| 1 | // Special functions -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | // |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | // |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** @file tr1/riemann_zeta.tcc |
| 26 | * This is an internal header file, included by other library headers. |
| 27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
| 28 | */ |
| 29 | |
| 30 | // |
| 31 | // ISO C++ 14882 TR1: 5.2 Special functions |
| 32 | // |
| 33 | |
| 34 | // Written by Edward Smith-Rowland based on: |
| 35 | // (1) Handbook of Mathematical Functions, |
| 36 | // Ed. by Milton Abramowitz and Irene A. Stegun, |
| 37 | // Dover Publications, New-York, Section 5, pp. 807-808. |
| 38 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| 39 | // (3) Gamma, Exploring Euler's Constant, Julian Havil, |
| 40 | // Princeton, 2003. |
| 41 | |
| 42 | #ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC |
| 43 | #define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1 |
| 44 | |
| 45 | #include <tr1/special_function_util.h> |
| 46 | |
| 47 | namespace std _GLIBCXX_VISIBILITY(default) |
| 48 | { |
| 49 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 50 | |
| 51 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
| 52 | # define _GLIBCXX_MATH_NS ::std |
| 53 | #elif defined(_GLIBCXX_TR1_CMATH) |
| 54 | namespace tr1 |
| 55 | { |
| 56 | # define _GLIBCXX_MATH_NS ::std::tr1 |
| 57 | #else |
| 58 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
| 59 | #endif |
| 60 | // [5.2] Special functions |
| 61 | |
| 62 | // Implementation-space details. |
| 63 | namespace __detail |
| 64 | { |
| 65 | /** |
| 66 | * @brief Compute the Riemann zeta function @f$ \zeta(s) @f$ |
| 67 | * by summation for s > 1. |
| 68 | * |
| 69 | * The Riemann zeta function is defined by: |
| 70 | * \f[ |
| 71 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 |
| 72 | * \f] |
| 73 | * For s < 1 use the reflection formula: |
| 74 | * \f[ |
| 75 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
| 76 | * \f] |
| 77 | */ |
| 78 | template<typename _Tp> |
| 79 | _Tp |
| 80 | __riemann_zeta_sum(_Tp __s) |
| 81 | { |
| 82 | // A user shouldn't get to this. |
| 83 | if (__s < _Tp(1)) |
| 84 | std::__throw_domain_error(__N("Bad argument in zeta sum." )); |
| 85 | |
| 86 | const unsigned int max_iter = 10000; |
| 87 | _Tp __zeta = _Tp(0); |
| 88 | for (unsigned int __k = 1; __k < max_iter; ++__k) |
| 89 | { |
| 90 | _Tp __term = std::pow(static_cast<_Tp>(__k), -__s); |
| 91 | if (__term < std::numeric_limits<_Tp>::epsilon()) |
| 92 | { |
| 93 | break; |
| 94 | } |
| 95 | __zeta += __term; |
| 96 | } |
| 97 | |
| 98 | return __zeta; |
| 99 | } |
| 100 | |
| 101 | |
| 102 | /** |
| 103 | * @brief Evaluate the Riemann zeta function @f$ \zeta(s) @f$ |
| 104 | * by an alternate series for s > 0. |
| 105 | * |
| 106 | * The Riemann zeta function is defined by: |
| 107 | * \f[ |
| 108 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 |
| 109 | * \f] |
| 110 | * For s < 1 use the reflection formula: |
| 111 | * \f[ |
| 112 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
| 113 | * \f] |
| 114 | */ |
| 115 | template<typename _Tp> |
| 116 | _Tp |
| 117 | __riemann_zeta_alt(_Tp __s) |
| 118 | { |
| 119 | _Tp __sgn = _Tp(1); |
| 120 | _Tp __zeta = _Tp(0); |
| 121 | for (unsigned int __i = 1; __i < 10000000; ++__i) |
| 122 | { |
| 123 | _Tp __term = __sgn / std::pow(__i, __s); |
| 124 | if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) |
| 125 | break; |
| 126 | __zeta += __term; |
| 127 | __sgn *= _Tp(-1); |
| 128 | } |
| 129 | __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); |
| 130 | |
| 131 | return __zeta; |
| 132 | } |
| 133 | |
| 134 | |
| 135 | /** |
| 136 | * @brief Evaluate the Riemann zeta function by series for all s != 1. |
| 137 | * Convergence is great until largish negative numbers. |
| 138 | * Then the convergence of the > 0 sum gets better. |
| 139 | * |
| 140 | * The series is: |
| 141 | * \f[ |
| 142 | * \zeta(s) = \frac{1}{1-2^{1-s}} |
| 143 | * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} |
| 144 | * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s} |
| 145 | * \f] |
| 146 | * Havil 2003, p. 206. |
| 147 | * |
| 148 | * The Riemann zeta function is defined by: |
| 149 | * \f[ |
| 150 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 |
| 151 | * \f] |
| 152 | * For s < 1 use the reflection formula: |
| 153 | * \f[ |
| 154 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
| 155 | * \f] |
| 156 | */ |
| 157 | template<typename _Tp> |
| 158 | _Tp |
| 159 | __riemann_zeta_glob(_Tp __s) |
| 160 | { |
| 161 | _Tp __zeta = _Tp(0); |
| 162 | |
| 163 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 164 | // Max e exponent before overflow. |
| 165 | const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10 |
| 166 | * std::log(_Tp(10)) - _Tp(1); |
| 167 | |
| 168 | // This series works until the binomial coefficient blows up |
| 169 | // so use reflection. |
| 170 | if (__s < _Tp(0)) |
| 171 | { |
| 172 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 173 | if (_GLIBCXX_MATH_NS::fmod(__s,_Tp(2)) == _Tp(0)) |
| 174 | return _Tp(0); |
| 175 | else |
| 176 | #endif |
| 177 | { |
| 178 | _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s); |
| 179 | __zeta *= std::pow(_Tp(2) |
| 180 | * __numeric_constants<_Tp>::__pi(), __s) |
| 181 | * std::sin(__numeric_constants<_Tp>::__pi_2() * __s) |
| 182 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 183 | * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s)) |
| 184 | #else |
| 185 | * std::exp(__log_gamma(_Tp(1) - __s)) |
| 186 | #endif |
| 187 | / __numeric_constants<_Tp>::__pi(); |
| 188 | return __zeta; |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | _Tp __num = _Tp(0.5L); |
| 193 | const unsigned int __maxit = 10000; |
| 194 | for (unsigned int __i = 0; __i < __maxit; ++__i) |
| 195 | { |
| 196 | bool __punt = false; |
| 197 | _Tp __sgn = _Tp(1); |
| 198 | _Tp __term = _Tp(0); |
| 199 | for (unsigned int __j = 0; __j <= __i; ++__j) |
| 200 | { |
| 201 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 202 | _Tp __bincoeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i)) |
| 203 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j)) |
| 204 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j)); |
| 205 | #else |
| 206 | _Tp __bincoeff = __log_gamma(_Tp(1 + __i)) |
| 207 | - __log_gamma(_Tp(1 + __j)) |
| 208 | - __log_gamma(_Tp(1 + __i - __j)); |
| 209 | #endif |
| 210 | if (__bincoeff > __max_bincoeff) |
| 211 | { |
| 212 | // This only gets hit for x << 0. |
| 213 | __punt = true; |
| 214 | break; |
| 215 | } |
| 216 | __bincoeff = std::exp(__bincoeff); |
| 217 | __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); |
| 218 | __sgn *= _Tp(-1); |
| 219 | } |
| 220 | if (__punt) |
| 221 | break; |
| 222 | __term *= __num; |
| 223 | __zeta += __term; |
| 224 | if (std::abs(__term/__zeta) < __eps) |
| 225 | break; |
| 226 | __num *= _Tp(0.5L); |
| 227 | } |
| 228 | |
| 229 | __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); |
| 230 | |
| 231 | return __zeta; |
| 232 | } |
| 233 | |
| 234 | |
| 235 | /** |
| 236 | * @brief Compute the Riemann zeta function @f$ \zeta(s) @f$ |
| 237 | * using the product over prime factors. |
| 238 | * \f[ |
| 239 | * \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}} |
| 240 | * \f] |
| 241 | * where @f$ {p_i} @f$ are the prime numbers. |
| 242 | * |
| 243 | * The Riemann zeta function is defined by: |
| 244 | * \f[ |
| 245 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 |
| 246 | * \f] |
| 247 | * For s < 1 use the reflection formula: |
| 248 | * \f[ |
| 249 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
| 250 | * \f] |
| 251 | */ |
| 252 | template<typename _Tp> |
| 253 | _Tp |
| 254 | __riemann_zeta_product(_Tp __s) |
| 255 | { |
| 256 | static const _Tp __prime[] = { |
| 257 | _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19), |
| 258 | _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47), |
| 259 | _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79), |
| 260 | _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109) |
| 261 | }; |
| 262 | static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp); |
| 263 | |
| 264 | _Tp __zeta = _Tp(1); |
| 265 | for (unsigned int __i = 0; __i < __num_primes; ++__i) |
| 266 | { |
| 267 | const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); |
| 268 | __zeta *= __fact; |
| 269 | if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon()) |
| 270 | break; |
| 271 | } |
| 272 | |
| 273 | __zeta = _Tp(1) / __zeta; |
| 274 | |
| 275 | return __zeta; |
| 276 | } |
| 277 | |
| 278 | |
| 279 | /** |
| 280 | * @brief Return the Riemann zeta function @f$ \zeta(s) @f$. |
| 281 | * |
| 282 | * The Riemann zeta function is defined by: |
| 283 | * \f[ |
| 284 | * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1 |
| 285 | * \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2}) |
| 286 | * \Gamma (1 - s) \zeta (1 - s) for s < 1 |
| 287 | * \f] |
| 288 | * For s < 1 use the reflection formula: |
| 289 | * \f[ |
| 290 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) |
| 291 | * \f] |
| 292 | */ |
| 293 | template<typename _Tp> |
| 294 | _Tp |
| 295 | __riemann_zeta(_Tp __s) |
| 296 | { |
| 297 | if (__isnan(__s)) |
| 298 | return std::numeric_limits<_Tp>::quiet_NaN(); |
| 299 | else if (__s == _Tp(1)) |
| 300 | return std::numeric_limits<_Tp>::infinity(); |
| 301 | else if (__s < -_Tp(19)) |
| 302 | { |
| 303 | _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s); |
| 304 | __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) |
| 305 | * std::sin(__numeric_constants<_Tp>::__pi_2() * __s) |
| 306 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 307 | * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s)) |
| 308 | #else |
| 309 | * std::exp(__log_gamma(_Tp(1) - __s)) |
| 310 | #endif |
| 311 | / __numeric_constants<_Tp>::__pi(); |
| 312 | return __zeta; |
| 313 | } |
| 314 | else if (__s < _Tp(20)) |
| 315 | { |
| 316 | // Global double sum or McLaurin? |
| 317 | bool __glob = true; |
| 318 | if (__glob) |
| 319 | return __riemann_zeta_glob(__s); |
| 320 | else |
| 321 | { |
| 322 | if (__s > _Tp(1)) |
| 323 | return __riemann_zeta_sum(__s); |
| 324 | else |
| 325 | { |
| 326 | _Tp __zeta = std::pow(_Tp(2) |
| 327 | * __numeric_constants<_Tp>::__pi(), __s) |
| 328 | * std::sin(__numeric_constants<_Tp>::__pi_2() * __s) |
| 329 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 330 | * _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __s) |
| 331 | #else |
| 332 | * std::exp(__log_gamma(_Tp(1) - __s)) |
| 333 | #endif |
| 334 | * __riemann_zeta_sum(_Tp(1) - __s); |
| 335 | return __zeta; |
| 336 | } |
| 337 | } |
| 338 | } |
| 339 | else |
| 340 | return __riemann_zeta_product(__s); |
| 341 | } |
| 342 | |
| 343 | |
| 344 | /** |
| 345 | * @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$ |
| 346 | * for all s != 1 and x > -1. |
| 347 | * |
| 348 | * The Hurwitz zeta function is defined by: |
| 349 | * @f[ |
| 350 | * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s} |
| 351 | * @f] |
| 352 | * The Riemann zeta function is a special case: |
| 353 | * @f[ |
| 354 | * \zeta(s) = \zeta(1,s) |
| 355 | * @f] |
| 356 | * |
| 357 | * This functions uses the double sum that converges for s != 1 |
| 358 | * and x > -1: |
| 359 | * @f[ |
| 360 | * \zeta(x,s) = \frac{1}{s-1} |
| 361 | * \sum_{n=0}^{\infty} \frac{1}{n + 1} |
| 362 | * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s} |
| 363 | * @f] |
| 364 | */ |
| 365 | template<typename _Tp> |
| 366 | _Tp |
| 367 | __hurwitz_zeta_glob(_Tp __a, _Tp __s) |
| 368 | { |
| 369 | _Tp __zeta = _Tp(0); |
| 370 | |
| 371 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
| 372 | // Max e exponent before overflow. |
| 373 | const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10 |
| 374 | * std::log(_Tp(10)) - _Tp(1); |
| 375 | |
| 376 | const unsigned int __maxit = 10000; |
| 377 | for (unsigned int __i = 0; __i < __maxit; ++__i) |
| 378 | { |
| 379 | bool __punt = false; |
| 380 | _Tp __sgn = _Tp(1); |
| 381 | _Tp __term = _Tp(0); |
| 382 | for (unsigned int __j = 0; __j <= __i; ++__j) |
| 383 | { |
| 384 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 385 | _Tp __bincoeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i)) |
| 386 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j)) |
| 387 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j)); |
| 388 | #else |
| 389 | _Tp __bincoeff = __log_gamma(_Tp(1 + __i)) |
| 390 | - __log_gamma(_Tp(1 + __j)) |
| 391 | - __log_gamma(_Tp(1 + __i - __j)); |
| 392 | #endif |
| 393 | if (__bincoeff > __max_bincoeff) |
| 394 | { |
| 395 | // This only gets hit for x << 0. |
| 396 | __punt = true; |
| 397 | break; |
| 398 | } |
| 399 | __bincoeff = std::exp(__bincoeff); |
| 400 | __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); |
| 401 | __sgn *= _Tp(-1); |
| 402 | } |
| 403 | if (__punt) |
| 404 | break; |
| 405 | __term /= _Tp(__i + 1); |
| 406 | if (std::abs(__term / __zeta) < __eps) |
| 407 | break; |
| 408 | __zeta += __term; |
| 409 | } |
| 410 | |
| 411 | __zeta /= __s - _Tp(1); |
| 412 | |
| 413 | return __zeta; |
| 414 | } |
| 415 | |
| 416 | |
| 417 | /** |
| 418 | * @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$ |
| 419 | * for all s != 1 and x > -1. |
| 420 | * |
| 421 | * The Hurwitz zeta function is defined by: |
| 422 | * @f[ |
| 423 | * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s} |
| 424 | * @f] |
| 425 | * The Riemann zeta function is a special case: |
| 426 | * @f[ |
| 427 | * \zeta(s) = \zeta(1,s) |
| 428 | * @f] |
| 429 | */ |
| 430 | template<typename _Tp> |
| 431 | inline _Tp |
| 432 | __hurwitz_zeta(_Tp __a, _Tp __s) |
| 433 | { return __hurwitz_zeta_glob(__a, __s); } |
| 434 | } // namespace __detail |
| 435 | #undef _GLIBCXX_MATH_NS |
| 436 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| 437 | } // namespace tr1 |
| 438 | #endif |
| 439 | |
| 440 | _GLIBCXX_END_NAMESPACE_VERSION |
| 441 | } |
| 442 | |
| 443 | #endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC |
| 444 | |