| 1 | // Special functions -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | // |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | // |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** @file tr1/legendre_function.tcc |
| 26 | * This is an internal header file, included by other library headers. |
| 27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
| 28 | */ |
| 29 | |
| 30 | // |
| 31 | // ISO C++ 14882 TR1: 5.2 Special functions |
| 32 | // |
| 33 | |
| 34 | // Written by Edward Smith-Rowland based on: |
| 35 | // (1) Handbook of Mathematical Functions, |
| 36 | // ed. Milton Abramowitz and Irene A. Stegun, |
| 37 | // Dover Publications, |
| 38 | // Section 8, pp. 331-341 |
| 39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| 40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, |
| 41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), |
| 42 | // 2nd ed, pp. 252-254 |
| 43 | |
| 44 | #ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC |
| 45 | #define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1 |
| 46 | |
| 47 | #include <tr1/special_function_util.h> |
| 48 | |
| 49 | namespace std _GLIBCXX_VISIBILITY(default) |
| 50 | { |
| 51 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 52 | |
| 53 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
| 54 | # define _GLIBCXX_MATH_NS ::std |
| 55 | #elif defined(_GLIBCXX_TR1_CMATH) |
| 56 | namespace tr1 |
| 57 | { |
| 58 | # define _GLIBCXX_MATH_NS ::std::tr1 |
| 59 | #else |
| 60 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
| 61 | #endif |
| 62 | // [5.2] Special functions |
| 63 | |
| 64 | // Implementation-space details. |
| 65 | namespace __detail |
| 66 | { |
| 67 | /** |
| 68 | * @brief Return the Legendre polynomial by recursion on degree |
| 69 | * @f$ l @f$. |
| 70 | * |
| 71 | * The Legendre function of @f$ l @f$ and @f$ x @f$, |
| 72 | * @f$ P_l(x) @f$, is defined by: |
| 73 | * @f[ |
| 74 | * P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l} |
| 75 | * @f] |
| 76 | * |
| 77 | * @param l The degree of the Legendre polynomial. @f$l >= 0@f$. |
| 78 | * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$. |
| 79 | */ |
| 80 | template<typename _Tp> |
| 81 | _Tp |
| 82 | __poly_legendre_p(unsigned int __l, _Tp __x) |
| 83 | { |
| 84 | |
| 85 | if (__isnan(__x)) |
| 86 | return std::numeric_limits<_Tp>::quiet_NaN(); |
| 87 | else if (__x == +_Tp(1)) |
| 88 | return +_Tp(1); |
| 89 | else if (__x == -_Tp(1)) |
| 90 | return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1)); |
| 91 | else |
| 92 | { |
| 93 | _Tp __p_lm2 = _Tp(1); |
| 94 | if (__l == 0) |
| 95 | return __p_lm2; |
| 96 | |
| 97 | _Tp __p_lm1 = __x; |
| 98 | if (__l == 1) |
| 99 | return __p_lm1; |
| 100 | |
| 101 | _Tp __p_l = 0; |
| 102 | for (unsigned int __ll = 2; __ll <= __l; ++__ll) |
| 103 | { |
| 104 | // This arrangement is supposed to be better for roundoff |
| 105 | // protection, Arfken, 2nd Ed, Eq 12.17a. |
| 106 | __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2 |
| 107 | - (__x * __p_lm1 - __p_lm2) / _Tp(__ll); |
| 108 | __p_lm2 = __p_lm1; |
| 109 | __p_lm1 = __p_l; |
| 110 | } |
| 111 | |
| 112 | return __p_l; |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | |
| 117 | /** |
| 118 | * @brief Return the associated Legendre function by recursion |
| 119 | * on @f$ l @f$. |
| 120 | * |
| 121 | * The associated Legendre function is derived from the Legendre function |
| 122 | * @f$ P_l(x) @f$ by the Rodrigues formula: |
| 123 | * @f[ |
| 124 | * P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x) |
| 125 | * @f] |
| 126 | * @note @f$ P_l^m(x) = 0 @f$ if @f$ m > l @f$. |
| 127 | * |
| 128 | * @param l The degree of the associated Legendre function. |
| 129 | * @f$ l >= 0 @f$. |
| 130 | * @param m The order of the associated Legendre function. |
| 131 | * @param x The argument of the associated Legendre function. |
| 132 | * @f$ |x| <= 1 @f$. |
| 133 | * @param phase The phase of the associated Legendre function. |
| 134 | * Use -1 for the Condon-Shortley phase convention. |
| 135 | */ |
| 136 | template<typename _Tp> |
| 137 | _Tp |
| 138 | __assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x, |
| 139 | _Tp __phase = _Tp(+1)) |
| 140 | { |
| 141 | |
| 142 | if (__m > __l) |
| 143 | return _Tp(0); |
| 144 | else if (__isnan(__x)) |
| 145 | return std::numeric_limits<_Tp>::quiet_NaN(); |
| 146 | else if (__m == 0) |
| 147 | return __poly_legendre_p(__l, __x); |
| 148 | else |
| 149 | { |
| 150 | _Tp __p_mm = _Tp(1); |
| 151 | if (__m > 0) |
| 152 | { |
| 153 | // Two square roots seem more accurate more of the time |
| 154 | // than just one. |
| 155 | _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x); |
| 156 | _Tp __fact = _Tp(1); |
| 157 | for (unsigned int __i = 1; __i <= __m; ++__i) |
| 158 | { |
| 159 | __p_mm *= __phase * __fact * __root; |
| 160 | __fact += _Tp(2); |
| 161 | } |
| 162 | } |
| 163 | if (__l == __m) |
| 164 | return __p_mm; |
| 165 | |
| 166 | _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm; |
| 167 | if (__l == __m + 1) |
| 168 | return __p_mp1m; |
| 169 | |
| 170 | _Tp __p_lm2m = __p_mm; |
| 171 | _Tp __P_lm1m = __p_mp1m; |
| 172 | _Tp __p_lm = _Tp(0); |
| 173 | for (unsigned int __j = __m + 2; __j <= __l; ++__j) |
| 174 | { |
| 175 | __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m |
| 176 | - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m); |
| 177 | __p_lm2m = __P_lm1m; |
| 178 | __P_lm1m = __p_lm; |
| 179 | } |
| 180 | |
| 181 | return __p_lm; |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | |
| 186 | /** |
| 187 | * @brief Return the spherical associated Legendre function. |
| 188 | * |
| 189 | * The spherical associated Legendre function of @f$ l @f$, @f$ m @f$, |
| 190 | * and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where |
| 191 | * @f[ |
| 192 | * Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi} |
| 193 | * \frac{(l-m)!}{(l+m)!}] |
| 194 | * P_l^m(\cos\theta) \exp^{im\phi} |
| 195 | * @f] |
| 196 | * is the spherical harmonic function and @f$ P_l^m(x) @f$ is the |
| 197 | * associated Legendre function. |
| 198 | * |
| 199 | * This function differs from the associated Legendre function by |
| 200 | * argument (@f$x = \cos(\theta)@f$) and by a normalization factor |
| 201 | * but this factor is rather large for large @f$ l @f$ and @f$ m @f$ |
| 202 | * and so this function is stable for larger differences of @f$ l @f$ |
| 203 | * and @f$ m @f$. |
| 204 | * @note Unlike the case for __assoc_legendre_p the Condon-Shortley |
| 205 | * phase factor @f$ (-1)^m @f$ is present here. |
| 206 | * @note @f$ Y_l^m(\theta) = 0 @f$ if @f$ m > l @f$. |
| 207 | * |
| 208 | * @param l The degree of the spherical associated Legendre function. |
| 209 | * @f$ l >= 0 @f$. |
| 210 | * @param m The order of the spherical associated Legendre function. |
| 211 | * @param theta The radian angle argument of the spherical associated |
| 212 | * Legendre function. |
| 213 | */ |
| 214 | template <typename _Tp> |
| 215 | _Tp |
| 216 | __sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta) |
| 217 | { |
| 218 | if (__isnan(__theta)) |
| 219 | return std::numeric_limits<_Tp>::quiet_NaN(); |
| 220 | |
| 221 | const _Tp __x = std::cos(__theta); |
| 222 | |
| 223 | if (__m > __l) |
| 224 | return _Tp(0); |
| 225 | else if (__m == 0) |
| 226 | { |
| 227 | _Tp __P = __poly_legendre_p(__l, __x); |
| 228 | _Tp __fact = std::sqrt(_Tp(2 * __l + 1) |
| 229 | / (_Tp(4) * __numeric_constants<_Tp>::__pi())); |
| 230 | __P *= __fact; |
| 231 | return __P; |
| 232 | } |
| 233 | else if (__x == _Tp(1) || __x == -_Tp(1)) |
| 234 | { |
| 235 | // m > 0 here |
| 236 | return _Tp(0); |
| 237 | } |
| 238 | else |
| 239 | { |
| 240 | // m > 0 and |x| < 1 here |
| 241 | |
| 242 | // Starting value for recursion. |
| 243 | // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) ) |
| 244 | // (-1)^m (1-x^2)^(m/2) / pi^(1/4) |
| 245 | const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1)); |
| 246 | const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3)); |
| 247 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 248 | const _Tp __lncirc = _GLIBCXX_MATH_NS::log1p(-__x * __x); |
| 249 | #else |
| 250 | const _Tp __lncirc = std::log(_Tp(1) - __x * __x); |
| 251 | #endif |
| 252 | // Gamma(m+1/2) / Gamma(m) |
| 253 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 254 | const _Tp __lnpoch = _GLIBCXX_MATH_NS::lgamma(_Tp(__m + _Tp(0.5L))) |
| 255 | - _GLIBCXX_MATH_NS::lgamma(_Tp(__m)); |
| 256 | #else |
| 257 | const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L))) |
| 258 | - __log_gamma(_Tp(__m)); |
| 259 | #endif |
| 260 | const _Tp __lnpre_val = |
| 261 | -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi() |
| 262 | + _Tp(0.5L) * (__lnpoch + __m * __lncirc); |
| 263 | const _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m) |
| 264 | / (_Tp(4) * __numeric_constants<_Tp>::__pi())); |
| 265 | _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val); |
| 266 | _Tp __y_mp1m = __y_mp1m_factor * __y_mm; |
| 267 | |
| 268 | if (__l == __m) |
| 269 | return __y_mm; |
| 270 | else if (__l == __m + 1) |
| 271 | return __y_mp1m; |
| 272 | else |
| 273 | { |
| 274 | _Tp __y_lm = _Tp(0); |
| 275 | |
| 276 | // Compute Y_l^m, l > m+1, upward recursion on l. |
| 277 | for (unsigned int __ll = __m + 2; __ll <= __l; ++__ll) |
| 278 | { |
| 279 | const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m); |
| 280 | const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1); |
| 281 | const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1) |
| 282 | * _Tp(2 * __ll - 1)); |
| 283 | const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1) |
| 284 | / _Tp(2 * __ll - 3)); |
| 285 | __y_lm = (__x * __y_mp1m * __fact1 |
| 286 | - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m); |
| 287 | __y_mm = __y_mp1m; |
| 288 | __y_mp1m = __y_lm; |
| 289 | } |
| 290 | |
| 291 | return __y_lm; |
| 292 | } |
| 293 | } |
| 294 | } |
| 295 | } // namespace __detail |
| 296 | #undef _GLIBCXX_MATH_NS |
| 297 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| 298 | } // namespace tr1 |
| 299 | #endif |
| 300 | |
| 301 | _GLIBCXX_END_NAMESPACE_VERSION |
| 302 | } |
| 303 | |
| 304 | #endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC |
| 305 | |