1/* gcrypt.h - GNU Cryptographic Library Interface -*- c -*-
2 * Copyright (C) 1998-2018 Free Software Foundation, Inc.
3 * Copyright (C) 2012-2018 g10 Code GmbH
4 *
5 * This file is part of Libgcrypt.
6 *
7 * Libgcrypt is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU Lesser General Public License as
9 * published by the Free Software Foundation; either version 2.1 of
10 * the License, or (at your option) any later version.
11 *
12 * Libgcrypt is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
19 *
20 * File: src/gcrypt.h. Generated from gcrypt.h.in by configure.
21 */
22
23#ifndef _GCRYPT_H
24#define _GCRYPT_H
25
26#include <stdlib.h>
27#include <stdarg.h>
28#include <string.h>
29
30#include <gpg-error.h>
31
32#include <sys/types.h>
33
34#if defined _WIN32 || defined __WIN32__
35# include <winsock2.h>
36# include <ws2tcpip.h>
37# include <time.h>
38# ifndef __GNUC__
39 typedef long ssize_t;
40 typedef int pid_t;
41# endif /*!__GNUC__*/
42#else
43# include <sys/socket.h>
44# include <sys/time.h>
45# include <sys/select.h>
46#endif /*!_WIN32*/
47
48typedef socklen_t gcry_socklen_t;
49
50/* This is required for error code compatibility. */
51#define _GCRY_ERR_SOURCE_DEFAULT GPG_ERR_SOURCE_GCRYPT
52
53#ifdef __cplusplus
54extern "C" {
55#if 0 /* (Keep Emacsens' auto-indent happy.) */
56}
57#endif
58#endif
59
60/* The version of this header should match the one of the library. It
61 should not be used by a program because gcry_check_version() should
62 return the same version. The purpose of this macro is to let
63 autoconf (using the AM_PATH_GCRYPT macro) check that this header
64 matches the installed library. */
65#define GCRYPT_VERSION "1.9.4"
66
67/* The version number of this header. It may be used to handle minor
68 API incompatibilities. */
69#define GCRYPT_VERSION_NUMBER 0x010904
70
71
72/* Internal: We can't use the convenience macros for the multi
73 precision integer functions when building this library. */
74#ifdef _GCRYPT_IN_LIBGCRYPT
75#ifndef GCRYPT_NO_MPI_MACROS
76#define GCRYPT_NO_MPI_MACROS 1
77#endif
78#endif
79
80/* We want to use gcc attributes when possible. Warning: Don't use
81 these macros in your programs: As indicated by the leading
82 underscore they are subject to change without notice. */
83#ifdef __GNUC__
84
85#define _GCRY_GCC_VERSION (__GNUC__ * 10000 \
86 + __GNUC_MINOR__ * 100 \
87 + __GNUC_PATCHLEVEL__)
88
89#if _GCRY_GCC_VERSION >= 30100
90#define _GCRY_GCC_ATTR_DEPRECATED __attribute__ ((__deprecated__))
91#endif
92
93#if _GCRY_GCC_VERSION >= 29600
94#define _GCRY_GCC_ATTR_PURE __attribute__ ((__pure__))
95#endif
96
97#if _GCRY_GCC_VERSION >= 30200
98#define _GCRY_GCC_ATTR_MALLOC __attribute__ ((__malloc__))
99#endif
100
101#define _GCRY_GCC_ATTR_PRINTF(f,a) __attribute__ ((format (printf,f,a)))
102
103#if _GCRY_GCC_VERSION >= 40000
104#define _GCRY_GCC_ATTR_SENTINEL(a) __attribute__ ((sentinel(a)))
105#endif
106
107#endif /*__GNUC__*/
108
109#ifndef _GCRY_GCC_ATTR_DEPRECATED
110#define _GCRY_GCC_ATTR_DEPRECATED
111#endif
112#ifndef _GCRY_GCC_ATTR_PURE
113#define _GCRY_GCC_ATTR_PURE
114#endif
115#ifndef _GCRY_GCC_ATTR_MALLOC
116#define _GCRY_GCC_ATTR_MALLOC
117#endif
118#ifndef _GCRY_GCC_ATTR_PRINTF
119#define _GCRY_GCC_ATTR_PRINTF(f,a)
120#endif
121#ifndef _GCRY_GCC_ATTR_SENTINEL
122#define _GCRY_GCC_ATTR_SENTINEL(a)
123#endif
124
125/* Make up an attribute to mark functions and types as deprecated but
126 allow internal use by Libgcrypt. */
127#ifdef _GCRYPT_IN_LIBGCRYPT
128#define _GCRY_ATTR_INTERNAL
129#else
130#define _GCRY_ATTR_INTERNAL _GCRY_GCC_ATTR_DEPRECATED
131#endif
132
133/* Wrappers for the libgpg-error library. */
134
135typedef gpg_error_t gcry_error_t;
136typedef gpg_err_code_t gcry_err_code_t;
137typedef gpg_err_source_t gcry_err_source_t;
138
139static GPG_ERR_INLINE gcry_error_t
140gcry_err_make (gcry_err_source_t source, gcry_err_code_t code)
141{
142 return gpg_err_make (source, code);
143}
144
145/* The user can define GPG_ERR_SOURCE_DEFAULT before including this
146 file to specify a default source for gpg_error. */
147#ifndef GCRY_ERR_SOURCE_DEFAULT
148#define GCRY_ERR_SOURCE_DEFAULT GPG_ERR_SOURCE_USER_1
149#endif
150
151static GPG_ERR_INLINE gcry_error_t
152gcry_error (gcry_err_code_t code)
153{
154 return gcry_err_make (GCRY_ERR_SOURCE_DEFAULT, code);
155}
156
157static GPG_ERR_INLINE gcry_err_code_t
158gcry_err_code (gcry_error_t err)
159{
160 return gpg_err_code (err);
161}
162
163
164static GPG_ERR_INLINE gcry_err_source_t
165gcry_err_source (gcry_error_t err)
166{
167 return gpg_err_source (err);
168}
169
170/* Return a pointer to a string containing a description of the error
171 code in the error value ERR. */
172const char *gcry_strerror (gcry_error_t err);
173
174/* Return a pointer to a string containing a description of the error
175 source in the error value ERR. */
176const char *gcry_strsource (gcry_error_t err);
177
178/* Retrieve the error code for the system error ERR. This returns
179 GPG_ERR_UNKNOWN_ERRNO if the system error is not mapped (report
180 this). */
181gcry_err_code_t gcry_err_code_from_errno (int err);
182
183/* Retrieve the system error for the error code CODE. This returns 0
184 if CODE is not a system error code. */
185int gcry_err_code_to_errno (gcry_err_code_t code);
186
187/* Return an error value with the error source SOURCE and the system
188 error ERR. */
189gcry_error_t gcry_err_make_from_errno (gcry_err_source_t source, int err);
190
191/* Return an error value with the system error ERR. */
192gcry_error_t gcry_error_from_errno (int err);
193
194
195/* NOTE: Since Libgcrypt 1.6 the thread callbacks are not anymore
196 used. However we keep it to allow for some source code
197 compatibility if used in the standard way. */
198
199/* Constants defining the thread model to use. Used with the OPTION
200 field of the struct gcry_thread_cbs. */
201#define GCRY_THREAD_OPTION_DEFAULT 0
202#define GCRY_THREAD_OPTION_USER 1
203#define GCRY_THREAD_OPTION_PTH 2
204#define GCRY_THREAD_OPTION_PTHREAD 3
205
206/* The version number encoded in the OPTION field of the struct
207 gcry_thread_cbs. */
208#define GCRY_THREAD_OPTION_VERSION 1
209
210/* Wrapper for struct ath_ops. */
211struct gcry_thread_cbs
212{
213 /* The OPTION field encodes the thread model and the version number
214 of this structure.
215 Bits 7 - 0 are used for the thread model
216 Bits 15 - 8 are used for the version number. */
217 unsigned int option;
218} _GCRY_ATTR_INTERNAL;
219
220#define GCRY_THREAD_OPTION_PTH_IMPL \
221 static struct gcry_thread_cbs gcry_threads_pth = { \
222 (GCRY_THREAD_OPTION_PTH | (GCRY_THREAD_OPTION_VERSION << 8))}
223
224#define GCRY_THREAD_OPTION_PTHREAD_IMPL \
225 static struct gcry_thread_cbs gcry_threads_pthread = { \
226 (GCRY_THREAD_OPTION_PTHREAD | (GCRY_THREAD_OPTION_VERSION << 8))}
227
228
229
230/* A generic context object as used by some functions. */
231struct gcry_context;
232typedef struct gcry_context *gcry_ctx_t;
233
234/* The data objects used to hold multi precision integers. */
235struct gcry_mpi;
236typedef struct gcry_mpi *gcry_mpi_t;
237struct gcry_mpi_point;
238typedef struct gcry_mpi_point *gcry_mpi_point_t;
239
240#ifndef GCRYPT_NO_DEPRECATED
241typedef struct gcry_mpi *GCRY_MPI _GCRY_GCC_ATTR_DEPRECATED;
242typedef struct gcry_mpi *GcryMPI _GCRY_GCC_ATTR_DEPRECATED;
243#endif
244
245/* A structure used for scatter gather hashing. */
246typedef struct
247{
248 size_t size; /* The allocated size of the buffer or 0. */
249 size_t off; /* Offset into the buffer. */
250 size_t len; /* The used length of the buffer. */
251 void *data; /* The buffer. */
252} gcry_buffer_t;
253
254
255
256
257/* Check that the library fulfills the version requirement. */
258const char *gcry_check_version (const char *req_version);
259
260/* Codes for function dispatchers. */
261
262/* Codes used with the gcry_control function. */
263enum gcry_ctl_cmds
264 {
265 /* Note: 1 .. 2 are not anymore used. */
266 GCRYCTL_CFB_SYNC = 3,
267 GCRYCTL_RESET = 4, /* e.g. for MDs */
268 GCRYCTL_FINALIZE = 5,
269 GCRYCTL_GET_KEYLEN = 6,
270 GCRYCTL_GET_BLKLEN = 7,
271 GCRYCTL_TEST_ALGO = 8,
272 GCRYCTL_IS_SECURE = 9,
273 GCRYCTL_GET_ASNOID = 10,
274 GCRYCTL_ENABLE_ALGO = 11,
275 GCRYCTL_DISABLE_ALGO = 12,
276 GCRYCTL_DUMP_RANDOM_STATS = 13,
277 GCRYCTL_DUMP_SECMEM_STATS = 14,
278 GCRYCTL_GET_ALGO_NPKEY = 15,
279 GCRYCTL_GET_ALGO_NSKEY = 16,
280 GCRYCTL_GET_ALGO_NSIGN = 17,
281 GCRYCTL_GET_ALGO_NENCR = 18,
282 GCRYCTL_SET_VERBOSITY = 19,
283 GCRYCTL_SET_DEBUG_FLAGS = 20,
284 GCRYCTL_CLEAR_DEBUG_FLAGS = 21,
285 GCRYCTL_USE_SECURE_RNDPOOL= 22,
286 GCRYCTL_DUMP_MEMORY_STATS = 23,
287 GCRYCTL_INIT_SECMEM = 24,
288 GCRYCTL_TERM_SECMEM = 25,
289 GCRYCTL_DISABLE_SECMEM_WARN = 27,
290 GCRYCTL_SUSPEND_SECMEM_WARN = 28,
291 GCRYCTL_RESUME_SECMEM_WARN = 29,
292 GCRYCTL_DROP_PRIVS = 30,
293 GCRYCTL_ENABLE_M_GUARD = 31,
294 GCRYCTL_START_DUMP = 32,
295 GCRYCTL_STOP_DUMP = 33,
296 GCRYCTL_GET_ALGO_USAGE = 34,
297 GCRYCTL_IS_ALGO_ENABLED = 35,
298 GCRYCTL_DISABLE_INTERNAL_LOCKING = 36,
299 GCRYCTL_DISABLE_SECMEM = 37,
300 GCRYCTL_INITIALIZATION_FINISHED = 38,
301 GCRYCTL_INITIALIZATION_FINISHED_P = 39,
302 GCRYCTL_ANY_INITIALIZATION_P = 40,
303 GCRYCTL_SET_CBC_CTS = 41,
304 GCRYCTL_SET_CBC_MAC = 42,
305 /* Note: 43 is not anymore used. */
306 GCRYCTL_ENABLE_QUICK_RANDOM = 44,
307 GCRYCTL_SET_RANDOM_SEED_FILE = 45,
308 GCRYCTL_UPDATE_RANDOM_SEED_FILE = 46,
309 GCRYCTL_SET_THREAD_CBS = 47,
310 GCRYCTL_FAST_POLL = 48,
311 GCRYCTL_SET_RANDOM_DAEMON_SOCKET = 49,
312 GCRYCTL_USE_RANDOM_DAEMON = 50,
313 GCRYCTL_FAKED_RANDOM_P = 51,
314 GCRYCTL_SET_RNDEGD_SOCKET = 52,
315 GCRYCTL_PRINT_CONFIG = 53,
316 GCRYCTL_OPERATIONAL_P = 54,
317 GCRYCTL_FIPS_MODE_P = 55,
318 GCRYCTL_FORCE_FIPS_MODE = 56,
319 GCRYCTL_SELFTEST = 57,
320 /* Note: 58 .. 62 are used internally. */
321 GCRYCTL_DISABLE_HWF = 63,
322 GCRYCTL_SET_ENFORCED_FIPS_FLAG = 64,
323 GCRYCTL_SET_PREFERRED_RNG_TYPE = 65,
324 GCRYCTL_GET_CURRENT_RNG_TYPE = 66,
325 GCRYCTL_DISABLE_LOCKED_SECMEM = 67,
326 GCRYCTL_DISABLE_PRIV_DROP = 68,
327 GCRYCTL_SET_CCM_LENGTHS = 69,
328 GCRYCTL_CLOSE_RANDOM_DEVICE = 70,
329 GCRYCTL_INACTIVATE_FIPS_FLAG = 71,
330 GCRYCTL_REACTIVATE_FIPS_FLAG = 72,
331 GCRYCTL_SET_SBOX = 73,
332 GCRYCTL_DRBG_REINIT = 74,
333 GCRYCTL_SET_TAGLEN = 75,
334 GCRYCTL_GET_TAGLEN = 76,
335 GCRYCTL_REINIT_SYSCALL_CLAMP = 77,
336 GCRYCTL_AUTO_EXPAND_SECMEM = 78,
337 GCRYCTL_SET_ALLOW_WEAK_KEY = 79
338 };
339
340/* Perform various operations defined by CMD. */
341gcry_error_t gcry_control (enum gcry_ctl_cmds CMD, ...);
342
343
344/* S-expression management. */
345
346/* The object to represent an S-expression as used with the public key
347 functions. */
348struct gcry_sexp;
349typedef struct gcry_sexp *gcry_sexp_t;
350
351#ifndef GCRYPT_NO_DEPRECATED
352typedef struct gcry_sexp *GCRY_SEXP _GCRY_GCC_ATTR_DEPRECATED;
353typedef struct gcry_sexp *GcrySexp _GCRY_GCC_ATTR_DEPRECATED;
354#endif
355
356/* The possible values for the S-expression format. */
357enum gcry_sexp_format
358 {
359 GCRYSEXP_FMT_DEFAULT = 0,
360 GCRYSEXP_FMT_CANON = 1,
361 GCRYSEXP_FMT_BASE64 = 2,
362 GCRYSEXP_FMT_ADVANCED = 3
363 };
364
365/* Create an new S-expression object from BUFFER of size LENGTH and
366 return it in RETSEXP. With AUTODETECT set to 0 the data in BUFFER
367 is expected to be in canonized format. */
368gcry_error_t gcry_sexp_new (gcry_sexp_t *retsexp,
369 const void *buffer, size_t length,
370 int autodetect);
371
372 /* Same as gcry_sexp_new but allows to pass a FREEFNC which has the
373 effect to transfer ownership of BUFFER to the created object. */
374gcry_error_t gcry_sexp_create (gcry_sexp_t *retsexp,
375 void *buffer, size_t length,
376 int autodetect, void (*freefnc) (void *));
377
378/* Scan BUFFER and return a new S-expression object in RETSEXP. This
379 function expects a printf like string in BUFFER. */
380gcry_error_t gcry_sexp_sscan (gcry_sexp_t *retsexp, size_t *erroff,
381 const char *buffer, size_t length);
382
383/* Same as gcry_sexp_sscan but expects a string in FORMAT and can thus
384 only be used for certain encodings. */
385gcry_error_t gcry_sexp_build (gcry_sexp_t *retsexp, size_t *erroff,
386 const char *format, ...);
387
388/* Like gcry_sexp_build, but uses an array instead of variable
389 function arguments. */
390gcry_error_t gcry_sexp_build_array (gcry_sexp_t *retsexp, size_t *erroff,
391 const char *format, void **arg_list);
392
393/* Release the S-expression object SEXP */
394void gcry_sexp_release (gcry_sexp_t sexp);
395
396/* Calculate the length of an canonized S-expression in BUFFER and
397 check for a valid encoding. */
398size_t gcry_sexp_canon_len (const unsigned char *buffer, size_t length,
399 size_t *erroff, gcry_error_t *errcode);
400
401/* Copies the S-expression object SEXP into BUFFER using the format
402 specified in MODE. */
403size_t gcry_sexp_sprint (gcry_sexp_t sexp, int mode, void *buffer,
404 size_t maxlength);
405
406/* Dumps the S-expression object A in a format suitable for debugging
407 to Libgcrypt's logging stream. */
408void gcry_sexp_dump (const gcry_sexp_t a);
409
410gcry_sexp_t gcry_sexp_cons (const gcry_sexp_t a, const gcry_sexp_t b);
411gcry_sexp_t gcry_sexp_alist (const gcry_sexp_t *array);
412gcry_sexp_t gcry_sexp_vlist (const gcry_sexp_t a, ...);
413gcry_sexp_t gcry_sexp_append (const gcry_sexp_t a, const gcry_sexp_t n);
414gcry_sexp_t gcry_sexp_prepend (const gcry_sexp_t a, const gcry_sexp_t n);
415
416/* Scan the S-expression for a sublist with a type (the car of the
417 list) matching the string TOKEN. If TOKLEN is not 0, the token is
418 assumed to be raw memory of this length. The function returns a
419 newly allocated S-expression consisting of the found sublist or
420 `NULL' when not found. */
421gcry_sexp_t gcry_sexp_find_token (gcry_sexp_t list,
422 const char *tok, size_t toklen);
423/* Return the length of the LIST. For a valid S-expression this
424 should be at least 1. */
425int gcry_sexp_length (const gcry_sexp_t list);
426
427/* Create and return a new S-expression from the element with index
428 NUMBER in LIST. Note that the first element has the index 0. If
429 there is no such element, `NULL' is returned. */
430gcry_sexp_t gcry_sexp_nth (const gcry_sexp_t list, int number);
431
432/* Create and return a new S-expression from the first element in
433 LIST; this called the "type" and should always exist and be a
434 string. `NULL' is returned in case of a problem. */
435gcry_sexp_t gcry_sexp_car (const gcry_sexp_t list);
436
437/* Create and return a new list form all elements except for the first
438 one. Note, that this function may return an invalid S-expression
439 because it is not guaranteed, that the type exists and is a string.
440 However, for parsing a complex S-expression it might be useful for
441 intermediate lists. Returns `NULL' on error. */
442gcry_sexp_t gcry_sexp_cdr (const gcry_sexp_t list);
443
444gcry_sexp_t gcry_sexp_cadr (const gcry_sexp_t list);
445
446
447/* This function is used to get data from a LIST. A pointer to the
448 actual data with index NUMBER is returned and the length of this
449 data will be stored to DATALEN. If there is no data at the given
450 index or the index represents another list, `NULL' is returned.
451 *Note:* The returned pointer is valid as long as LIST is not
452 modified or released. */
453const char *gcry_sexp_nth_data (const gcry_sexp_t list, int number,
454 size_t *datalen);
455
456/* This function is used to get data from a LIST. A malloced buffer to the
457 data with index NUMBER is returned and the length of this
458 data will be stored to RLENGTH. If there is no data at the given
459 index or the index represents another list, `NULL' is returned. */
460void *gcry_sexp_nth_buffer (const gcry_sexp_t list, int number,
461 size_t *rlength);
462
463/* This function is used to get and convert data from a LIST. The
464 data is assumed to be a Nul terminated string. The caller must
465 release the returned value using `gcry_free'. If there is no data
466 at the given index, the index represents a list or the value can't
467 be converted to a string, `NULL' is returned. */
468char *gcry_sexp_nth_string (gcry_sexp_t list, int number);
469
470/* This function is used to get and convert data from a LIST. This
471 data is assumed to be an MPI stored in the format described by
472 MPIFMT and returned as a standard Libgcrypt MPI. The caller must
473 release this returned value using `gcry_mpi_release'. If there is
474 no data at the given index, the index represents a list or the
475 value can't be converted to an MPI, `NULL' is returned. */
476gcry_mpi_t gcry_sexp_nth_mpi (gcry_sexp_t list, int number, int mpifmt);
477
478/* Extract MPIs from an s-expression using a list of parameters. The
479 * names of these parameters are given by the string LIST. Some
480 * special characters may be given to control the conversion:
481 *
482 * + :: Switch to unsigned integer format (default).
483 * - :: Switch to standard signed format.
484 * / :: Switch to opaque format.
485 * & :: Switch to buffer descriptor mode - see below.
486 * ? :: The previous parameter is optional.
487 *
488 * In general parameter names are single letters. To use a string for
489 * a parameter name, enclose the name in single quotes.
490 *
491 * Unless in gcry_buffer_t mode for each parameter name a pointer to
492 * an MPI variable is expected that must be set to NULL prior to
493 * invoking this function, and finally a NULL is expected. Example:
494 *
495 * _gcry_sexp_extract_param (key, NULL, "n/x+ed",
496 * &mpi_n, &mpi_x, &mpi_e, NULL)
497 *
498 * This stores the parameter "N" from KEY as an unsigned MPI into
499 * MPI_N, the parameter "X" as an opaque MPI into MPI_X, and the
500 * parameter "E" again as an unsigned MPI into MPI_E.
501 *
502 * If in buffer descriptor mode a pointer to gcry_buffer_t descriptor
503 * is expected instead of a pointer to an MPI. The caller may use two
504 * different operation modes: If the DATA field of the provided buffer
505 * descriptor is NULL, the function allocates a new buffer and stores
506 * it at DATA; the other fields are set accordingly with OFF being 0.
507 * If DATA is not NULL, the function assumes that DATA, SIZE, and OFF
508 * describe a buffer where to but the data; on return the LEN field
509 * receives the number of bytes copied to that buffer; if the buffer
510 * is too small, the function immediately returns with an error code
511 * (and LEN set to 0).
512 *
513 * PATH is an optional string used to locate a token. The exclamation
514 * mark separated tokens are used to via gcry_sexp_find_token to find
515 * a start point inside SEXP.
516 *
517 * The function returns 0 on success. On error an error code is
518 * returned, all passed MPIs that might have been allocated up to this
519 * point are deallocated and set to NULL, and all passed buffers are
520 * either truncated if the caller supplied the buffer, or deallocated
521 * if the function allocated the buffer.
522 */
523gpg_error_t gcry_sexp_extract_param (gcry_sexp_t sexp,
524 const char *path,
525 const char *list,
526 ...) _GCRY_GCC_ATTR_SENTINEL(0);
527
528
529/*******************************************
530 * *
531 * Multi Precision Integer Functions *
532 * *
533 *******************************************/
534
535/* Different formats of external big integer representation. */
536enum gcry_mpi_format
537 {
538 GCRYMPI_FMT_NONE= 0,
539 GCRYMPI_FMT_STD = 1, /* Twos complement stored without length. */
540 GCRYMPI_FMT_PGP = 2, /* As used by OpenPGP (unsigned only). */
541 GCRYMPI_FMT_SSH = 3, /* As used by SSH (like STD but with length). */
542 GCRYMPI_FMT_HEX = 4, /* Hex format. */
543 GCRYMPI_FMT_USG = 5, /* Like STD but unsigned. */
544 GCRYMPI_FMT_OPAQUE = 8 /* Opaque format (some functions only). */
545 };
546
547/* Flags used for creating big integers. */
548enum gcry_mpi_flag
549 {
550 GCRYMPI_FLAG_SECURE = 1, /* Allocate the number in "secure" memory. */
551 GCRYMPI_FLAG_OPAQUE = 2, /* The number is not a real one but just
552 a way to store some bytes. This is
553 useful for encrypted big integers. */
554 GCRYMPI_FLAG_IMMUTABLE = 4, /* Mark the MPI as immutable. */
555 GCRYMPI_FLAG_CONST = 8, /* Mark the MPI as a constant. */
556 GCRYMPI_FLAG_USER1 = 0x0100,/* User flag 1. */
557 GCRYMPI_FLAG_USER2 = 0x0200,/* User flag 2. */
558 GCRYMPI_FLAG_USER3 = 0x0400,/* User flag 3. */
559 GCRYMPI_FLAG_USER4 = 0x0800 /* User flag 4. */
560 };
561
562
563/* Macros to return pre-defined MPI constants. */
564#define GCRYMPI_CONST_ONE (_gcry_mpi_get_const (1))
565#define GCRYMPI_CONST_TWO (_gcry_mpi_get_const (2))
566#define GCRYMPI_CONST_THREE (_gcry_mpi_get_const (3))
567#define GCRYMPI_CONST_FOUR (_gcry_mpi_get_const (4))
568#define GCRYMPI_CONST_EIGHT (_gcry_mpi_get_const (8))
569
570/* Allocate a new big integer object, initialize it with 0 and
571 initially allocate memory for a number of at least NBITS. */
572gcry_mpi_t gcry_mpi_new (unsigned int nbits);
573
574/* Same as gcry_mpi_new() but allocate in "secure" memory. */
575gcry_mpi_t gcry_mpi_snew (unsigned int nbits);
576
577/* Release the number A and free all associated resources. */
578void gcry_mpi_release (gcry_mpi_t a);
579
580/* Create a new number with the same value as A. */
581gcry_mpi_t gcry_mpi_copy (const gcry_mpi_t a);
582
583/* Store the big integer value U in W and release U. */
584void gcry_mpi_snatch (gcry_mpi_t w, gcry_mpi_t u);
585
586/* Store the big integer value U in W. */
587gcry_mpi_t gcry_mpi_set (gcry_mpi_t w, const gcry_mpi_t u);
588
589/* Store the unsigned integer value U in W. */
590gcry_mpi_t gcry_mpi_set_ui (gcry_mpi_t w, unsigned long u);
591
592/* Store U as an unsigned int at W or return GPG_ERR_ERANGE. */
593gpg_error_t gcry_mpi_get_ui (unsigned int *w, gcry_mpi_t u);
594
595/* Swap the values of A and B. */
596void gcry_mpi_swap (gcry_mpi_t a, gcry_mpi_t b);
597
598/* Return 1 if A is negative; 0 if zero or positive. */
599int gcry_mpi_is_neg (gcry_mpi_t a);
600
601/* W = - U */
602void gcry_mpi_neg (gcry_mpi_t w, gcry_mpi_t u);
603
604/* W = [W] */
605void gcry_mpi_abs (gcry_mpi_t w);
606
607/* Compare the big integer number U and V returning 0 for equality, a
608 positive value for U > V and a negative for U < V. */
609int gcry_mpi_cmp (const gcry_mpi_t u, const gcry_mpi_t v);
610
611/* Compare the big integer number U with the unsigned integer V
612 returning 0 for equality, a positive value for U > V and a negative
613 for U < V. */
614int gcry_mpi_cmp_ui (const gcry_mpi_t u, unsigned long v);
615
616/* Convert the external representation of an integer stored in BUFFER
617 with a length of BUFLEN into a newly create MPI returned in
618 RET_MPI. If NSCANNED is not NULL, it will receive the number of
619 bytes actually scanned after a successful operation. */
620gcry_error_t gcry_mpi_scan (gcry_mpi_t *ret_mpi, enum gcry_mpi_format format,
621 const void *buffer, size_t buflen,
622 size_t *nscanned);
623
624/* Convert the big integer A into the external representation
625 described by FORMAT and store it in the provided BUFFER which has
626 been allocated by the user with a size of BUFLEN bytes. NWRITTEN
627 receives the actual length of the external representation unless it
628 has been passed as NULL. */
629gcry_error_t gcry_mpi_print (enum gcry_mpi_format format,
630 unsigned char *buffer, size_t buflen,
631 size_t *nwritten,
632 const gcry_mpi_t a);
633
634/* Convert the big integer A into the external representation described
635 by FORMAT and store it in a newly allocated buffer which address
636 will be put into BUFFER. NWRITTEN receives the actual lengths of the
637 external representation. */
638gcry_error_t gcry_mpi_aprint (enum gcry_mpi_format format,
639 unsigned char **buffer, size_t *nwritten,
640 const gcry_mpi_t a);
641
642/* Dump the value of A in a format suitable for debugging to
643 Libgcrypt's logging stream. Note that one leading space but no
644 trailing space or linefeed will be printed. It is okay to pass
645 NULL for A. */
646void gcry_mpi_dump (const gcry_mpi_t a);
647
648
649/* W = U + V. */
650void gcry_mpi_add (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v);
651
652/* W = U + V. V is an unsigned integer. */
653void gcry_mpi_add_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v);
654
655/* W = U + V mod M. */
656void gcry_mpi_addm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m);
657
658/* W = U - V. */
659void gcry_mpi_sub (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v);
660
661/* W = U - V. V is an unsigned integer. */
662void gcry_mpi_sub_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v );
663
664/* W = U - V mod M */
665void gcry_mpi_subm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m);
666
667/* W = U * V. */
668void gcry_mpi_mul (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v);
669
670/* W = U * V. V is an unsigned integer. */
671void gcry_mpi_mul_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v );
672
673/* W = U * V mod M. */
674void gcry_mpi_mulm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m);
675
676/* W = U * (2 ^ CNT). */
677void gcry_mpi_mul_2exp (gcry_mpi_t w, gcry_mpi_t u, unsigned long cnt);
678
679/* Q = DIVIDEND / DIVISOR, R = DIVIDEND % DIVISOR,
680 Q or R may be passed as NULL. ROUND should be negative or 0. */
681void gcry_mpi_div (gcry_mpi_t q, gcry_mpi_t r,
682 gcry_mpi_t dividend, gcry_mpi_t divisor, int round);
683
684/* R = DIVIDEND % DIVISOR */
685void gcry_mpi_mod (gcry_mpi_t r, gcry_mpi_t dividend, gcry_mpi_t divisor);
686
687/* W = B ^ E mod M. */
688void gcry_mpi_powm (gcry_mpi_t w,
689 const gcry_mpi_t b, const gcry_mpi_t e,
690 const gcry_mpi_t m);
691
692/* Set G to the greatest common divisor of A and B.
693 Return true if the G is 1. */
694int gcry_mpi_gcd (gcry_mpi_t g, gcry_mpi_t a, gcry_mpi_t b);
695
696/* Set X to the multiplicative inverse of A mod M.
697 Return true if the value exists. */
698int gcry_mpi_invm (gcry_mpi_t x, gcry_mpi_t a, gcry_mpi_t m);
699
700/* Create a new point object. NBITS is usually 0. */
701gcry_mpi_point_t gcry_mpi_point_new (unsigned int nbits);
702
703/* Release the object POINT. POINT may be NULL. */
704void gcry_mpi_point_release (gcry_mpi_point_t point);
705
706/* Return a copy of POINT. */
707gcry_mpi_point_t gcry_mpi_point_copy (gcry_mpi_point_t point);
708
709/* Store the projective coordinates from POINT into X, Y, and Z. */
710void gcry_mpi_point_get (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z,
711 gcry_mpi_point_t point);
712
713/* Store the projective coordinates from POINT into X, Y, and Z and
714 release POINT. */
715void gcry_mpi_point_snatch_get (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z,
716 gcry_mpi_point_t point);
717
718/* Store the projective coordinates X, Y, and Z into POINT. */
719gcry_mpi_point_t gcry_mpi_point_set (gcry_mpi_point_t point,
720 gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z);
721
722/* Store the projective coordinates X, Y, and Z into POINT and release
723 X, Y, and Z. */
724gcry_mpi_point_t gcry_mpi_point_snatch_set (gcry_mpi_point_t point,
725 gcry_mpi_t x, gcry_mpi_t y,
726 gcry_mpi_t z);
727
728/* Allocate a new context for elliptic curve operations based on the
729 parameters given by KEYPARAM or using CURVENAME. */
730gpg_error_t gcry_mpi_ec_new (gcry_ctx_t *r_ctx,
731 gcry_sexp_t keyparam, const char *curvename);
732
733/* Get a named MPI from an elliptic curve context. */
734gcry_mpi_t gcry_mpi_ec_get_mpi (const char *name, gcry_ctx_t ctx, int copy);
735
736/* Get a named point from an elliptic curve context. */
737gcry_mpi_point_t gcry_mpi_ec_get_point (const char *name,
738 gcry_ctx_t ctx, int copy);
739
740/* Store a named MPI into an elliptic curve context. */
741gpg_error_t gcry_mpi_ec_set_mpi (const char *name, gcry_mpi_t newvalue,
742 gcry_ctx_t ctx);
743
744/* Store a named point into an elliptic curve context. */
745gpg_error_t gcry_mpi_ec_set_point (const char *name, gcry_mpi_point_t newvalue,
746 gcry_ctx_t ctx);
747
748/* Decode and store VALUE into RESULT. */
749gpg_error_t gcry_mpi_ec_decode_point (gcry_mpi_point_t result,
750 gcry_mpi_t value, gcry_ctx_t ctx);
751
752/* Store the affine coordinates of POINT into X and Y. */
753int gcry_mpi_ec_get_affine (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_point_t point,
754 gcry_ctx_t ctx);
755
756/* W = 2 * U. */
757void gcry_mpi_ec_dup (gcry_mpi_point_t w, gcry_mpi_point_t u, gcry_ctx_t ctx);
758
759/* W = U + V. */
760void gcry_mpi_ec_add (gcry_mpi_point_t w,
761 gcry_mpi_point_t u, gcry_mpi_point_t v, gcry_ctx_t ctx);
762
763/* W = U - V. */
764void gcry_mpi_ec_sub (gcry_mpi_point_t w,
765 gcry_mpi_point_t u, gcry_mpi_point_t v, gcry_ctx_t ctx);
766
767/* W = N * U. */
768void gcry_mpi_ec_mul (gcry_mpi_point_t w, gcry_mpi_t n, gcry_mpi_point_t u,
769 gcry_ctx_t ctx);
770
771/* Return true if POINT is on the curve described by CTX. */
772int gcry_mpi_ec_curve_point (gcry_mpi_point_t w, gcry_ctx_t ctx);
773
774/* Return the number of bits required to represent A. */
775unsigned int gcry_mpi_get_nbits (gcry_mpi_t a);
776
777/* Return true when bit number N (counting from 0) is set in A. */
778int gcry_mpi_test_bit (gcry_mpi_t a, unsigned int n);
779
780/* Set bit number N in A. */
781void gcry_mpi_set_bit (gcry_mpi_t a, unsigned int n);
782
783/* Clear bit number N in A. */
784void gcry_mpi_clear_bit (gcry_mpi_t a, unsigned int n);
785
786/* Set bit number N in A and clear all bits greater than N. */
787void gcry_mpi_set_highbit (gcry_mpi_t a, unsigned int n);
788
789/* Clear bit number N in A and all bits greater than N. */
790void gcry_mpi_clear_highbit (gcry_mpi_t a, unsigned int n);
791
792/* Shift the value of A by N bits to the right and store the result in X. */
793void gcry_mpi_rshift (gcry_mpi_t x, gcry_mpi_t a, unsigned int n);
794
795/* Shift the value of A by N bits to the left and store the result in X. */
796void gcry_mpi_lshift (gcry_mpi_t x, gcry_mpi_t a, unsigned int n);
797
798/* Store NBITS of the value P points to in A and mark A as an opaque
799 value. On success A received the the ownership of the value P.
800 WARNING: Never use an opaque MPI for anything thing else than
801 gcry_mpi_release, gcry_mpi_get_opaque. */
802gcry_mpi_t gcry_mpi_set_opaque (gcry_mpi_t a, void *p, unsigned int nbits);
803
804/* Store NBITS of the value P points to in A and mark A as an opaque
805 value. The function takes a copy of the provided value P.
806 WARNING: Never use an opaque MPI for anything thing else than
807 gcry_mpi_release, gcry_mpi_get_opaque. */
808gcry_mpi_t gcry_mpi_set_opaque_copy (gcry_mpi_t a,
809 const void *p, unsigned int nbits);
810
811/* Return a pointer to an opaque value stored in A and return its size
812 in NBITS. Note that the returned pointer is still owned by A and
813 that the function should never be used for an non-opaque MPI. */
814void *gcry_mpi_get_opaque (gcry_mpi_t a, unsigned int *nbits);
815
816/* Set the FLAG for the big integer A. Currently only the flag
817 GCRYMPI_FLAG_SECURE is allowed to convert A into an big intger
818 stored in "secure" memory. */
819void gcry_mpi_set_flag (gcry_mpi_t a, enum gcry_mpi_flag flag);
820
821/* Clear FLAG for the big integer A. Note that this function is
822 currently useless as no flags are allowed. */
823void gcry_mpi_clear_flag (gcry_mpi_t a, enum gcry_mpi_flag flag);
824
825/* Return true if the FLAG is set for A. */
826int gcry_mpi_get_flag (gcry_mpi_t a, enum gcry_mpi_flag flag);
827
828/* Private function - do not use. */
829gcry_mpi_t _gcry_mpi_get_const (int no);
830
831/* Unless the GCRYPT_NO_MPI_MACROS is used, provide a couple of
832 convenience macros for the big integer functions. */
833#ifndef GCRYPT_NO_MPI_MACROS
834#define mpi_new(n) gcry_mpi_new( (n) )
835#define mpi_secure_new( n ) gcry_mpi_snew( (n) )
836#define mpi_release(a) \
837 do \
838 { \
839 gcry_mpi_release ((a)); \
840 (a) = NULL; \
841 } \
842 while (0)
843
844#define mpi_copy( a ) gcry_mpi_copy( (a) )
845#define mpi_snatch( w, u) gcry_mpi_snatch( (w), (u) )
846#define mpi_set( w, u) gcry_mpi_set( (w), (u) )
847#define mpi_set_ui( w, u) gcry_mpi_set_ui( (w), (u) )
848#define mpi_get_ui( w, u) gcry_mpi_get_ui( (w), (u) )
849#define mpi_abs( w ) gcry_mpi_abs( (w) )
850#define mpi_neg( w, u) gcry_mpi_neg( (w), (u) )
851#define mpi_cmp( u, v ) gcry_mpi_cmp( (u), (v) )
852#define mpi_cmp_ui( u, v ) gcry_mpi_cmp_ui( (u), (v) )
853#define mpi_is_neg( a ) gcry_mpi_is_neg ((a))
854
855#define mpi_add_ui(w,u,v) gcry_mpi_add_ui((w),(u),(v))
856#define mpi_add(w,u,v) gcry_mpi_add ((w),(u),(v))
857#define mpi_addm(w,u,v,m) gcry_mpi_addm ((w),(u),(v),(m))
858#define mpi_sub_ui(w,u,v) gcry_mpi_sub_ui ((w),(u),(v))
859#define mpi_sub(w,u,v) gcry_mpi_sub ((w),(u),(v))
860#define mpi_subm(w,u,v,m) gcry_mpi_subm ((w),(u),(v),(m))
861#define mpi_mul_ui(w,u,v) gcry_mpi_mul_ui ((w),(u),(v))
862#define mpi_mul_2exp(w,u,v) gcry_mpi_mul_2exp ((w),(u),(v))
863#define mpi_mul(w,u,v) gcry_mpi_mul ((w),(u),(v))
864#define mpi_mulm(w,u,v,m) gcry_mpi_mulm ((w),(u),(v),(m))
865#define mpi_powm(w,b,e,m) gcry_mpi_powm ( (w), (b), (e), (m) )
866#define mpi_tdiv(q,r,a,m) gcry_mpi_div ( (q), (r), (a), (m), 0)
867#define mpi_fdiv(q,r,a,m) gcry_mpi_div ( (q), (r), (a), (m), -1)
868#define mpi_mod(r,a,m) gcry_mpi_mod ((r), (a), (m))
869#define mpi_gcd(g,a,b) gcry_mpi_gcd ( (g), (a), (b) )
870#define mpi_invm(g,a,b) gcry_mpi_invm ( (g), (a), (b) )
871
872#define mpi_point_new(n) gcry_mpi_point_new((n))
873#define mpi_point_release(p) \
874 do \
875 { \
876 gcry_mpi_point_release ((p)); \
877 (p) = NULL; \
878 } \
879 while (0)
880#define mpi_point_copy(p) gcry_mpi_point_copy((p))
881#define mpi_point_get(x,y,z,p) gcry_mpi_point_get((x),(y),(z),(p))
882#define mpi_point_snatch_get(x,y,z,p) gcry_mpi_point_snatch_get((x),(y),(z),(p))
883#define mpi_point_set(p,x,y,z) gcry_mpi_point_set((p),(x),(y),(z))
884#define mpi_point_snatch_set(p,x,y,z) gcry_mpi_point_snatch_set((p),(x),(y),(z))
885
886#define mpi_get_nbits(a) gcry_mpi_get_nbits ((a))
887#define mpi_test_bit(a,b) gcry_mpi_test_bit ((a),(b))
888#define mpi_set_bit(a,b) gcry_mpi_set_bit ((a),(b))
889#define mpi_set_highbit(a,b) gcry_mpi_set_highbit ((a),(b))
890#define mpi_clear_bit(a,b) gcry_mpi_clear_bit ((a),(b))
891#define mpi_clear_highbit(a,b) gcry_mpi_clear_highbit ((a),(b))
892#define mpi_rshift(a,b,c) gcry_mpi_rshift ((a),(b),(c))
893#define mpi_lshift(a,b,c) gcry_mpi_lshift ((a),(b),(c))
894
895#define mpi_set_opaque(a,b,c) gcry_mpi_set_opaque( (a), (b), (c) )
896#define mpi_get_opaque(a,b) gcry_mpi_get_opaque( (a), (b) )
897#endif /* GCRYPT_NO_MPI_MACROS */
898
899
900
901/************************************
902 * *
903 * Symmetric Cipher Functions *
904 * *
905 ************************************/
906
907/* The data object used to hold a handle to an encryption object. */
908struct gcry_cipher_handle;
909typedef struct gcry_cipher_handle *gcry_cipher_hd_t;
910
911#ifndef GCRYPT_NO_DEPRECATED
912typedef struct gcry_cipher_handle *GCRY_CIPHER_HD _GCRY_GCC_ATTR_DEPRECATED;
913typedef struct gcry_cipher_handle *GcryCipherHd _GCRY_GCC_ATTR_DEPRECATED;
914#endif
915
916/* All symmetric encryption algorithms are identified by their IDs.
917 More IDs may be registered at runtime. */
918enum gcry_cipher_algos
919 {
920 GCRY_CIPHER_NONE = 0,
921 GCRY_CIPHER_IDEA = 1,
922 GCRY_CIPHER_3DES = 2,
923 GCRY_CIPHER_CAST5 = 3,
924 GCRY_CIPHER_BLOWFISH = 4,
925 GCRY_CIPHER_SAFER_SK128 = 5,
926 GCRY_CIPHER_DES_SK = 6,
927 GCRY_CIPHER_AES = 7,
928 GCRY_CIPHER_AES192 = 8,
929 GCRY_CIPHER_AES256 = 9,
930 GCRY_CIPHER_TWOFISH = 10,
931
932 /* Other cipher numbers are above 300 for OpenPGP reasons. */
933 GCRY_CIPHER_ARCFOUR = 301, /* Fully compatible with RSA's RC4 (tm). */
934 GCRY_CIPHER_DES = 302, /* Yes, this is single key 56 bit DES. */
935 GCRY_CIPHER_TWOFISH128 = 303,
936 GCRY_CIPHER_SERPENT128 = 304,
937 GCRY_CIPHER_SERPENT192 = 305,
938 GCRY_CIPHER_SERPENT256 = 306,
939 GCRY_CIPHER_RFC2268_40 = 307, /* Ron's Cipher 2 (40 bit). */
940 GCRY_CIPHER_RFC2268_128 = 308, /* Ron's Cipher 2 (128 bit). */
941 GCRY_CIPHER_SEED = 309, /* 128 bit cipher described in RFC4269. */
942 GCRY_CIPHER_CAMELLIA128 = 310,
943 GCRY_CIPHER_CAMELLIA192 = 311,
944 GCRY_CIPHER_CAMELLIA256 = 312,
945 GCRY_CIPHER_SALSA20 = 313,
946 GCRY_CIPHER_SALSA20R12 = 314,
947 GCRY_CIPHER_GOST28147 = 315,
948 GCRY_CIPHER_CHACHA20 = 316,
949 GCRY_CIPHER_GOST28147_MESH = 317, /* With CryptoPro key meshing. */
950 GCRY_CIPHER_SM4 = 318
951 };
952
953/* The Rijndael algorithm is basically AES, so provide some macros. */
954#define GCRY_CIPHER_AES128 GCRY_CIPHER_AES
955#define GCRY_CIPHER_RIJNDAEL GCRY_CIPHER_AES
956#define GCRY_CIPHER_RIJNDAEL128 GCRY_CIPHER_AES128
957#define GCRY_CIPHER_RIJNDAEL192 GCRY_CIPHER_AES192
958#define GCRY_CIPHER_RIJNDAEL256 GCRY_CIPHER_AES256
959
960/* The supported encryption modes. Note that not all of them are
961 supported for each algorithm. */
962enum gcry_cipher_modes
963 {
964 GCRY_CIPHER_MODE_NONE = 0, /* Not yet specified. */
965 GCRY_CIPHER_MODE_ECB = 1, /* Electronic codebook. */
966 GCRY_CIPHER_MODE_CFB = 2, /* Cipher feedback. */
967 GCRY_CIPHER_MODE_CBC = 3, /* Cipher block chaining. */
968 GCRY_CIPHER_MODE_STREAM = 4, /* Used with stream ciphers. */
969 GCRY_CIPHER_MODE_OFB = 5, /* Outer feedback. */
970 GCRY_CIPHER_MODE_CTR = 6, /* Counter. */
971 GCRY_CIPHER_MODE_AESWRAP = 7, /* AES-WRAP algorithm. */
972 GCRY_CIPHER_MODE_CCM = 8, /* Counter with CBC-MAC. */
973 GCRY_CIPHER_MODE_GCM = 9, /* Galois Counter Mode. */
974 GCRY_CIPHER_MODE_POLY1305 = 10, /* Poly1305 based AEAD mode. */
975 GCRY_CIPHER_MODE_OCB = 11, /* OCB3 mode. */
976 GCRY_CIPHER_MODE_CFB8 = 12, /* Cipher feedback (8 bit mode). */
977 GCRY_CIPHER_MODE_XTS = 13, /* XTS mode. */
978 GCRY_CIPHER_MODE_EAX = 14 /* EAX mode. */
979 };
980
981/* Flags used with the open function. */
982enum gcry_cipher_flags
983 {
984 GCRY_CIPHER_SECURE = 1, /* Allocate in secure memory. */
985 GCRY_CIPHER_ENABLE_SYNC = 2, /* Enable CFB sync mode. */
986 GCRY_CIPHER_CBC_CTS = 4, /* Enable CBC cipher text stealing (CTS). */
987 GCRY_CIPHER_CBC_MAC = 8 /* Enable CBC message auth. code (MAC). */
988 };
989
990/* GCM works only with blocks of 128 bits */
991#define GCRY_GCM_BLOCK_LEN (128 / 8)
992
993/* CCM works only with blocks of 128 bits. */
994#define GCRY_CCM_BLOCK_LEN (128 / 8)
995
996/* OCB works only with blocks of 128 bits. */
997#define GCRY_OCB_BLOCK_LEN (128 / 8)
998
999/* XTS works only with blocks of 128 bits. */
1000#define GCRY_XTS_BLOCK_LEN (128 / 8)
1001
1002/* Create a handle for algorithm ALGO to be used in MODE. FLAGS may
1003 be given as an bitwise OR of the gcry_cipher_flags values. */
1004gcry_error_t gcry_cipher_open (gcry_cipher_hd_t *handle,
1005 int algo, int mode, unsigned int flags);
1006
1007/* Close the cipher handle H and release all resource. */
1008void gcry_cipher_close (gcry_cipher_hd_t h);
1009
1010/* Perform various operations on the cipher object H. */
1011gcry_error_t gcry_cipher_ctl (gcry_cipher_hd_t h, int cmd, void *buffer,
1012 size_t buflen);
1013
1014/* Retrieve various information about the cipher object H. */
1015gcry_error_t gcry_cipher_info (gcry_cipher_hd_t h, int what, void *buffer,
1016 size_t *nbytes);
1017
1018/* Retrieve various information about the cipher algorithm ALGO. */
1019gcry_error_t gcry_cipher_algo_info (int algo, int what, void *buffer,
1020 size_t *nbytes);
1021
1022/* Map the cipher algorithm whose ID is contained in ALGORITHM to a
1023 string representation of the algorithm name. For unknown algorithm
1024 IDs this function returns "?". */
1025const char *gcry_cipher_algo_name (int algorithm) _GCRY_GCC_ATTR_PURE;
1026
1027/* Map the algorithm name NAME to an cipher algorithm ID. Return 0 if
1028 the algorithm name is not known. */
1029int gcry_cipher_map_name (const char *name) _GCRY_GCC_ATTR_PURE;
1030
1031/* Given an ASN.1 object identifier in standard IETF dotted decimal
1032 format in STRING, return the encryption mode associated with that
1033 OID or 0 if not known or applicable. */
1034int gcry_cipher_mode_from_oid (const char *string) _GCRY_GCC_ATTR_PURE;
1035
1036/* Encrypt the plaintext of size INLEN in IN using the cipher handle H
1037 into the buffer OUT which has an allocated length of OUTSIZE. For
1038 most algorithms it is possible to pass NULL for in and 0 for INLEN
1039 and do a in-place decryption of the data provided in OUT. */
1040gcry_error_t gcry_cipher_encrypt (gcry_cipher_hd_t h,
1041 void *out, size_t outsize,
1042 const void *in, size_t inlen);
1043
1044/* The counterpart to gcry_cipher_encrypt. */
1045gcry_error_t gcry_cipher_decrypt (gcry_cipher_hd_t h,
1046 void *out, size_t outsize,
1047 const void *in, size_t inlen);
1048
1049/* Set KEY of length KEYLEN bytes for the cipher handle HD. */
1050gcry_error_t gcry_cipher_setkey (gcry_cipher_hd_t hd,
1051 const void *key, size_t keylen);
1052
1053
1054/* Set initialization vector IV of length IVLEN for the cipher handle HD. */
1055gcry_error_t gcry_cipher_setiv (gcry_cipher_hd_t hd,
1056 const void *iv, size_t ivlen);
1057
1058/* Provide additional authentication data for AEAD modes/ciphers. */
1059gcry_error_t gcry_cipher_authenticate (gcry_cipher_hd_t hd, const void *abuf,
1060 size_t abuflen);
1061
1062/* Get authentication tag for AEAD modes/ciphers. */
1063gcry_error_t gcry_cipher_gettag (gcry_cipher_hd_t hd, void *outtag,
1064 size_t taglen);
1065
1066/* Check authentication tag for AEAD modes/ciphers. */
1067gcry_error_t gcry_cipher_checktag (gcry_cipher_hd_t hd, const void *intag,
1068 size_t taglen);
1069
1070/* Reset the handle to the state after open. */
1071#define gcry_cipher_reset(h) gcry_cipher_ctl ((h), GCRYCTL_RESET, NULL, 0)
1072
1073/* Perform the OpenPGP sync operation if this is enabled for the
1074 cipher handle H. */
1075#define gcry_cipher_sync(h) gcry_cipher_ctl( (h), GCRYCTL_CFB_SYNC, NULL, 0)
1076
1077/* Enable or disable CTS in future calls to gcry_encrypt(). CBC mode only. */
1078#define gcry_cipher_cts(h,on) gcry_cipher_ctl( (h), GCRYCTL_SET_CBC_CTS, \
1079 NULL, on )
1080
1081#define gcry_cipher_set_sbox(h,oid) gcry_cipher_ctl( (h), GCRYCTL_SET_SBOX, \
1082 (void *) oid, 0);
1083
1084/* Indicate to the encrypt and decrypt functions that the next call
1085 provides the final data. Only used with some modes. */
1086#define gcry_cipher_final(a) \
1087 gcry_cipher_ctl ((a), GCRYCTL_FINALIZE, NULL, 0)
1088
1089/* Set counter for CTR mode. (CTR,CTRLEN) must denote a buffer of
1090 block size length, or (NULL,0) to set the CTR to the all-zero block. */
1091gpg_error_t gcry_cipher_setctr (gcry_cipher_hd_t hd,
1092 const void *ctr, size_t ctrlen);
1093
1094/* Retrieve the key length in bytes used with algorithm A. */
1095size_t gcry_cipher_get_algo_keylen (int algo);
1096
1097/* Retrieve the block length in bytes used with algorithm A. */
1098size_t gcry_cipher_get_algo_blklen (int algo);
1099
1100/* Return 0 if the algorithm A is available for use. */
1101#define gcry_cipher_test_algo(a) \
1102 gcry_cipher_algo_info( (a), GCRYCTL_TEST_ALGO, NULL, NULL )
1103
1104
1105/************************************
1106 * *
1107 * Asymmetric Cipher Functions *
1108 * *
1109 ************************************/
1110
1111/* The algorithms and their IDs we support. */
1112enum gcry_pk_algos
1113 {
1114 GCRY_PK_RSA = 1, /* RSA */
1115 GCRY_PK_RSA_E = 2, /* (deprecated: use 1). */
1116 GCRY_PK_RSA_S = 3, /* (deprecated: use 1). */
1117 GCRY_PK_ELG_E = 16, /* (deprecated: use 20). */
1118 GCRY_PK_DSA = 17, /* Digital Signature Algorithm. */
1119 GCRY_PK_ECC = 18, /* Generic ECC. */
1120 GCRY_PK_ELG = 20, /* Elgamal */
1121 GCRY_PK_ECDSA = 301, /* (only for external use). */
1122 GCRY_PK_ECDH = 302, /* (only for external use). */
1123 GCRY_PK_EDDSA = 303 /* (only for external use). */
1124 };
1125
1126/* Flags describing usage capabilities of a PK algorithm. */
1127#define GCRY_PK_USAGE_SIGN 1 /* Good for signatures. */
1128#define GCRY_PK_USAGE_ENCR 2 /* Good for encryption. */
1129#define GCRY_PK_USAGE_CERT 4 /* Good to certify other keys. */
1130#define GCRY_PK_USAGE_AUTH 8 /* Good for authentication. */
1131#define GCRY_PK_USAGE_UNKN 128 /* Unknown usage flag. */
1132
1133/* Modes used with gcry_pubkey_get_sexp. */
1134#define GCRY_PK_GET_PUBKEY 1
1135#define GCRY_PK_GET_SECKEY 2
1136
1137/* Encrypt the DATA using the public key PKEY and store the result as
1138 a newly created S-expression at RESULT. */
1139gcry_error_t gcry_pk_encrypt (gcry_sexp_t *result,
1140 gcry_sexp_t data, gcry_sexp_t pkey);
1141
1142/* Decrypt the DATA using the private key SKEY and store the result as
1143 a newly created S-expression at RESULT. */
1144gcry_error_t gcry_pk_decrypt (gcry_sexp_t *result,
1145 gcry_sexp_t data, gcry_sexp_t skey);
1146
1147/* Sign the DATA using the private key SKEY and store the result as
1148 a newly created S-expression at RESULT. */
1149gcry_error_t gcry_pk_sign (gcry_sexp_t *result,
1150 gcry_sexp_t data, gcry_sexp_t skey);
1151
1152/* Check the signature SIGVAL on DATA using the public key PKEY. */
1153gcry_error_t gcry_pk_verify (gcry_sexp_t sigval,
1154 gcry_sexp_t data, gcry_sexp_t pkey);
1155
1156/* Check that private KEY is sane. */
1157gcry_error_t gcry_pk_testkey (gcry_sexp_t key);
1158
1159/* Generate a new key pair according to the parameters given in
1160 S_PARMS. The new key pair is returned in as an S-expression in
1161 R_KEY. */
1162gcry_error_t gcry_pk_genkey (gcry_sexp_t *r_key, gcry_sexp_t s_parms);
1163
1164/* Catch all function for miscellaneous operations. */
1165gcry_error_t gcry_pk_ctl (int cmd, void *buffer, size_t buflen);
1166
1167/* Retrieve information about the public key algorithm ALGO. */
1168gcry_error_t gcry_pk_algo_info (int algo, int what,
1169 void *buffer, size_t *nbytes);
1170
1171/* Map the public key algorithm whose ID is contained in ALGORITHM to
1172 a string representation of the algorithm name. For unknown
1173 algorithm IDs this functions returns "?". */
1174const char *gcry_pk_algo_name (int algorithm) _GCRY_GCC_ATTR_PURE;
1175
1176/* Map the algorithm NAME to a public key algorithm Id. Return 0 if
1177 the algorithm name is not known. */
1178int gcry_pk_map_name (const char* name) _GCRY_GCC_ATTR_PURE;
1179
1180/* Return what is commonly referred as the key length for the given
1181 public or private KEY. */
1182unsigned int gcry_pk_get_nbits (gcry_sexp_t key) _GCRY_GCC_ATTR_PURE;
1183
1184/* Return the so called KEYGRIP which is the SHA-1 hash of the public
1185 key parameters expressed in a way depending on the algorithm. */
1186unsigned char *gcry_pk_get_keygrip (gcry_sexp_t key, unsigned char *array);
1187
1188/* Return the name of the curve matching KEY. */
1189const char *gcry_pk_get_curve (gcry_sexp_t key, int iterator,
1190 unsigned int *r_nbits);
1191
1192/* Return an S-expression with the parameters of the named ECC curve
1193 NAME. ALGO must be set to an ECC algorithm. */
1194gcry_sexp_t gcry_pk_get_param (int algo, const char *name);
1195
1196/* Return 0 if the public key algorithm A is available for use. */
1197#define gcry_pk_test_algo(a) \
1198 gcry_pk_algo_info( (a), GCRYCTL_TEST_ALGO, NULL, NULL )
1199
1200/* Return an S-expression representing the context CTX. */
1201gcry_error_t gcry_pubkey_get_sexp (gcry_sexp_t *r_sexp,
1202 int mode, gcry_ctx_t ctx);
1203
1204/************************************
1205 * *
1206 * Modern ECC Functions *
1207 * *
1208 ************************************/
1209
1210/* The curves we support. */
1211enum gcry_ecc_curves
1212 {
1213 GCRY_ECC_CURVE25519 = 1,
1214 GCRY_ECC_CURVE448 = 2
1215 };
1216
1217/* Get the length of point to prepare buffer for the result. */
1218unsigned int gcry_ecc_get_algo_keylen (int curveid);
1219
1220/* Convenience function to compute scalar multiplication of the
1221 * Montgomery form of curve. */
1222gpg_error_t gcry_ecc_mul_point (int curveid, unsigned char *result,
1223 const unsigned char *scalar,
1224 const unsigned char *point);
1225
1226
1227
1228/************************************
1229 * *
1230 * Cryptograhic Hash Functions *
1231 * *
1232 ************************************/
1233
1234/* Algorithm IDs for the hash functions we know about. Not all of them
1235 are implemented. */
1236enum gcry_md_algos
1237 {
1238 GCRY_MD_NONE = 0,
1239 GCRY_MD_MD5 = 1,
1240 GCRY_MD_SHA1 = 2,
1241 GCRY_MD_RMD160 = 3,
1242 GCRY_MD_MD2 = 5,
1243 GCRY_MD_TIGER = 6, /* TIGER/192 as used by gpg <= 1.3.2. */
1244 GCRY_MD_HAVAL = 7, /* HAVAL, 5 pass, 160 bit. */
1245 GCRY_MD_SHA256 = 8,
1246 GCRY_MD_SHA384 = 9,
1247 GCRY_MD_SHA512 = 10,
1248 GCRY_MD_SHA224 = 11,
1249
1250 GCRY_MD_MD4 = 301,
1251 GCRY_MD_CRC32 = 302,
1252 GCRY_MD_CRC32_RFC1510 = 303,
1253 GCRY_MD_CRC24_RFC2440 = 304,
1254 GCRY_MD_WHIRLPOOL = 305,
1255 GCRY_MD_TIGER1 = 306, /* TIGER fixed. */
1256 GCRY_MD_TIGER2 = 307, /* TIGER2 variant. */
1257 GCRY_MD_GOSTR3411_94 = 308, /* GOST R 34.11-94. */
1258 GCRY_MD_STRIBOG256 = 309, /* GOST R 34.11-2012, 256 bit. */
1259 GCRY_MD_STRIBOG512 = 310, /* GOST R 34.11-2012, 512 bit. */
1260 GCRY_MD_GOSTR3411_CP = 311, /* GOST R 34.11-94 with CryptoPro-A S-Box. */
1261 GCRY_MD_SHA3_224 = 312,
1262 GCRY_MD_SHA3_256 = 313,
1263 GCRY_MD_SHA3_384 = 314,
1264 GCRY_MD_SHA3_512 = 315,
1265 GCRY_MD_SHAKE128 = 316,
1266 GCRY_MD_SHAKE256 = 317,
1267 GCRY_MD_BLAKE2B_512 = 318,
1268 GCRY_MD_BLAKE2B_384 = 319,
1269 GCRY_MD_BLAKE2B_256 = 320,
1270 GCRY_MD_BLAKE2B_160 = 321,
1271 GCRY_MD_BLAKE2S_256 = 322,
1272 GCRY_MD_BLAKE2S_224 = 323,
1273 GCRY_MD_BLAKE2S_160 = 324,
1274 GCRY_MD_BLAKE2S_128 = 325,
1275 GCRY_MD_SM3 = 326,
1276 GCRY_MD_SHA512_256 = 327,
1277 GCRY_MD_SHA512_224 = 328
1278 };
1279
1280/* Flags used with the open function. */
1281enum gcry_md_flags
1282 {
1283 GCRY_MD_FLAG_SECURE = 1, /* Allocate all buffers in "secure" memory. */
1284 GCRY_MD_FLAG_HMAC = 2, /* Make an HMAC out of this algorithm. */
1285 GCRY_MD_FLAG_BUGEMU1 = 0x0100
1286 };
1287
1288/* (Forward declaration.) */
1289struct gcry_md_context;
1290
1291/* This object is used to hold a handle to a message digest object.
1292 This structure is private - only to be used by the public gcry_md_*
1293 macros. */
1294typedef struct gcry_md_handle
1295{
1296 /* Actual context. */
1297 struct gcry_md_context *ctx;
1298
1299 /* Buffer management. */
1300 int bufpos;
1301 int bufsize;
1302 unsigned char buf[1];
1303} *gcry_md_hd_t;
1304
1305/* Compatibility types, do not use them. */
1306#ifndef GCRYPT_NO_DEPRECATED
1307typedef struct gcry_md_handle *GCRY_MD_HD _GCRY_GCC_ATTR_DEPRECATED;
1308typedef struct gcry_md_handle *GcryMDHd _GCRY_GCC_ATTR_DEPRECATED;
1309#endif
1310
1311/* Create a message digest object for algorithm ALGO. FLAGS may be
1312 given as an bitwise OR of the gcry_md_flags values. ALGO may be
1313 given as 0 if the algorithms to be used are later set using
1314 gcry_md_enable. */
1315gcry_error_t gcry_md_open (gcry_md_hd_t *h, int algo, unsigned int flags);
1316
1317/* Release the message digest object HD. */
1318void gcry_md_close (gcry_md_hd_t hd);
1319
1320/* Add the message digest algorithm ALGO to the digest object HD. */
1321gcry_error_t gcry_md_enable (gcry_md_hd_t hd, int algo);
1322
1323/* Create a new digest object as an exact copy of the object HD. */
1324gcry_error_t gcry_md_copy (gcry_md_hd_t *bhd, gcry_md_hd_t ahd);
1325
1326/* Reset the digest object HD to its initial state. */
1327void gcry_md_reset (gcry_md_hd_t hd);
1328
1329/* Perform various operations on the digest object HD. */
1330gcry_error_t gcry_md_ctl (gcry_md_hd_t hd, int cmd,
1331 void *buffer, size_t buflen);
1332
1333/* Pass LENGTH bytes of data in BUFFER to the digest object HD so that
1334 it can update the digest values. This is the actual hash
1335 function. */
1336void gcry_md_write (gcry_md_hd_t hd, const void *buffer, size_t length);
1337
1338/* Read out the final digest from HD return the digest value for
1339 algorithm ALGO. */
1340unsigned char *gcry_md_read (gcry_md_hd_t hd, int algo);
1341
1342/* Read more output from algorithm ALGO to BUFFER of size LENGTH from
1343 * digest object HD. Algorithm needs to be 'expendable-output function'. */
1344gpg_error_t gcry_md_extract (gcry_md_hd_t hd, int algo, void *buffer,
1345 size_t length);
1346
1347/* Convenience function to calculate the hash from the data in BUFFER
1348 of size LENGTH using the algorithm ALGO avoiding the creation of a
1349 hash object. The hash is returned in the caller provided buffer
1350 DIGEST which must be large enough to hold the digest of the given
1351 algorithm. */
1352void gcry_md_hash_buffer (int algo, void *digest,
1353 const void *buffer, size_t length);
1354
1355/* Convenience function to hash multiple buffers. */
1356gpg_error_t gcry_md_hash_buffers (int algo, unsigned int flags, void *digest,
1357 const gcry_buffer_t *iov, int iovcnt);
1358
1359/* Retrieve the algorithm used with HD. This does not work reliable
1360 if more than one algorithm is enabled in HD. */
1361int gcry_md_get_algo (gcry_md_hd_t hd);
1362
1363/* Retrieve the length in bytes of the digest yielded by algorithm
1364 ALGO. */
1365unsigned int gcry_md_get_algo_dlen (int algo);
1366
1367/* Return true if the the algorithm ALGO is enabled in the digest
1368 object A. */
1369int gcry_md_is_enabled (gcry_md_hd_t a, int algo);
1370
1371/* Return true if the digest object A is allocated in "secure" memory. */
1372int gcry_md_is_secure (gcry_md_hd_t a);
1373
1374/* Deprecated: Use gcry_md_is_enabled or gcry_md_is_secure. */
1375gcry_error_t gcry_md_info (gcry_md_hd_t h, int what, void *buffer,
1376 size_t *nbytes) _GCRY_ATTR_INTERNAL;
1377
1378/* Retrieve various information about the algorithm ALGO. */
1379gcry_error_t gcry_md_algo_info (int algo, int what, void *buffer,
1380 size_t *nbytes);
1381
1382/* Map the digest algorithm id ALGO to a string representation of the
1383 algorithm name. For unknown algorithms this function returns
1384 "?". */
1385const char *gcry_md_algo_name (int algo) _GCRY_GCC_ATTR_PURE;
1386
1387/* Map the algorithm NAME to a digest algorithm Id. Return 0 if
1388 the algorithm name is not known. */
1389int gcry_md_map_name (const char* name) _GCRY_GCC_ATTR_PURE;
1390
1391/* For use with the HMAC feature, the set MAC key to the KEY of
1392 KEYLEN bytes. */
1393gcry_error_t gcry_md_setkey (gcry_md_hd_t hd, const void *key, size_t keylen);
1394
1395/* Start or stop debugging for digest handle HD; i.e. create a file
1396 named dbgmd-<n>.<suffix> while hashing. If SUFFIX is NULL,
1397 debugging stops and the file will be closed. */
1398void gcry_md_debug (gcry_md_hd_t hd, const char *suffix);
1399
1400
1401/* Update the hash(s) of H with the character C. This is a buffered
1402 version of the gcry_md_write function. */
1403#define gcry_md_putc(h,c) \
1404 do { \
1405 gcry_md_hd_t h__ = (h); \
1406 if( (h__)->bufpos == (h__)->bufsize ) \
1407 gcry_md_write( (h__), NULL, 0 ); \
1408 (h__)->buf[(h__)->bufpos++] = (c) & 0xff; \
1409 } while(0)
1410
1411/* Finalize the digest calculation. This is not really needed because
1412 gcry_md_read() does this implicitly. */
1413#define gcry_md_final(a) \
1414 gcry_md_ctl ((a), GCRYCTL_FINALIZE, NULL, 0)
1415
1416/* Return 0 if the algorithm A is available for use. */
1417#define gcry_md_test_algo(a) \
1418 gcry_md_algo_info( (a), GCRYCTL_TEST_ALGO, NULL, NULL )
1419
1420/* Return an DER encoded ASN.1 OID for the algorithm A in buffer B. N
1421 must point to size_t variable with the available size of buffer B.
1422 After return it will receive the actual size of the returned
1423 OID. */
1424#define gcry_md_get_asnoid(a,b,n) \
1425 gcry_md_algo_info((a), GCRYCTL_GET_ASNOID, (b), (n))
1426
1427
1428
1429/**********************************************
1430 * *
1431 * Message Authentication Code Functions *
1432 * *
1433 **********************************************/
1434
1435/* The data object used to hold a handle to an encryption object. */
1436struct gcry_mac_handle;
1437typedef struct gcry_mac_handle *gcry_mac_hd_t;
1438
1439/* Algorithm IDs for the hash functions we know about. Not all of them
1440 are implemented. */
1441enum gcry_mac_algos
1442 {
1443 GCRY_MAC_NONE = 0,
1444 GCRY_MAC_GOST28147_IMIT = 1,
1445
1446 GCRY_MAC_HMAC_SHA256 = 101,
1447 GCRY_MAC_HMAC_SHA224 = 102,
1448 GCRY_MAC_HMAC_SHA512 = 103,
1449 GCRY_MAC_HMAC_SHA384 = 104,
1450 GCRY_MAC_HMAC_SHA1 = 105,
1451 GCRY_MAC_HMAC_MD5 = 106,
1452 GCRY_MAC_HMAC_MD4 = 107,
1453 GCRY_MAC_HMAC_RMD160 = 108,
1454 GCRY_MAC_HMAC_TIGER1 = 109, /* The fixed TIGER variant */
1455 GCRY_MAC_HMAC_WHIRLPOOL = 110,
1456 GCRY_MAC_HMAC_GOSTR3411_94 = 111,
1457 GCRY_MAC_HMAC_STRIBOG256 = 112,
1458 GCRY_MAC_HMAC_STRIBOG512 = 113,
1459 GCRY_MAC_HMAC_MD2 = 114,
1460 GCRY_MAC_HMAC_SHA3_224 = 115,
1461 GCRY_MAC_HMAC_SHA3_256 = 116,
1462 GCRY_MAC_HMAC_SHA3_384 = 117,
1463 GCRY_MAC_HMAC_SHA3_512 = 118,
1464 GCRY_MAC_HMAC_GOSTR3411_CP = 119,
1465 GCRY_MAC_HMAC_BLAKE2B_512 = 120,
1466 GCRY_MAC_HMAC_BLAKE2B_384 = 121,
1467 GCRY_MAC_HMAC_BLAKE2B_256 = 122,
1468 GCRY_MAC_HMAC_BLAKE2B_160 = 123,
1469 GCRY_MAC_HMAC_BLAKE2S_256 = 124,
1470 GCRY_MAC_HMAC_BLAKE2S_224 = 125,
1471 GCRY_MAC_HMAC_BLAKE2S_160 = 126,
1472 GCRY_MAC_HMAC_BLAKE2S_128 = 127,
1473 GCRY_MAC_HMAC_SM3 = 128,
1474 GCRY_MAC_HMAC_SHA512_256 = 129,
1475 GCRY_MAC_HMAC_SHA512_224 = 130,
1476
1477 GCRY_MAC_CMAC_AES = 201,
1478 GCRY_MAC_CMAC_3DES = 202,
1479 GCRY_MAC_CMAC_CAMELLIA = 203,
1480 GCRY_MAC_CMAC_CAST5 = 204,
1481 GCRY_MAC_CMAC_BLOWFISH = 205,
1482 GCRY_MAC_CMAC_TWOFISH = 206,
1483 GCRY_MAC_CMAC_SERPENT = 207,
1484 GCRY_MAC_CMAC_SEED = 208,
1485 GCRY_MAC_CMAC_RFC2268 = 209,
1486 GCRY_MAC_CMAC_IDEA = 210,
1487 GCRY_MAC_CMAC_GOST28147 = 211,
1488 GCRY_MAC_CMAC_SM4 = 212,
1489
1490 GCRY_MAC_GMAC_AES = 401,
1491 GCRY_MAC_GMAC_CAMELLIA = 402,
1492 GCRY_MAC_GMAC_TWOFISH = 403,
1493 GCRY_MAC_GMAC_SERPENT = 404,
1494 GCRY_MAC_GMAC_SEED = 405,
1495
1496 GCRY_MAC_POLY1305 = 501,
1497 GCRY_MAC_POLY1305_AES = 502,
1498 GCRY_MAC_POLY1305_CAMELLIA = 503,
1499 GCRY_MAC_POLY1305_TWOFISH = 504,
1500 GCRY_MAC_POLY1305_SERPENT = 505,
1501 GCRY_MAC_POLY1305_SEED = 506
1502 };
1503
1504/* Flags used with the open function. */
1505enum gcry_mac_flags
1506 {
1507 GCRY_MAC_FLAG_SECURE = 1 /* Allocate all buffers in "secure" memory. */
1508 };
1509
1510/* Create a MAC handle for algorithm ALGO. FLAGS may be given as an bitwise OR
1511 of the gcry_mac_flags values. CTX maybe NULL or gcry_ctx_t object to be
1512 associated with HANDLE. */
1513gcry_error_t gcry_mac_open (gcry_mac_hd_t *handle, int algo,
1514 unsigned int flags, gcry_ctx_t ctx);
1515
1516/* Close the MAC handle H and release all resource. */
1517void gcry_mac_close (gcry_mac_hd_t h);
1518
1519/* Perform various operations on the MAC object H. */
1520gcry_error_t gcry_mac_ctl (gcry_mac_hd_t h, int cmd, void *buffer,
1521 size_t buflen);
1522
1523/* Retrieve various information about the MAC algorithm ALGO. */
1524gcry_error_t gcry_mac_algo_info (int algo, int what, void *buffer,
1525 size_t *nbytes);
1526
1527/* Set KEY of length KEYLEN bytes for the MAC handle HD. */
1528gcry_error_t gcry_mac_setkey (gcry_mac_hd_t hd, const void *key,
1529 size_t keylen);
1530
1531/* Set initialization vector IV of length IVLEN for the MAC handle HD. */
1532gcry_error_t gcry_mac_setiv (gcry_mac_hd_t hd, const void *iv,
1533 size_t ivlen);
1534
1535/* Pass LENGTH bytes of data in BUFFER to the MAC object HD so that
1536 it can update the MAC values. */
1537gcry_error_t gcry_mac_write (gcry_mac_hd_t hd, const void *buffer,
1538 size_t length);
1539
1540/* Read out the final authentication code from the MAC object HD to BUFFER. */
1541gcry_error_t gcry_mac_read (gcry_mac_hd_t hd, void *buffer, size_t *buflen);
1542
1543/* Verify the final authentication code from the MAC object HD with BUFFER. */
1544gcry_error_t gcry_mac_verify (gcry_mac_hd_t hd, const void *buffer,
1545 size_t buflen);
1546
1547/* Retrieve the algorithm used with MAC. */
1548int gcry_mac_get_algo (gcry_mac_hd_t hd);
1549
1550/* Retrieve the length in bytes of the MAC yielded by algorithm ALGO. */
1551unsigned int gcry_mac_get_algo_maclen (int algo);
1552
1553/* Retrieve the default key length in bytes used with algorithm A. */
1554unsigned int gcry_mac_get_algo_keylen (int algo);
1555
1556/* Map the MAC algorithm whose ID is contained in ALGORITHM to a
1557 string representation of the algorithm name. For unknown algorithm
1558 IDs this function returns "?". */
1559const char *gcry_mac_algo_name (int algorithm) _GCRY_GCC_ATTR_PURE;
1560
1561/* Map the algorithm name NAME to an MAC algorithm ID. Return 0 if
1562 the algorithm name is not known. */
1563int gcry_mac_map_name (const char *name) _GCRY_GCC_ATTR_PURE;
1564
1565/* Reset the handle to the state after open/setkey. */
1566#define gcry_mac_reset(h) gcry_mac_ctl ((h), GCRYCTL_RESET, NULL, 0)
1567
1568/* Return 0 if the algorithm A is available for use. */
1569#define gcry_mac_test_algo(a) \
1570 gcry_mac_algo_info( (a), GCRYCTL_TEST_ALGO, NULL, NULL )
1571
1572
1573/******************************
1574 * *
1575 * Key Derivation Functions *
1576 * *
1577 ******************************/
1578
1579/* Algorithm IDs for the KDFs. */
1580enum gcry_kdf_algos
1581 {
1582 GCRY_KDF_NONE = 0,
1583 GCRY_KDF_SIMPLE_S2K = 16,
1584 GCRY_KDF_SALTED_S2K = 17,
1585 GCRY_KDF_ITERSALTED_S2K = 19,
1586 GCRY_KDF_PBKDF1 = 33,
1587 GCRY_KDF_PBKDF2 = 34,
1588 GCRY_KDF_SCRYPT = 48
1589 };
1590
1591/* Derive a key from a passphrase. */
1592gpg_error_t gcry_kdf_derive (const void *passphrase, size_t passphraselen,
1593 int algo, int subalgo,
1594 const void *salt, size_t saltlen,
1595 unsigned long iterations,
1596 size_t keysize, void *keybuffer);
1597
1598
1599
1600
1601/************************************
1602 * *
1603 * Random Generating Functions *
1604 * *
1605 ************************************/
1606
1607/* The type of the random number generator. */
1608enum gcry_rng_types
1609 {
1610 GCRY_RNG_TYPE_STANDARD = 1, /* The default CSPRNG generator. */
1611 GCRY_RNG_TYPE_FIPS = 2, /* The FIPS X9.31 AES generator. */
1612 GCRY_RNG_TYPE_SYSTEM = 3 /* The system's native generator. */
1613 };
1614
1615/* The possible values for the random quality. The rule of thumb is
1616 to use STRONG for session keys and VERY_STRONG for key material.
1617 WEAK is usually an alias for STRONG and should not be used anymore
1618 (except with gcry_mpi_randomize); use gcry_create_nonce instead. */
1619typedef enum gcry_random_level
1620 {
1621 GCRY_WEAK_RANDOM = 0,
1622 GCRY_STRONG_RANDOM = 1,
1623 GCRY_VERY_STRONG_RANDOM = 2
1624 }
1625gcry_random_level_t;
1626
1627/* Fill BUFFER with LENGTH bytes of random, using random numbers of
1628 quality LEVEL. */
1629void gcry_randomize (void *buffer, size_t length,
1630 enum gcry_random_level level);
1631
1632/* Add the external random from BUFFER with LENGTH bytes into the
1633 pool. QUALITY should either be -1 for unknown or in the range of 0
1634 to 100 */
1635gcry_error_t gcry_random_add_bytes (const void *buffer, size_t length,
1636 int quality);
1637
1638/* If random numbers are used in an application, this macro should be
1639 called from time to time so that new stuff gets added to the
1640 internal pool of the RNG. */
1641#define gcry_fast_random_poll() gcry_control (GCRYCTL_FAST_POLL, NULL)
1642
1643
1644/* Return NBYTES of allocated random using a random numbers of quality
1645 LEVEL. */
1646void *gcry_random_bytes (size_t nbytes, enum gcry_random_level level)
1647 _GCRY_GCC_ATTR_MALLOC;
1648
1649/* Return NBYTES of allocated random using a random numbers of quality
1650 LEVEL. The random is returned in "secure" memory. */
1651void *gcry_random_bytes_secure (size_t nbytes, enum gcry_random_level level)
1652 _GCRY_GCC_ATTR_MALLOC;
1653
1654
1655/* Set the big integer W to a random value of NBITS using a random
1656 generator with quality LEVEL. Note that by using a level of
1657 GCRY_WEAK_RANDOM gcry_create_nonce is used internally. */
1658void gcry_mpi_randomize (gcry_mpi_t w,
1659 unsigned int nbits, enum gcry_random_level level);
1660
1661
1662/* Create an unpredicable nonce of LENGTH bytes in BUFFER. */
1663void gcry_create_nonce (void *buffer, size_t length);
1664
1665
1666
1667
1668
1669/*******************************/
1670/* */
1671/* Prime Number Functions */
1672/* */
1673/*******************************/
1674
1675/* Mode values passed to a gcry_prime_check_func_t. */
1676#define GCRY_PRIME_CHECK_AT_FINISH 0
1677#define GCRY_PRIME_CHECK_AT_GOT_PRIME 1
1678#define GCRY_PRIME_CHECK_AT_MAYBE_PRIME 2
1679
1680/* The function should return 1 if the operation shall continue, 0 to
1681 reject the prime candidate. */
1682typedef int (*gcry_prime_check_func_t) (void *arg, int mode,
1683 gcry_mpi_t candidate);
1684
1685/* Flags for gcry_prime_generate(): */
1686
1687/* Allocate prime numbers and factors in secure memory. */
1688#define GCRY_PRIME_FLAG_SECRET (1 << 0)
1689
1690/* Make sure that at least one prime factor is of size
1691 `FACTOR_BITS'. */
1692#define GCRY_PRIME_FLAG_SPECIAL_FACTOR (1 << 1)
1693
1694/* Generate a new prime number of PRIME_BITS bits and store it in
1695 PRIME. If FACTOR_BITS is non-zero, one of the prime factors of
1696 (prime - 1) / 2 must be FACTOR_BITS bits long. If FACTORS is
1697 non-zero, allocate a new, NULL-terminated array holding the prime
1698 factors and store it in FACTORS. FLAGS might be used to influence
1699 the prime number generation process. */
1700gcry_error_t gcry_prime_generate (gcry_mpi_t *prime,
1701 unsigned int prime_bits,
1702 unsigned int factor_bits,
1703 gcry_mpi_t **factors,
1704 gcry_prime_check_func_t cb_func,
1705 void *cb_arg,
1706 gcry_random_level_t random_level,
1707 unsigned int flags);
1708
1709/* Find a generator for PRIME where the factorization of (prime-1) is
1710 in the NULL terminated array FACTORS. Return the generator as a
1711 newly allocated MPI in R_G. If START_G is not NULL, use this as
1712 the start for the search. */
1713gcry_error_t gcry_prime_group_generator (gcry_mpi_t *r_g,
1714 gcry_mpi_t prime,
1715 gcry_mpi_t *factors,
1716 gcry_mpi_t start_g);
1717
1718
1719/* Convenience function to release the FACTORS array. */
1720void gcry_prime_release_factors (gcry_mpi_t *factors);
1721
1722
1723/* Check whether the number X is prime. */
1724gcry_error_t gcry_prime_check (gcry_mpi_t x, unsigned int flags);
1725
1726
1727
1728/************************************
1729 * *
1730 * Miscellaneous Stuff *
1731 * *
1732 ************************************/
1733
1734/* Release the context object CTX. */
1735void gcry_ctx_release (gcry_ctx_t ctx);
1736
1737/* Log data using Libgcrypt's own log interface. */
1738void gcry_log_debug (const char *fmt, ...) _GCRY_GCC_ATTR_PRINTF(1,2);
1739void gcry_log_debughex (const char *text, const void *buffer, size_t length);
1740void gcry_log_debugmpi (const char *text, gcry_mpi_t mpi);
1741void gcry_log_debugpnt (const char *text,
1742 gcry_mpi_point_t point, gcry_ctx_t ctx);
1743void gcry_log_debugsxp (const char *text, gcry_sexp_t sexp);
1744
1745char *gcry_get_config (int mode, const char *what);
1746
1747/* Log levels used by the internal logging facility. */
1748enum gcry_log_levels
1749 {
1750 GCRY_LOG_CONT = 0, /* (Continue the last log line.) */
1751 GCRY_LOG_INFO = 10,
1752 GCRY_LOG_WARN = 20,
1753 GCRY_LOG_ERROR = 30,
1754 GCRY_LOG_FATAL = 40,
1755 GCRY_LOG_BUG = 50,
1756 GCRY_LOG_DEBUG = 100
1757 };
1758
1759/* Type for progress handlers. */
1760typedef void (*gcry_handler_progress_t) (void *, const char *, int, int, int);
1761
1762/* Type for memory allocation handlers. */
1763typedef void *(*gcry_handler_alloc_t) (size_t n);
1764
1765/* Type for secure memory check handlers. */
1766typedef int (*gcry_handler_secure_check_t) (const void *);
1767
1768/* Type for memory reallocation handlers. */
1769typedef void *(*gcry_handler_realloc_t) (void *p, size_t n);
1770
1771/* Type for memory free handlers. */
1772typedef void (*gcry_handler_free_t) (void *);
1773
1774/* Type for out-of-memory handlers. */
1775typedef int (*gcry_handler_no_mem_t) (void *, size_t, unsigned int);
1776
1777/* Type for fatal error handlers. */
1778typedef void (*gcry_handler_error_t) (void *, int, const char *);
1779
1780/* Type for logging handlers. */
1781typedef void (*gcry_handler_log_t) (void *, int, const char *, va_list);
1782
1783/* Certain operations can provide progress information. This function
1784 is used to register a handler for retrieving these information. */
1785void gcry_set_progress_handler (gcry_handler_progress_t cb, void *cb_data);
1786
1787
1788/* Register a custom memory allocation functions. */
1789void gcry_set_allocation_handler (
1790 gcry_handler_alloc_t func_alloc,
1791 gcry_handler_alloc_t func_alloc_secure,
1792 gcry_handler_secure_check_t func_secure_check,
1793 gcry_handler_realloc_t func_realloc,
1794 gcry_handler_free_t func_free);
1795
1796/* Register a function used instead of the internal out of memory
1797 handler. */
1798void gcry_set_outofcore_handler (gcry_handler_no_mem_t h, void *opaque);
1799
1800/* Register a function used instead of the internal fatal error
1801 handler. */
1802void gcry_set_fatalerror_handler (gcry_handler_error_t fnc, void *opaque);
1803
1804/* Register a function used instead of the internal logging
1805 facility. */
1806void gcry_set_log_handler (gcry_handler_log_t f, void *opaque);
1807
1808/* Reserved for future use. */
1809void gcry_set_gettext_handler (const char *(*f)(const char*));
1810
1811/* Libgcrypt uses its own memory allocation. It is important to use
1812 gcry_free () to release memory allocated by libgcrypt. */
1813void *gcry_malloc (size_t n) _GCRY_GCC_ATTR_MALLOC;
1814void *gcry_calloc (size_t n, size_t m) _GCRY_GCC_ATTR_MALLOC;
1815void *gcry_malloc_secure (size_t n) _GCRY_GCC_ATTR_MALLOC;
1816void *gcry_calloc_secure (size_t n, size_t m) _GCRY_GCC_ATTR_MALLOC;
1817void *gcry_realloc (void *a, size_t n);
1818char *gcry_strdup (const char *string) _GCRY_GCC_ATTR_MALLOC;
1819void *gcry_xmalloc (size_t n) _GCRY_GCC_ATTR_MALLOC;
1820void *gcry_xcalloc (size_t n, size_t m) _GCRY_GCC_ATTR_MALLOC;
1821void *gcry_xmalloc_secure (size_t n) _GCRY_GCC_ATTR_MALLOC;
1822void *gcry_xcalloc_secure (size_t n, size_t m) _GCRY_GCC_ATTR_MALLOC;
1823void *gcry_xrealloc (void *a, size_t n);
1824char *gcry_xstrdup (const char * a) _GCRY_GCC_ATTR_MALLOC;
1825void gcry_free (void *a);
1826
1827/* Return true if A is allocated in "secure" memory. */
1828int gcry_is_secure (const void *a) _GCRY_GCC_ATTR_PURE;
1829
1830/* Return true if Libgcrypt is in FIPS mode. */
1831#define gcry_fips_mode_active() !!gcry_control (GCRYCTL_FIPS_MODE_P, 0)
1832
1833
1834#if 0 /* (Keep Emacsens' auto-indent happy.) */
1835{
1836#endif
1837#ifdef __cplusplus
1838}
1839#endif
1840#endif /* _GCRYPT_H */
1841/*
1842Local Variables:
1843buffer-read-only: t
1844End:
1845*/
1846

source code of include/gcrypt.h