| 1 | // Special functions -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | // |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | // |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** @file tr1/modified_bessel_func.tcc |
| 26 | * This is an internal header file, included by other library headers. |
| 27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
| 28 | */ |
| 29 | |
| 30 | // |
| 31 | // ISO C++ 14882 TR1: 5.2 Special functions |
| 32 | // |
| 33 | |
| 34 | // Written by Edward Smith-Rowland. |
| 35 | // |
| 36 | // References: |
| 37 | // (1) Handbook of Mathematical Functions, |
| 38 | // Ed. Milton Abramowitz and Irene A. Stegun, |
| 39 | // Dover Publications, |
| 40 | // Section 9, pp. 355-434, Section 10 pp. 435-478 |
| 41 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| 42 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, |
| 43 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), |
| 44 | // 2nd ed, pp. 246-249. |
| 45 | |
| 46 | #ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC |
| 47 | #define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1 |
| 48 | |
| 49 | #include <tr1/special_function_util.h> |
| 50 | |
| 51 | namespace std _GLIBCXX_VISIBILITY(default) |
| 52 | { |
| 53 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 54 | |
| 55 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
| 56 | #elif defined(_GLIBCXX_TR1_CMATH) |
| 57 | namespace tr1 |
| 58 | { |
| 59 | #else |
| 60 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
| 61 | #endif |
| 62 | // [5.2] Special functions |
| 63 | |
| 64 | // Implementation-space details. |
| 65 | namespace __detail |
| 66 | { |
| 67 | /** |
| 68 | * @brief Compute the modified Bessel functions @f$ I_\nu(x) @f$ and |
| 69 | * @f$ K_\nu(x) @f$ and their first derivatives |
| 70 | * @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively. |
| 71 | * These four functions are computed together for numerical |
| 72 | * stability. |
| 73 | * |
| 74 | * @param __nu The order of the Bessel functions. |
| 75 | * @param __x The argument of the Bessel functions. |
| 76 | * @param __Inu The output regular modified Bessel function. |
| 77 | * @param __Knu The output irregular modified Bessel function. |
| 78 | * @param __Ipnu The output derivative of the regular |
| 79 | * modified Bessel function. |
| 80 | * @param __Kpnu The output derivative of the irregular |
| 81 | * modified Bessel function. |
| 82 | */ |
| 83 | template <typename _Tp> |
| 84 | void |
| 85 | __bessel_ik(_Tp __nu, _Tp __x, |
| 86 | _Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu) |
| 87 | { |
| 88 | if (__x == _Tp(0)) |
| 89 | { |
| 90 | if (__nu == _Tp(0)) |
| 91 | { |
| 92 | __Inu = _Tp(1); |
| 93 | __Ipnu = _Tp(0); |
| 94 | } |
| 95 | else if (__nu == _Tp(1)) |
| 96 | { |
| 97 | __Inu = _Tp(0); |
| 98 | __Ipnu = _Tp(0.5L); |
| 99 | } |
| 100 | else |
| 101 | { |
| 102 | __Inu = _Tp(0); |
| 103 | __Ipnu = _Tp(0); |
| 104 | } |
| 105 | __Knu = std::numeric_limits<_Tp>::infinity(); |
| 106 | __Kpnu = -std::numeric_limits<_Tp>::infinity(); |
| 107 | return; |
| 108 | } |
| 109 | |
| 110 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 111 | const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon(); |
| 112 | const int __max_iter = 15000; |
| 113 | const _Tp __x_min = _Tp(2); |
| 114 | |
| 115 | const int __nl = static_cast<int>(__nu + _Tp(0.5L)); |
| 116 | |
| 117 | const _Tp __mu = __nu - __nl; |
| 118 | const _Tp __mu2 = __mu * __mu; |
| 119 | const _Tp __xi = _Tp(1) / __x; |
| 120 | const _Tp __xi2 = _Tp(2) * __xi; |
| 121 | _Tp __h = __nu * __xi; |
| 122 | if ( __h < __fp_min ) |
| 123 | __h = __fp_min; |
| 124 | _Tp __b = __xi2 * __nu; |
| 125 | _Tp __d = _Tp(0); |
| 126 | _Tp __c = __h; |
| 127 | int __i; |
| 128 | for ( __i = 1; __i <= __max_iter; ++__i ) |
| 129 | { |
| 130 | __b += __xi2; |
| 131 | __d = _Tp(1) / (__b + __d); |
| 132 | __c = __b + _Tp(1) / __c; |
| 133 | const _Tp __del = __c * __d; |
| 134 | __h *= __del; |
| 135 | if (std::abs(__del - _Tp(1)) < __eps) |
| 136 | break; |
| 137 | } |
| 138 | if (__i > __max_iter) |
| 139 | std::__throw_runtime_error(__N("Argument x too large " |
| 140 | "in __bessel_ik; " |
| 141 | "try asymptotic expansion." )); |
| 142 | _Tp __Inul = __fp_min; |
| 143 | _Tp __Ipnul = __h * __Inul; |
| 144 | _Tp __Inul1 = __Inul; |
| 145 | _Tp __Ipnu1 = __Ipnul; |
| 146 | _Tp __fact = __nu * __xi; |
| 147 | for (int __l = __nl; __l >= 1; --__l) |
| 148 | { |
| 149 | const _Tp __Inutemp = __fact * __Inul + __Ipnul; |
| 150 | __fact -= __xi; |
| 151 | __Ipnul = __fact * __Inutemp + __Inul; |
| 152 | __Inul = __Inutemp; |
| 153 | } |
| 154 | _Tp __f = __Ipnul / __Inul; |
| 155 | _Tp __Kmu, __Knu1; |
| 156 | if (__x < __x_min) |
| 157 | { |
| 158 | const _Tp __x2 = __x / _Tp(2); |
| 159 | const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu; |
| 160 | const _Tp __fact = (std::abs(__pimu) < __eps |
| 161 | ? _Tp(1) : __pimu / std::sin(__pimu)); |
| 162 | _Tp __d = -std::log(__x2); |
| 163 | _Tp __e = __mu * __d; |
| 164 | const _Tp __fact2 = (std::abs(__e) < __eps |
| 165 | ? _Tp(1) : std::sinh(__e) / __e); |
| 166 | _Tp __gam1, __gam2, __gampl, __gammi; |
| 167 | __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi); |
| 168 | _Tp __ff = __fact |
| 169 | * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d); |
| 170 | _Tp __sum = __ff; |
| 171 | __e = std::exp(__e); |
| 172 | _Tp __p = __e / (_Tp(2) * __gampl); |
| 173 | _Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi); |
| 174 | _Tp __c = _Tp(1); |
| 175 | __d = __x2 * __x2; |
| 176 | _Tp __sum1 = __p; |
| 177 | int __i; |
| 178 | for (__i = 1; __i <= __max_iter; ++__i) |
| 179 | { |
| 180 | __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2); |
| 181 | __c *= __d / __i; |
| 182 | __p /= __i - __mu; |
| 183 | __q /= __i + __mu; |
| 184 | const _Tp __del = __c * __ff; |
| 185 | __sum += __del; |
| 186 | const _Tp __del1 = __c * (__p - __i * __ff); |
| 187 | __sum1 += __del1; |
| 188 | if (std::abs(__del) < __eps * std::abs(__sum)) |
| 189 | break; |
| 190 | } |
| 191 | if (__i > __max_iter) |
| 192 | std::__throw_runtime_error(__N("Bessel k series failed to converge " |
| 193 | "in __bessel_ik." )); |
| 194 | __Kmu = __sum; |
| 195 | __Knu1 = __sum1 * __xi2; |
| 196 | } |
| 197 | else |
| 198 | { |
| 199 | _Tp __b = _Tp(2) * (_Tp(1) + __x); |
| 200 | _Tp __d = _Tp(1) / __b; |
| 201 | _Tp __delh = __d; |
| 202 | _Tp __h = __delh; |
| 203 | _Tp __q1 = _Tp(0); |
| 204 | _Tp __q2 = _Tp(1); |
| 205 | _Tp __a1 = _Tp(0.25L) - __mu2; |
| 206 | _Tp __q = __c = __a1; |
| 207 | _Tp __a = -__a1; |
| 208 | _Tp __s = _Tp(1) + __q * __delh; |
| 209 | int __i; |
| 210 | for (__i = 2; __i <= __max_iter; ++__i) |
| 211 | { |
| 212 | __a -= 2 * (__i - 1); |
| 213 | __c = -__a * __c / __i; |
| 214 | const _Tp __qnew = (__q1 - __b * __q2) / __a; |
| 215 | __q1 = __q2; |
| 216 | __q2 = __qnew; |
| 217 | __q += __c * __qnew; |
| 218 | __b += _Tp(2); |
| 219 | __d = _Tp(1) / (__b + __a * __d); |
| 220 | __delh = (__b * __d - _Tp(1)) * __delh; |
| 221 | __h += __delh; |
| 222 | const _Tp __dels = __q * __delh; |
| 223 | __s += __dels; |
| 224 | if ( std::abs(__dels / __s) < __eps ) |
| 225 | break; |
| 226 | } |
| 227 | if (__i > __max_iter) |
| 228 | std::__throw_runtime_error(__N("Steed's method failed " |
| 229 | "in __bessel_ik." )); |
| 230 | __h = __a1 * __h; |
| 231 | __Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x)) |
| 232 | * std::exp(-__x) / __s; |
| 233 | __Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi; |
| 234 | } |
| 235 | |
| 236 | _Tp __Kpmu = __mu * __xi * __Kmu - __Knu1; |
| 237 | _Tp __Inumu = __xi / (__f * __Kmu - __Kpmu); |
| 238 | __Inu = __Inumu * __Inul1 / __Inul; |
| 239 | __Ipnu = __Inumu * __Ipnu1 / __Inul; |
| 240 | for ( __i = 1; __i <= __nl; ++__i ) |
| 241 | { |
| 242 | const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu; |
| 243 | __Kmu = __Knu1; |
| 244 | __Knu1 = __Knutemp; |
| 245 | } |
| 246 | __Knu = __Kmu; |
| 247 | __Kpnu = __nu * __xi * __Kmu - __Knu1; |
| 248 | |
| 249 | return; |
| 250 | } |
| 251 | |
| 252 | |
| 253 | /** |
| 254 | * @brief Return the regular modified Bessel function of order |
| 255 | * \f$ \nu \f$: \f$ I_{\nu}(x) \f$. |
| 256 | * |
| 257 | * The regular modified cylindrical Bessel function is: |
| 258 | * @f[ |
| 259 | * I_{\nu}(x) = \sum_{k=0}^{\infty} |
| 260 | * \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} |
| 261 | * @f] |
| 262 | * |
| 263 | * @param __nu The order of the regular modified Bessel function. |
| 264 | * @param __x The argument of the regular modified Bessel function. |
| 265 | * @return The output regular modified Bessel function. |
| 266 | */ |
| 267 | template<typename _Tp> |
| 268 | _Tp |
| 269 | __cyl_bessel_i(_Tp __nu, _Tp __x) |
| 270 | { |
| 271 | if (__nu < _Tp(0) || __x < _Tp(0)) |
| 272 | std::__throw_domain_error(__N("Bad argument " |
| 273 | "in __cyl_bessel_i." )); |
| 274 | else if (__isnan(__nu) || __isnan(__x)) |
| 275 | return std::numeric_limits<_Tp>::quiet_NaN(); |
| 276 | else if (__x * __x < _Tp(10) * (__nu + _Tp(1))) |
| 277 | return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200); |
| 278 | else |
| 279 | { |
| 280 | _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu; |
| 281 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
| 282 | return __I_nu; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | |
| 287 | /** |
| 288 | * @brief Return the irregular modified Bessel function |
| 289 | * \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$. |
| 290 | * |
| 291 | * The irregular modified Bessel function is defined by: |
| 292 | * @f[ |
| 293 | * K_{\nu}(x) = \frac{\pi}{2} |
| 294 | * \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi} |
| 295 | * @f] |
| 296 | * where for integral \f$ \nu = n \f$ a limit is taken: |
| 297 | * \f$ lim_{\nu \to n} \f$. |
| 298 | * |
| 299 | * @param __nu The order of the irregular modified Bessel function. |
| 300 | * @param __x The argument of the irregular modified Bessel function. |
| 301 | * @return The output irregular modified Bessel function. |
| 302 | */ |
| 303 | template<typename _Tp> |
| 304 | _Tp |
| 305 | __cyl_bessel_k(_Tp __nu, _Tp __x) |
| 306 | { |
| 307 | if (__nu < _Tp(0) || __x < _Tp(0)) |
| 308 | std::__throw_domain_error(__N("Bad argument " |
| 309 | "in __cyl_bessel_k." )); |
| 310 | else if (__isnan(__nu) || __isnan(__x)) |
| 311 | return std::numeric_limits<_Tp>::quiet_NaN(); |
| 312 | else |
| 313 | { |
| 314 | _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu; |
| 315 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
| 316 | return __K_nu; |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | |
| 321 | /** |
| 322 | * @brief Compute the spherical modified Bessel functions |
| 323 | * @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first |
| 324 | * derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$ |
| 325 | * respectively. |
| 326 | * |
| 327 | * @param __n The order of the modified spherical Bessel function. |
| 328 | * @param __x The argument of the modified spherical Bessel function. |
| 329 | * @param __i_n The output regular modified spherical Bessel function. |
| 330 | * @param __k_n The output irregular modified spherical |
| 331 | * Bessel function. |
| 332 | * @param __ip_n The output derivative of the regular modified |
| 333 | * spherical Bessel function. |
| 334 | * @param __kp_n The output derivative of the irregular modified |
| 335 | * spherical Bessel function. |
| 336 | */ |
| 337 | template <typename _Tp> |
| 338 | void |
| 339 | __sph_bessel_ik(unsigned int __n, _Tp __x, |
| 340 | _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n) |
| 341 | { |
| 342 | const _Tp __nu = _Tp(__n) + _Tp(0.5L); |
| 343 | |
| 344 | _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu; |
| 345 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
| 346 | |
| 347 | const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2() |
| 348 | / std::sqrt(__x); |
| 349 | |
| 350 | __i_n = __factor * __I_nu; |
| 351 | __k_n = __factor * __K_nu; |
| 352 | __ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x); |
| 353 | __kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x); |
| 354 | |
| 355 | return; |
| 356 | } |
| 357 | |
| 358 | |
| 359 | /** |
| 360 | * @brief Compute the Airy functions |
| 361 | * @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first |
| 362 | * derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$ |
| 363 | * respectively. |
| 364 | * |
| 365 | * @param __x The argument of the Airy functions. |
| 366 | * @param __Ai The output Airy function of the first kind. |
| 367 | * @param __Bi The output Airy function of the second kind. |
| 368 | * @param __Aip The output derivative of the Airy function |
| 369 | * of the first kind. |
| 370 | * @param __Bip The output derivative of the Airy function |
| 371 | * of the second kind. |
| 372 | */ |
| 373 | template <typename _Tp> |
| 374 | void |
| 375 | __airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip) |
| 376 | { |
| 377 | const _Tp __absx = std::abs(__x); |
| 378 | const _Tp __rootx = std::sqrt(__absx); |
| 379 | const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3); |
| 380 | const _Tp _S_inf = std::numeric_limits<_Tp>::infinity(); |
| 381 | |
| 382 | if (__isnan(__x)) |
| 383 | __Bip = __Aip = __Bi = __Ai = std::numeric_limits<_Tp>::quiet_NaN(); |
| 384 | else if (__z == _S_inf) |
| 385 | { |
| 386 | __Aip = __Ai = _Tp(0); |
| 387 | __Bip = __Bi = _S_inf; |
| 388 | } |
| 389 | else if (__z == -_S_inf) |
| 390 | __Bip = __Aip = __Bi = __Ai = _Tp(0); |
| 391 | else if (__x > _Tp(0)) |
| 392 | { |
| 393 | _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu; |
| 394 | |
| 395 | __bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
| 396 | __Ai = __rootx * __K_nu |
| 397 | / (__numeric_constants<_Tp>::__sqrt3() |
| 398 | * __numeric_constants<_Tp>::__pi()); |
| 399 | __Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi() |
| 400 | + _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3()); |
| 401 | |
| 402 | __bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
| 403 | __Aip = -__x * __K_nu |
| 404 | / (__numeric_constants<_Tp>::__sqrt3() |
| 405 | * __numeric_constants<_Tp>::__pi()); |
| 406 | __Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi() |
| 407 | + _Tp(2) * __I_nu |
| 408 | / __numeric_constants<_Tp>::__sqrt3()); |
| 409 | } |
| 410 | else if (__x < _Tp(0)) |
| 411 | { |
| 412 | _Tp __J_nu, __Jp_nu, __N_nu, __Np_nu; |
| 413 | |
| 414 | __bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu); |
| 415 | __Ai = __rootx * (__J_nu |
| 416 | - __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2); |
| 417 | __Bi = -__rootx * (__N_nu |
| 418 | + __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2); |
| 419 | |
| 420 | __bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu); |
| 421 | __Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3() |
| 422 | + __J_nu) / _Tp(2); |
| 423 | __Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3() |
| 424 | - __N_nu) / _Tp(2); |
| 425 | } |
| 426 | else |
| 427 | { |
| 428 | // Reference: |
| 429 | // Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions. |
| 430 | // The number is Ai(0) = 3^{-2/3}/\Gamma(2/3). |
| 431 | __Ai = _Tp(0.35502805388781723926L); |
| 432 | __Bi = __Ai * __numeric_constants<_Tp>::__sqrt3(); |
| 433 | |
| 434 | // Reference: |
| 435 | // Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions. |
| 436 | // The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3). |
| 437 | __Aip = -_Tp(0.25881940379280679840L); |
| 438 | __Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3(); |
| 439 | } |
| 440 | |
| 441 | return; |
| 442 | } |
| 443 | } // namespace __detail |
| 444 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| 445 | } // namespace tr1 |
| 446 | #endif |
| 447 | |
| 448 | _GLIBCXX_END_NAMESPACE_VERSION |
| 449 | } |
| 450 | |
| 451 | #endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC |
| 452 | |