| 1 | // Special functions -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | // |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | // |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** @file tr1/poly_laguerre.tcc |
| 26 | * This is an internal header file, included by other library headers. |
| 27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
| 28 | */ |
| 29 | |
| 30 | // |
| 31 | // ISO C++ 14882 TR1: 5.2 Special functions |
| 32 | // |
| 33 | |
| 34 | // Written by Edward Smith-Rowland based on: |
| 35 | // (1) Handbook of Mathematical Functions, |
| 36 | // Ed. Milton Abramowitz and Irene A. Stegun, |
| 37 | // Dover Publications, |
| 38 | // Section 13, pp. 509-510, Section 22 pp. 773-802 |
| 39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| 40 | |
| 41 | #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC |
| 42 | #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1 |
| 43 | |
| 44 | namespace std _GLIBCXX_VISIBILITY(default) |
| 45 | { |
| 46 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 47 | |
| 48 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
| 49 | # define _GLIBCXX_MATH_NS ::std |
| 50 | #elif defined(_GLIBCXX_TR1_CMATH) |
| 51 | namespace tr1 |
| 52 | { |
| 53 | # define _GLIBCXX_MATH_NS ::std::tr1 |
| 54 | #else |
| 55 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
| 56 | #endif |
| 57 | // [5.2] Special functions |
| 58 | |
| 59 | // Implementation-space details. |
| 60 | namespace __detail |
| 61 | { |
| 62 | /** |
| 63 | * @brief This routine returns the associated Laguerre polynomial |
| 64 | * of order @f$ n @f$, degree @f$ \alpha @f$ for large n. |
| 65 | * Abramowitz & Stegun, 13.5.21 |
| 66 | * |
| 67 | * @param __n The order of the Laguerre function. |
| 68 | * @param __alpha The degree of the Laguerre function. |
| 69 | * @param __x The argument of the Laguerre function. |
| 70 | * @return The value of the Laguerre function of order n, |
| 71 | * degree @f$ \alpha @f$, and argument x. |
| 72 | * |
| 73 | * This is from the GNU Scientific Library. |
| 74 | */ |
| 75 | template<typename _Tpa, typename _Tp> |
| 76 | _Tp |
| 77 | __poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x) |
| 78 | { |
| 79 | const _Tp __a = -_Tp(__n); |
| 80 | const _Tp __b = _Tp(__alpha1) + _Tp(1); |
| 81 | const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a; |
| 82 | const _Tp __cos2th = __x / __eta; |
| 83 | const _Tp __sin2th = _Tp(1) - __cos2th; |
| 84 | const _Tp __th = std::acos(std::sqrt(__cos2th)); |
| 85 | const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2() |
| 86 | * __numeric_constants<_Tp>::__pi_2() |
| 87 | * __eta * __eta * __cos2th * __sin2th; |
| 88 | |
| 89 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 90 | const _Tp __lg_b = _GLIBCXX_MATH_NS::lgamma(_Tp(__n) + __b); |
| 91 | const _Tp __lnfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1)); |
| 92 | #else |
| 93 | const _Tp __lg_b = __log_gamma(_Tp(__n) + __b); |
| 94 | const _Tp __lnfact = __log_gamma(_Tp(__n + 1)); |
| 95 | #endif |
| 96 | |
| 97 | _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b) |
| 98 | * std::log(_Tp(0.25L) * __x * __eta); |
| 99 | _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h); |
| 100 | _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x |
| 101 | + __pre_term1 - __pre_term2; |
| 102 | _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi()); |
| 103 | _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta |
| 104 | * (_Tp(2) * __th |
| 105 | - std::sin(_Tp(2) * __th)) |
| 106 | + __numeric_constants<_Tp>::__pi_4()); |
| 107 | _Tp __ser = __ser_term1 + __ser_term2; |
| 108 | |
| 109 | return std::exp(__lnpre) * __ser; |
| 110 | } |
| 111 | |
| 112 | |
| 113 | /** |
| 114 | * @brief Evaluate the polynomial based on the confluent hypergeometric |
| 115 | * function in a safe way, with no restriction on the arguments. |
| 116 | * |
| 117 | * The associated Laguerre function is defined by |
| 118 | * @f[ |
| 119 | * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} |
| 120 | * _1F_1(-n; \alpha + 1; x) |
| 121 | * @f] |
| 122 | * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and |
| 123 | * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. |
| 124 | * |
| 125 | * This function assumes x != 0. |
| 126 | * |
| 127 | * This is from the GNU Scientific Library. |
| 128 | */ |
| 129 | template<typename _Tpa, typename _Tp> |
| 130 | _Tp |
| 131 | __poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x) |
| 132 | { |
| 133 | const _Tp __b = _Tp(__alpha1) + _Tp(1); |
| 134 | const _Tp __mx = -__x; |
| 135 | const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1) |
| 136 | : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1))); |
| 137 | // Get |x|^n/n! |
| 138 | _Tp __tc = _Tp(1); |
| 139 | const _Tp __ax = std::abs(__x); |
| 140 | for (unsigned int __k = 1; __k <= __n; ++__k) |
| 141 | __tc *= (__ax / __k); |
| 142 | |
| 143 | _Tp __term = __tc * __tc_sgn; |
| 144 | _Tp __sum = __term; |
| 145 | for (int __k = int(__n) - 1; __k >= 0; --__k) |
| 146 | { |
| 147 | __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k)) |
| 148 | * _Tp(__k + 1) / __mx; |
| 149 | __sum += __term; |
| 150 | } |
| 151 | |
| 152 | return __sum; |
| 153 | } |
| 154 | |
| 155 | |
| 156 | /** |
| 157 | * @brief This routine returns the associated Laguerre polynomial |
| 158 | * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$ |
| 159 | * by recursion. |
| 160 | * |
| 161 | * The associated Laguerre function is defined by |
| 162 | * @f[ |
| 163 | * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} |
| 164 | * _1F_1(-n; \alpha + 1; x) |
| 165 | * @f] |
| 166 | * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and |
| 167 | * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. |
| 168 | * |
| 169 | * The associated Laguerre polynomial is defined for integral |
| 170 | * @f$ \alpha = m @f$ by: |
| 171 | * @f[ |
| 172 | * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) |
| 173 | * @f] |
| 174 | * where the Laguerre polynomial is defined by: |
| 175 | * @f[ |
| 176 | * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) |
| 177 | * @f] |
| 178 | * |
| 179 | * @param __n The order of the Laguerre function. |
| 180 | * @param __alpha The degree of the Laguerre function. |
| 181 | * @param __x The argument of the Laguerre function. |
| 182 | * @return The value of the Laguerre function of order n, |
| 183 | * degree @f$ \alpha @f$, and argument x. |
| 184 | */ |
| 185 | template<typename _Tpa, typename _Tp> |
| 186 | _Tp |
| 187 | __poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x) |
| 188 | { |
| 189 | // Compute l_0. |
| 190 | _Tp __l_0 = _Tp(1); |
| 191 | if (__n == 0) |
| 192 | return __l_0; |
| 193 | |
| 194 | // Compute l_1^alpha. |
| 195 | _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1); |
| 196 | if (__n == 1) |
| 197 | return __l_1; |
| 198 | |
| 199 | // Compute l_n^alpha by recursion on n. |
| 200 | _Tp __l_n2 = __l_0; |
| 201 | _Tp __l_n1 = __l_1; |
| 202 | _Tp __l_n = _Tp(0); |
| 203 | for (unsigned int __nn = 2; __nn <= __n; ++__nn) |
| 204 | { |
| 205 | __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x) |
| 206 | * __l_n1 / _Tp(__nn) |
| 207 | - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn); |
| 208 | __l_n2 = __l_n1; |
| 209 | __l_n1 = __l_n; |
| 210 | } |
| 211 | |
| 212 | return __l_n; |
| 213 | } |
| 214 | |
| 215 | |
| 216 | /** |
| 217 | * @brief This routine returns the associated Laguerre polynomial |
| 218 | * of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$. |
| 219 | * |
| 220 | * The associated Laguerre function is defined by |
| 221 | * @f[ |
| 222 | * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} |
| 223 | * _1F_1(-n; \alpha + 1; x) |
| 224 | * @f] |
| 225 | * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and |
| 226 | * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. |
| 227 | * |
| 228 | * The associated Laguerre polynomial is defined for integral |
| 229 | * @f$ \alpha = m @f$ by: |
| 230 | * @f[ |
| 231 | * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) |
| 232 | * @f] |
| 233 | * where the Laguerre polynomial is defined by: |
| 234 | * @f[ |
| 235 | * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) |
| 236 | * @f] |
| 237 | * |
| 238 | * @param __n The order of the Laguerre function. |
| 239 | * @param __alpha The degree of the Laguerre function. |
| 240 | * @param __x The argument of the Laguerre function. |
| 241 | * @return The value of the Laguerre function of order n, |
| 242 | * degree @f$ \alpha @f$, and argument x. |
| 243 | */ |
| 244 | template<typename _Tpa, typename _Tp> |
| 245 | _Tp |
| 246 | __poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x) |
| 247 | { |
| 248 | if (__x < _Tp(0)) |
| 249 | std::__throw_domain_error(__N("Negative argument " |
| 250 | "in __poly_laguerre." )); |
| 251 | // Return NaN on NaN input. |
| 252 | else if (__isnan(__x)) |
| 253 | return std::numeric_limits<_Tp>::quiet_NaN(); |
| 254 | else if (__n == 0) |
| 255 | return _Tp(1); |
| 256 | else if (__n == 1) |
| 257 | return _Tp(1) + _Tp(__alpha1) - __x; |
| 258 | else if (__x == _Tp(0)) |
| 259 | { |
| 260 | _Tp __prod = _Tp(__alpha1) + _Tp(1); |
| 261 | for (unsigned int __k = 2; __k <= __n; ++__k) |
| 262 | __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k); |
| 263 | return __prod; |
| 264 | } |
| 265 | else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1) |
| 266 | && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n)) |
| 267 | return __poly_laguerre_large_n(__n, __alpha1, __x); |
| 268 | else if (_Tp(__alpha1) >= _Tp(0) |
| 269 | || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1))) |
| 270 | return __poly_laguerre_recursion(__n, __alpha1, __x); |
| 271 | else |
| 272 | return __poly_laguerre_hyperg(__n, __alpha1, __x); |
| 273 | } |
| 274 | |
| 275 | |
| 276 | /** |
| 277 | * @brief This routine returns the associated Laguerre polynomial |
| 278 | * of order n, degree m: @f$ L_n^m(x) @f$. |
| 279 | * |
| 280 | * The associated Laguerre polynomial is defined for integral |
| 281 | * @f$ \alpha = m @f$ by: |
| 282 | * @f[ |
| 283 | * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) |
| 284 | * @f] |
| 285 | * where the Laguerre polynomial is defined by: |
| 286 | * @f[ |
| 287 | * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) |
| 288 | * @f] |
| 289 | * |
| 290 | * @param __n The order of the Laguerre polynomial. |
| 291 | * @param __m The degree of the Laguerre polynomial. |
| 292 | * @param __x The argument of the Laguerre polynomial. |
| 293 | * @return The value of the associated Laguerre polynomial of order n, |
| 294 | * degree m, and argument x. |
| 295 | */ |
| 296 | template<typename _Tp> |
| 297 | inline _Tp |
| 298 | __assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x) |
| 299 | { return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); } |
| 300 | |
| 301 | |
| 302 | /** |
| 303 | * @brief This routine returns the Laguerre polynomial |
| 304 | * of order n: @f$ L_n(x) @f$. |
| 305 | * |
| 306 | * The Laguerre polynomial is defined by: |
| 307 | * @f[ |
| 308 | * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) |
| 309 | * @f] |
| 310 | * |
| 311 | * @param __n The order of the Laguerre polynomial. |
| 312 | * @param __x The argument of the Laguerre polynomial. |
| 313 | * @return The value of the Laguerre polynomial of order n |
| 314 | * and argument x. |
| 315 | */ |
| 316 | template<typename _Tp> |
| 317 | inline _Tp |
| 318 | __laguerre(unsigned int __n, _Tp __x) |
| 319 | { return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); } |
| 320 | } // namespace __detail |
| 321 | #undef _GLIBCXX_MATH_NS |
| 322 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| 323 | } // namespace tr1 |
| 324 | #endif |
| 325 | |
| 326 | _GLIBCXX_END_NAMESPACE_VERSION |
| 327 | } |
| 328 | |
| 329 | #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC |
| 330 | |