp(1 + __i)); |
| 97 | if (std::abs(__term) < __eps) |
| 98 | { |
| 99 | break; |
| 100 | } |
| 101 | __Fac += __term; |
| 102 | } |
| 103 | if (__i == __max_iter) |
| 104 | std::__throw_runtime_error(__N("Series failed to converge " |
| 105 | "in __conf_hyperg_series." )); |
| 106 | |
| 107 | return __Fac; |
| 108 | } |
| 109 | |
| 110 | |
| 111 | /** |
| 112 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ |
| 113 | * by an iterative procedure described in |
| 114 | * Luke, Algorithms for the Computation of Mathematical Functions. |
| 115 | * |
| 116 | * Like the case of the 2F1 rational approximations, these are |
| 117 | * probably guaranteed to converge for x < 0, barring gross |
| 118 | * numerical instability in the pre-asymptotic regime. |
| 119 | */ |
| 120 | template<typename _Tp> |
| 121 | _Tp |
| 122 | __conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin) |
| 123 | { |
| 124 | const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); |
| 125 | const int __nmax = 20000; |
| 126 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 127 | const _Tp __x = -__xin; |
| 128 | const _Tp __x3 = __x * __x * __x; |
| 129 | const _Tp __t0 = __a / __c; |
| 130 | const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c); |
| 131 | const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1))); |
| 132 | _Tp __F = _Tp(1); |
| 133 | _Tp __prec; |
| 134 | |
| 135 | _Tp __Bnm3 = _Tp(1); |
| 136 | _Tp __Bnm2 = _Tp(1) + __t1 * __x; |
| 137 | _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); |
| 138 | |
| 139 | _Tp __Anm3 = _Tp(1); |
| 140 | _Tp __Anm2 = __Bnm2 - __t0 * __x; |
| 141 | _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x |
| 142 | + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; |
| 143 | |
| 144 | int __n = 3; |
| 145 | while(1) |
| 146 | { |
| 147 | _Tp __npam1 = _Tp(__n - 1) + __a; |
| 148 | _Tp __npcm1 = _Tp(__n - 1) + __c; |
| 149 | _Tp __npam2 = _Tp(__n - 2) + __a; |
| 150 | _Tp __npcm2 = _Tp(__n - 2) + __c; |
| 151 | _Tp __tnm1 = _Tp(2 * __n - 1); |
| 152 | _Tp __tnm3 = _Tp(2 * __n - 3); |
| 153 | _Tp __tnm5 = _Tp(2 * __n - 5); |
| 154 | _Tp __F1 = (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1); |
| 155 | _Tp __F2 = (_Tp(__n) + __a) * __npam1 |
| 156 | / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); |
| 157 | _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a) |
| 158 | / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 |
| 159 | * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); |
| 160 | _Tp __E = -__npam1 * (_Tp(__n - 1) - __c) |
| 161 | / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); |
| 162 | |
| 163 | _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 |
| 164 | + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; |
| 165 | _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 |
| 166 | + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; |
| 167 | _Tp __r = __An / __Bn; |
| 168 | |
| 169 | __prec = std::abs((__F - __r) / __F); |
| 170 | __F = __r; |
| 171 | |
| 172 | if (__prec < __eps || __n > __nmax) |
| 173 | break; |
| 174 | |
| 175 | if (std::abs(__An) > __big || std::abs(__Bn) > __big) |
| 176 | { |
| 177 | __An /= __big; |
| 178 | __Bn /= __big; |
| 179 | __Anm1 /= __big; |
| 180 | __Bnm1 /= __big; |
| 181 | __Anm2 /= __big; |
| 182 | __Bnm2 /= __big; |
| 183 | __Anm3 /= __big; |
| 184 | __Bnm3 /= __big; |
| 185 | } |
| 186 | else if (std::abs(__An) < _Tp(1) / __big |
| 187 | || std::abs(__Bn) < _Tp(1) / __big) |
| 188 | { |
| 189 | __An *= __big; |
| 190 | __Bn *= __big; |
| 191 | __Anm1 *= __big; |
| 192 | __Bnm1 *= __big; |
| 193 | __Anm2 *= __big; |
| 194 | __Bnm2 *= __big; |
| 195 | __Anm3 *= __big; |
| 196 | __Bnm3 *= __big; |
| 197 | } |
| 198 | |
| 199 | ++__n; |
| 200 | __Bnm3 = __Bnm2; |
| 201 | __Bnm2 = __Bnm1; |
| 202 | __Bnm1 = __Bn; |
| 203 | __Anm3 = __Anm2; |
| 204 | __Anm2 = __Anm1; |
| 205 | __Anm1 = __An; |
| 206 | } |
| 207 | |
| 208 | if (__n >= __nmax) |
| 209 | std::__throw_runtime_error(__N("Iteration failed to converge " |
| 210 | "in __conf_hyperg_luke." )); |
| 211 | |
| 212 | return __F; |
| 213 | } |
| 214 | |
| 215 | |
| 216 | /** |
| 217 | * @brief Return the confluent hypogeometric function |
| 218 | * @f$ _1F_1(a;c;x) @f$. |
| 219 | * |
| 220 | * @todo Handle b == nonpositive integer blowup - return NaN. |
| 221 | * |
| 222 | * @param __a The @a numerator parameter. |
| 223 | * @param __c The @a denominator parameter. |
| 224 | * @param __x The argument of the confluent hypergeometric function. |
| 225 | * @return The confluent hypergeometric function. |
| 226 | */ |
| 227 | template<typename _Tp> |
| 228 | _Tp |
| 229 | __conf_hyperg(_Tp __a, _Tp __c, _Tp __x) |
| 230 | { |
| 231 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 232 | const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); |
| 233 | #else |
| 234 | const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); |
| 235 | #endif |
| 236 | if (__isnan(__a) || __isnan(__c) || __isnan(__x)) |
| 237 | return std::numeric_limits<_Tp>::quiet_NaN(); |
| 238 | else if (__c_nint == __c && __c_nint <= 0) |
| 239 | return std::numeric_limits<_Tp>::infinity(); |
| 240 | else if (__a == _Tp(0)) |
| 241 | return _Tp(1); |
| 242 | else if (__c == __a) |
| 243 | return std::exp(__x); |
| 244 | else if (__x < _Tp(0)) |
| 245 | return __conf_hyperg_luke(__a, __c, __x); |
| 246 | else |
| 247 | return __conf_hyperg_series(__a, __c, __x); |
| 248 | } |
| 249 | |
| 250 | |
| 251 | /** |
| 252 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ |
| 253 | * by series expansion. |
| 254 | * |
| 255 | * The hypogeometric function is defined by |
| 256 | * @f[ |
| 257 | * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} |
| 258 | * \sum_{n=0}^{\infty} |
| 259 | * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} |
| 260 | * \frac{x^n}{n!} |
| 261 | * @f] |
| 262 | * |
| 263 | * This works and it's pretty fast. |
| 264 | * |
| 265 | * @param __a The first @a numerator parameter. |
| 266 | * @param __a The second @a numerator parameter. |
| 267 | * @param __c The @a denominator parameter. |
| 268 | * @param __x The argument of the confluent hypergeometric function. |
| 269 | * @return The confluent hypergeometric function. |
| 270 | */ |
| 271 | template<typename _Tp> |
| 272 | _Tp |
| 273 | __hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x) |
| 274 | { |
| 275 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 276 | |
| 277 | _Tp __term = _Tp(1); |
| 278 | _Tp __Fabc = _Tp(1); |
| 279 | const unsigned int __max_iter = 100000; |
| 280 | unsigned int __i; |
| 281 | for (__i = 0; __i < __max_iter; ++__i) |
| 282 | { |
| 283 | __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x |
| 284 | / ((__c + _Tp(__i)) * _Tp(1 + __i)); |
| 285 | if (std::abs(__term) < __eps) |
| 286 | { |
| 287 | break; |
| 288 | } |
| 289 | __Fabc += __term; |
| 290 | } |
| 291 | if (__i == __max_iter) |
| 292 | std::__throw_runtime_error(__N("Series failed to converge " |
| 293 | "in __hyperg_series." )); |
| 294 | |
| 295 | return __Fabc; |
| 296 | } |
| 297 | |
| 298 | |
| 299 | /** |
| 300 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ |
| 301 | * by an iterative procedure described in |
| 302 | * Luke, Algorithms for the Computation of Mathematical Functions. |
| 303 | */ |
| 304 | template<typename _Tp> |
| 305 | _Tp |
| 306 | __hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin) |
| 307 | { |
| 308 | const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); |
| 309 | const int __nmax = 20000; |
| 310 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 311 | const _Tp __x = -__xin; |
| 312 | const _Tp __x3 = __x * __x * __x; |
| 313 | const _Tp __t0 = __a * __b / __c; |
| 314 | const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c); |
| 315 | const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2)) |
| 316 | / (_Tp(2) * (__c + _Tp(1))); |
| 317 | |
| 318 | _Tp __F = _Tp(1); |
| 319 | |
| 320 | _Tp __Bnm3 = _Tp(1); |
| 321 | _Tp __Bnm2 = _Tp(1) + __t1 * __x; |
| 322 | _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); |
| 323 | |
| 324 | _Tp __Anm3 = _Tp(1); |
| 325 | _Tp __Anm2 = __Bnm2 - __t0 * __x; |
| 326 | _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x |
| 327 | + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; |
| 328 | |
| 329 | int __n = 3; |
| 330 | while (1) |
| 331 | { |
| 332 | const _Tp __npam1 = _Tp(__n - 1) + __a; |
| 333 | const _Tp __npbm1 = _Tp(__n - 1) + __b; |
| 334 | const _Tp __npcm1 = _Tp(__n - 1) + __c; |
| 335 | const _Tp __npam2 = _Tp(__n - 2) + __a; |
| 336 | const _Tp __npbm2 = _Tp(__n - 2) + __b; |
| 337 | const _Tp __npcm2 = _Tp(__n - 2) + __c; |
| 338 | const _Tp __tnm1 = _Tp(2 * __n - 1); |
| 339 | const _Tp __tnm3 = _Tp(2 * __n - 3); |
| 340 | const _Tp __tnm5 = _Tp(2 * __n - 5); |
| 341 | const _Tp __n2 = __n * __n; |
| 342 | const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n |
| 343 | + _Tp(2) - __a * __b - _Tp(2) * (__a + __b)) |
| 344 | / (_Tp(2) * __tnm3 * __npcm1); |
| 345 | const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n |
| 346 | + _Tp(2) - __a * __b) * __npam1 * __npbm1 |
| 347 | / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); |
| 348 | const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1 |
| 349 | * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b)) |
| 350 | / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 |
| 351 | * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); |
| 352 | const _Tp __E = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c) |
| 353 | / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); |
| 354 | |
| 355 | _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 |
| 356 | + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; |
| 357 | _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 |
| 358 | + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; |
| 359 | const _Tp __r = __An / __Bn; |
| 360 | |
| 361 | const _Tp __prec = std::abs((__F - __r) / __F); |
| 362 | __F = __r; |
| 363 | |
| 364 | if (__prec < __eps || __n > __nmax) |
| 365 | break; |
| 366 | |
| 367 | if (std::abs(__An) > __big || std::abs(__Bn) > __big) |
| 368 | { |
| 369 | __An /= __big; |
| 370 | __Bn /= __big; |
| 371 | __Anm1 /= __big; |
| 372 | __Bnm1 /= __big; |
| 373 | __Anm2 /= __big; |
| 374 | __Bnm2 /= __big; |
| 375 | __Anm3 /= __big; |
| 376 | __Bnm3 /= __big; |
| 377 | } |
| 378 | else if (std::abs(__An) < _Tp(1) / __big |
| 379 | || std::abs(__Bn) < _Tp(1) / __big) |
| 380 | { |
| 381 | __An *= __big; |
| 382 | __Bn *= __big; |
| 383 | __Anm1 *= __big; |
| 384 | __Bnm1 *= __big; |
| 385 | __Anm2 *= __big; |
| 386 | __Bnm2 *= __big; |
| 387 | __Anm3 *= __big; |
| 388 | __Bnm3 *= __big; |
| 389 | } |
| 390 | |
| 391 | ++__n; |
| 392 | __Bnm3 = __Bnm2; |
| 393 | __Bnm2 = __Bnm1; |
| 394 | __Bnm1 = __Bn; |
| 395 | __Anm3 = __Anm2; |
| 396 | __Anm2 = __Anm1; |
| 397 | __Anm1 = __An; |
| 398 | } |
| 399 | |
| 400 | if (__n >= __nmax) |
| 401 | std::__throw_runtime_error(__N("Iteration failed to converge " |
| 402 | "in __hyperg_luke." )); |
| 403 | |
| 404 | return __F; |
| 405 | } |
| 406 | |
| 407 | |
| 408 | /** |
| 409 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ |
| 410 | * by the reflection formulae in Abramowitz & Stegun formula |
| 411 | * 15.3.6 for d = c - a - b not integral and formula 15.3.11 for |
| 412 | * d = c - a - b integral. This assumes a, b, c != negative |
| 413 | * integer. |
| 414 | * |
| 415 | * The hypogeometric function is defined by |
| 416 | * @f[ |
| 417 | * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} |
| 418 | * \sum_{n=0}^{\infty} |
| 419 | * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} |
| 420 | * \frac{x^n}{n!} |
| 421 | * @f] |
| 422 | * |
| 423 | * The reflection formula for nonintegral @f$ d = c - a - b @f$ is: |
| 424 | * @f[ |
| 425 | * _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)} |
| 426 | * _2F_1(a,b;1-d;1-x) |
| 427 | * + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)} |
| 428 | * _2F_1(c-a,c-b;1+d;1-x) |
| 429 | * @f] |
| 430 | * |
| 431 | * The reflection formula for integral @f$ m = c - a - b @f$ is: |
| 432 | * @f[ |
| 433 | * _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)} |
| 434 | * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k} |
| 435 | * - |
| 436 | * @f] |
| 437 | */ |
| 438 | template<typename _Tp> |
| 439 | _Tp |
| 440 | __hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x) |
| 441 | { |
| 442 | const _Tp __d = __c - __a - __b; |
| 443 | const int __intd = std::floor(__d + _Tp(0.5L)); |
| 444 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 445 | const _Tp __toler = _Tp(1000) * __eps; |
| 446 | const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max()); |
| 447 | const bool __d_integer = (std::abs(__d - __intd) < __toler); |
| 448 | |
| 449 | if (__d_integer) |
| 450 | { |
| 451 | const _Tp __ln_omx = std::log(_Tp(1) - __x); |
| 452 | const _Tp __ad = std::abs(__d); |
| 453 | _Tp __F1, __F2; |
| 454 | |
| 455 | _Tp __d1, __d2; |
| 456 | if (__d >= _Tp(0)) |
| 457 | { |
| 458 | __d1 = __d; |
| 459 | __d2 = _Tp(0); |
| 460 | } |
| 461 | else |
| 462 | { |
| 463 | __d1 = _Tp(0); |
| 464 | __d2 = __d; |
| 465 | } |
| 466 | |
| 467 | const _Tp __lng_c = __log_gamma(__c); |
| 468 | |
| 469 | // Evaluate F1. |
| 470 | if (__ad < __eps) |
| 471 | { |
| 472 | // d = c - a - b = 0. |
| 473 | __F1 = _Tp(0); |
| 474 | } |
| 475 | else |
| 476 | { |
| 477 | |
| 478 | bool __ok_d1 = true; |
| 479 | _Tp __lng_ad, __lng_ad1, __lng_bd1; |
| 480 | __try |
| 481 | { |
| 482 | __lng_ad = __log_gamma(__ad); |
| 483 | __lng_ad1 = __log_gamma(__a + __d1); |
| 484 | __lng_bd1 = __log_gamma(__b + __d1); |
| 485 | } |
| 486 | __catch(...) |
| 487 | { |
| 488 | __ok_d1 = false; |
| 489 | } |
| 490 | |
| 491 | if (__ok_d1) |
| 492 | { |
| 493 | /* Gamma functions in the denominator are ok. |
| 494 | * Proceed with evaluation. |
| 495 | */ |
| 496 | _Tp __sum1 = _Tp(1); |
| 497 | _Tp __term = _Tp(1); |
| 498 | _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx |
| 499 | - __lng_ad1 - __lng_bd1; |
| 500 | |
| 501 | /* Do F1 sum. |
| 502 | */ |
| 503 | for (int __i = 1; __i < __ad; ++__i) |
| 504 | { |
| 505 | const int __j = __i - 1; |
| 506 | __term *= (__a + __d2 + __j) * (__b + __d2 + __j) |
| 507 | / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x); |
| 508 | __sum1 += __term; |
| 509 | } |
| 510 | |
| 511 | if (__ln_pre1 > __log_max) |
| 512 | std::__throw_runtime_error(__N("Overflow of gamma functions" |
| 513 | " in __hyperg_luke." )); |
| 514 | else |
| 515 | __F1 = std::exp(__ln_pre1) * __sum1; |
| 516 | } |
| 517 | else |
| 518 | { |
| 519 | // Gamma functions in the denominator were not ok. |
| 520 | // So the F1 term is zero. |
| 521 | __F1 = _Tp(0); |
| 522 | } |
| 523 | } // end F1 evaluation |
| 524 | |
| 525 | // Evaluate F2. |
| 526 | bool __ok_d2 = true; |
| 527 | _Tp __lng_ad2, __lng_bd2; |
| 528 | __try |
| 529 | { |
| 530 | __lng_ad2 = __log_gamma(__a + __d2); |
| 531 | __lng_bd2 = __log_gamma(__b + __d2); |
| 532 | } |
| 533 | __catch(...) |
| 534 | { |
| 535 | __ok_d2 = false; |
| 536 | } |
| 537 | |
| 538 | if (__ok_d2) |
| 539 | { |
| 540 | // Gamma functions in the denominator are ok. |
| 541 | // Proceed with evaluation. |
| 542 | const int __maxiter = 2000; |
| 543 | const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e(); |
| 544 | const _Tp __psi_1pd = __psi(_Tp(1) + __ad); |
| 545 | const _Tp __psi_apd1 = __psi(__a + __d1); |
| 546 | const _Tp __psi_bpd1 = __psi(__b + __d1); |
| 547 | |
| 548 | _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1 |
| 549 | - __psi_bpd1 - __ln_omx; |
| 550 | _Tp __fact = _Tp(1); |
| 551 | _Tp __sum2 = __psi_term; |
| 552 | _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx |
| 553 | - __lng_ad2 - __lng_bd2; |
| 554 | |
| 555 | // Do F2 sum. |
| 556 | int __j; |
| 557 | for (__j = 1; __j < __maxiter; ++__j) |
| 558 | { |
| 559 | // Values for psi functions use recurrence; |
| 560 | // Abramowitz & Stegun 6.3.5 |
| 561 | const _Tp __term1 = _Tp(1) / _Tp(__j) |
| 562 | + _Tp(1) / (__ad + __j); |
| 563 | const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1)) |
| 564 | + _Tp(1) / (__b + __d1 + _Tp(__j - 1)); |
| 565 | __psi_term += __term1 - __term2; |
| 566 | __fact *= (__a + __d1 + _Tp(__j - 1)) |
| 567 | * (__b + __d1 + _Tp(__j - 1)) |
| 568 | / ((__ad + __j) * __j) * (_Tp(1) - __x); |
| 569 | const _Tp __delta = __fact * __psi_term; |
| 570 | __sum2 += __delta; |
| 571 | if (std::abs(__delta) < __eps * std::abs(__sum2)) |
| 572 | break; |
| 573 | } |
| 574 | if (__j == __maxiter) |
| 575 | std::__throw_runtime_error(__N("Sum F2 failed to converge " |
| 576 | "in __hyperg_reflect" )); |
| 577 | |
| 578 | if (__sum2 == _Tp(0)) |
| 579 | __F2 = _Tp(0); |
| 580 | else |
| 581 | __F2 = std::exp(__ln_pre2) * __sum2; |
| 582 | } |
| 583 | else |
| 584 | { |
| 585 | // Gamma functions in the denominator not ok. |
| 586 | // So the F2 term is zero. |
| 587 | __F2 = _Tp(0); |
| 588 | } // end F2 evaluation |
| 589 | |
| 590 | const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1)); |
| 591 | const _Tp __F = __F1 + __sgn_2 * __F2; |
| 592 | |
| 593 | return __F; |
| 594 | } |
| 595 | else |
| 596 | { |
| 597 | // d = c - a - b not an integer. |
| 598 | |
| 599 | // These gamma functions appear in the denominator, so we |
| 600 | // catch their harmless domain errors and set the terms to zero. |
| 601 | bool __ok1 = true; |
| 602 | _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0); |
| 603 | _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0); |
| 604 | __try |
| 605 | { |
| 606 | __sgn_g1ca = __log_gamma_sign(__c - __a); |
| 607 | __ln_g1ca = __log_gamma(__c - __a); |
| 608 | __sgn_g1cb = __log_gamma_sign(__c - __b); |
| 609 | __ln_g1cb = __log_gamma(__c - __b); |
| 610 | } |
| 611 | __catch(...) |
| 612 | { |
| 613 | __ok1 = false; |
| 614 | } |
| 615 | |
| 616 | bool __ok2 = true; |
| 617 | _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0); |
| 618 | _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0); |
| 619 | __try |
| 620 | { |
| 621 | __sgn_g2a = __log_gamma_sign(__a); |
| 622 | __ln_g2a = __log_gamma(__a); |
| 623 | __sgn_g2b = __log_gamma_sign(__b); |
| 624 | __ln_g2b = __log_gamma(__b); |
| 625 | } |
| 626 | __catch(...) |
| 627 | { |
| 628 | __ok2 = false; |
| 629 | } |
| 630 | |
| 631 | const _Tp __sgn_gc = __log_gamma_sign(__c); |
| 632 | const _Tp __ln_gc = __log_gamma(__c); |
| 633 | const _Tp __sgn_gd = __log_gamma_sign(__d); |
| 634 | const _Tp __ln_gd = __log_gamma(__d); |
| 635 | const _Tp __sgn_gmd = __log_gamma_sign(-__d); |
| 636 | const _Tp __ln_gmd = __log_gamma(-__d); |
| 637 | |
| 638 | const _Tp __sgn1 = __sgn_gc * __sgn_gd * __sgn_g1ca * __sgn_g1cb; |
| 639 | const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a * __sgn_g2b; |
| 640 | |
| 641 | _Tp __pre1, __pre2; |
| 642 | if (__ok1 && __ok2) |
| 643 | { |
| 644 | _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; |
| 645 | _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b |
| 646 | + __d * std::log(_Tp(1) - __x); |
| 647 | if (__ln_pre1 < __log_max && __ln_pre2 < __log_max) |
| 648 | { |
| 649 | __pre1 = std::exp(__ln_pre1); |
| 650 | __pre2 = std::exp(__ln_pre2); |
| 651 | __pre1 *= __sgn1; |
| 652 | __pre2 *= __sgn2; |
| 653 | } |
| 654 | else |
| 655 | { |
| 656 | std::__throw_runtime_error(__N("Overflow of gamma functions " |
| 657 | "in __hyperg_reflect" )); |
| 658 | } |
| 659 | } |
| 660 | else if (__ok1 && !__ok2) |
| 661 | { |
| 662 | _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; |
| 663 | if (__ln_pre1 < __log_max) |
| 664 | { |
| 665 | __pre1 = std::exp(__ln_pre1); |
| 666 | __pre1 *= __sgn1; |
| 667 | __pre2 = _Tp(0); |
| 668 | } |
| 669 | else |
| 670 | { |
| 671 | std::__throw_runtime_error(__N("Overflow of gamma functions " |
| 672 | "in __hyperg_reflect" )); |
| 673 | } |
| 674 | } |
| 675 | else if (!__ok1 && __ok2) |
| 676 | { |
| 677 | _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b |
| 678 | + __d * std::log(_Tp(1) - __x); |
| 679 | if (__ln_pre2 < __log_max) |
| 680 | { |
| 681 | __pre1 = _Tp(0); |
| 682 | __pre2 = std::exp(__ln_pre2); |
| 683 | __pre2 *= __sgn2; |
| 684 | } |
| 685 | else |
| 686 | { |
| 687 | std::__throw_runtime_error(__N("Overflow of gamma functions " |
| 688 | "in __hyperg_reflect" )); |
| 689 | } |
| 690 | } |
| 691 | else |
| 692 | { |
| 693 | __pre1 = _Tp(0); |
| 694 | __pre2 = _Tp(0); |
| 695 | std::__throw_runtime_error(__N("Underflow of gamma functions " |
| 696 | "in __hyperg_reflect" )); |
| 697 | } |
| 698 | |
| 699 | const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d, |
| 700 | _Tp(1) - __x); |
| 701 | const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d, |
| 702 | _Tp(1) - __x); |
| 703 | |
| 704 | const _Tp __F = __pre1 * __F1 + __pre2 * __F2; |
| 705 | |
| 706 | return __F; |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | |
| 711 | /** |
| 712 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$. |
| 713 | * |
| 714 | * The hypogeometric function is defined by |
| 715 | * @f[ |
| 716 | * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} |
| 717 | * \sum_{n=0}^{\infty} |
| 718 | * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} |
| 719 | * \frac{x^n}{n!} |
| 720 | * @f] |
| 721 | * |
| 722 | * @param __a The first @a numerator parameter. |
| 723 | * @param __a The second @a numerator parameter. |
| 724 | * @param __c The @a denominator parameter. |
| 725 | * @param __x The argument of the confluent hypergeometric function. |
| 726 | * @return The confluent hypergeometric function. |
| 727 | */ |
| 728 | template<typename _Tp> |
| 729 | _Tp |
| 730 | __hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x) |
| 731 | { |
| 732 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 733 | const _Tp __a_nint = _GLIBCXX_MATH_NS::nearbyint(__a); |
| 734 | const _Tp __b_nint = _GLIBCXX_MATH_NS::nearbyint(__b); |
| 735 | const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); |
| 736 | #else |
| 737 | const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L)); |
| 738 | const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L)); |
| 739 | const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); |
| 740 | #endif |
| 741 | const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon(); |
| 742 | if (std::abs(__x) >= _Tp(1)) |
| 743 | std::__throw_domain_error(__N("Argument outside unit circle " |
| 744 | "in __hyperg." )); |
| 745 | else if (__isnan(__a) || __isnan(__b) |
| 746 | || __isnan(__c) || __isnan(__x)) |
| 747 | return std::numeric_limits<_Tp>::quiet_NaN(); |
| 748 | else if (__c_nint == __c && __c_nint <= _Tp(0)) |
| 749 | return std::numeric_limits<_Tp>::infinity(); |
| 750 | else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler) |
| 751 | return std::pow(_Tp(1) - __x, __c - __a - __b); |
| 752 | else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0) |
| 753 | && __x >= _Tp(0) && __x < _Tp(0.995L)) |
| 754 | return __hyperg_series(__a, __b, __c, __x); |
| 755 | else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10)) |
| 756 | { |
| 757 | // For integer a and b the hypergeometric function is a |
| 758 | // finite polynomial. |
| 759 | if (__a < _Tp(0) && std::abs(__a - __a_nint) < __toler) |
| 760 | return __hyperg_series(__a_nint, __b, __c, __x); |
| 761 | else if (__b < _Tp(0) && std::abs(__b - __b_nint) < __toler) |
| 762 | return __hyperg_series(__a, __b_nint, __c, __x); |
| 763 | else if (__x < -_Tp(0.25L)) |
| 764 | return __hyperg_luke(__a, __b, __c, __x); |
| 765 | else if (__x < _Tp(0.5L)) |
| 766 | return __hyperg_series(__a, __b, __c, __x); |
| 767 | else |
| 768 | if (std::abs(__c) > _Tp(10)) |
| 769 | return __hyperg_series(__a, __b, __c, __x); |
| 770 | else |
| 771 | return __hyperg_reflect(__a, __b, __c, __x); |
| 772 | } |
| 773 | else |
| 774 | return __hyperg_luke(__a, __b, __c, __x); |
| 775 | } |
| 776 | } // namespace __detail |
| 777 | #undef _GLIBCXX_MATH_NS |
| 778 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| 779 | } // namespace tr1 |
| 780 | #endif |
| 781 | |
| 782 | _GLIBCXX_END_NAMESPACE_VERSION |
| 783 | } |
| 784 | |
| 785 | #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC |
| 786 | |