1 | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | /* This Source Code Form is subject to the terms of the Mozilla Public |
3 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
4 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
5 | |
6 | #ifndef prbit_h___ |
7 | #define prbit_h___ |
8 | |
9 | #include "prtypes.h" |
10 | PR_BEGIN_EXTERN_C |
11 | |
12 | /* |
13 | ** Replace compare/jump/add/shift sequence with compiler built-in/intrinsic |
14 | ** functions. |
15 | */ |
16 | #if defined(_WIN32) && (_MSC_VER >= 1300) && \ |
17 | (defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM) || \ |
18 | defined(_M_ARM64)) |
19 | # include <intrin.h> |
20 | # pragma intrinsic(_BitScanForward,_BitScanReverse) |
21 | __forceinline static int __prBitScanForward32(unsigned int val) |
22 | { |
23 | unsigned long idx; |
24 | _BitScanForward(&idx, (unsigned long)val); |
25 | return( (int)idx ); |
26 | } |
27 | __forceinline static int __prBitScanReverse32(unsigned int val) |
28 | { |
29 | unsigned long idx; |
30 | _BitScanReverse(&idx, (unsigned long)val); |
31 | return( (int)(31-idx) ); |
32 | } |
33 | # define pr_bitscan_ctz32(val) __prBitScanForward32(val) |
34 | # define pr_bitscan_clz32(val) __prBitScanReverse32(val) |
35 | # define PR_HAVE_BUILTIN_BITSCAN32 |
36 | #elif ((__GNUC__ >= 4) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) && \ |
37 | (defined(__i386__) || defined(__x86_64__) || defined(__arm__) || \ |
38 | defined(__aarch64__)) |
39 | # define pr_bitscan_ctz32(val) __builtin_ctz(val) |
40 | # define pr_bitscan_clz32(val) __builtin_clz(val) |
41 | # define PR_HAVE_BUILTIN_BITSCAN32 |
42 | #endif /* MSVC || GCC */ |
43 | |
44 | /* |
45 | ** A prbitmap_t is a long integer that can be used for bitmaps |
46 | */ |
47 | typedef unsigned long prbitmap_t; |
48 | |
49 | #define PR_TEST_BIT(_map,_bit) \ |
50 | ((_map)[(_bit)>>PR_BITS_PER_LONG_LOG2] & (1L << ((_bit) & (PR_BITS_PER_LONG-1)))) |
51 | #define PR_SET_BIT(_map,_bit) \ |
52 | ((_map)[(_bit)>>PR_BITS_PER_LONG_LOG2] |= (1L << ((_bit) & (PR_BITS_PER_LONG-1)))) |
53 | #define PR_CLEAR_BIT(_map,_bit) \ |
54 | ((_map)[(_bit)>>PR_BITS_PER_LONG_LOG2] &= ~(1L << ((_bit) & (PR_BITS_PER_LONG-1)))) |
55 | |
56 | /* |
57 | ** Compute the log of the least power of 2 greater than or equal to n |
58 | */ |
59 | NSPR_API(PRIntn) PR_CeilingLog2(PRUint32 i); |
60 | |
61 | /* |
62 | ** Compute the log of the greatest power of 2 less than or equal to n |
63 | */ |
64 | NSPR_API(PRIntn) PR_FloorLog2(PRUint32 i); |
65 | |
66 | /* |
67 | ** Macro version of PR_CeilingLog2: Compute the log of the least power of |
68 | ** 2 greater than or equal to _n. The result is returned in _log2. |
69 | */ |
70 | #ifdef PR_HAVE_BUILTIN_BITSCAN32 |
71 | #define PR_CEILING_LOG2(_log2,_n) \ |
72 | PR_BEGIN_MACRO \ |
73 | PRUint32 j_ = (PRUint32)(_n); \ |
74 | (_log2) = (j_ <= 1 ? 0 : 32 - pr_bitscan_clz32(j_ - 1)); \ |
75 | PR_END_MACRO |
76 | #else |
77 | #define PR_CEILING_LOG2(_log2,_n) \ |
78 | PR_BEGIN_MACRO \ |
79 | PRUint32 j_ = (PRUint32)(_n); \ |
80 | (_log2) = 0; \ |
81 | if ((j_) & ((j_)-1)) \ |
82 | (_log2) += 1; \ |
83 | if ((j_) >> 16) \ |
84 | (_log2) += 16, (j_) >>= 16; \ |
85 | if ((j_) >> 8) \ |
86 | (_log2) += 8, (j_) >>= 8; \ |
87 | if ((j_) >> 4) \ |
88 | (_log2) += 4, (j_) >>= 4; \ |
89 | if ((j_) >> 2) \ |
90 | (_log2) += 2, (j_) >>= 2; \ |
91 | if ((j_) >> 1) \ |
92 | (_log2) += 1; \ |
93 | PR_END_MACRO |
94 | #endif /* PR_HAVE_BUILTIN_BITSCAN32 */ |
95 | |
96 | /* |
97 | ** Macro version of PR_FloorLog2: Compute the log of the greatest power of |
98 | ** 2 less than or equal to _n. The result is returned in _log2. |
99 | ** |
100 | ** This is equivalent to finding the highest set bit in the word. |
101 | */ |
102 | #ifdef PR_HAVE_BUILTIN_BITSCAN32 |
103 | #define PR_FLOOR_LOG2(_log2,_n) \ |
104 | PR_BEGIN_MACRO \ |
105 | PRUint32 j_ = (PRUint32)(_n); \ |
106 | (_log2) = 31 - pr_bitscan_clz32((j_) | 1); \ |
107 | PR_END_MACRO |
108 | #else |
109 | #define PR_FLOOR_LOG2(_log2,_n) \ |
110 | PR_BEGIN_MACRO \ |
111 | PRUint32 j_ = (PRUint32)(_n); \ |
112 | (_log2) = 0; \ |
113 | if ((j_) >> 16) \ |
114 | (_log2) += 16, (j_) >>= 16; \ |
115 | if ((j_) >> 8) \ |
116 | (_log2) += 8, (j_) >>= 8; \ |
117 | if ((j_) >> 4) \ |
118 | (_log2) += 4, (j_) >>= 4; \ |
119 | if ((j_) >> 2) \ |
120 | (_log2) += 2, (j_) >>= 2; \ |
121 | if ((j_) >> 1) \ |
122 | (_log2) += 1; \ |
123 | PR_END_MACRO |
124 | #endif /* PR_HAVE_BUILTIN_BITSCAN32 */ |
125 | |
126 | /* |
127 | ** Macros for rotate left and right. The argument 'a' must be an unsigned |
128 | ** 32-bit integer type such as PRUint32. |
129 | ** |
130 | ** There is no rotate operation in the C Language, so the construct |
131 | ** (a << 4) | (a >> 28) is frequently used instead. Most compilers convert |
132 | ** this to a rotate instruction, but MSVC doesn't without a little help. |
133 | ** To get MSVC to generate a rotate instruction, we have to use the _rotl |
134 | ** or _rotr intrinsic and use a pragma to make it inline. |
135 | ** |
136 | ** Note: MSVC in VS2005 will do an inline rotate instruction on the above |
137 | ** construct. |
138 | */ |
139 | |
140 | #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_AMD64) || \ |
141 | defined(_M_X64) || defined(_M_ARM) || defined(_M_ARM64)) |
142 | #include <stdlib.h> |
143 | #pragma intrinsic(_rotl, _rotr) |
144 | #define PR_ROTATE_LEFT32(a, bits) _rotl(a, bits) |
145 | #define PR_ROTATE_RIGHT32(a, bits) _rotr(a, bits) |
146 | #else |
147 | #define PR_ROTATE_LEFT32(a, bits) (((a) << (bits)) | ((a) >> (32 - (bits)))) |
148 | #define PR_ROTATE_RIGHT32(a, bits) (((a) >> (bits)) | ((a) << (32 - (bits)))) |
149 | #endif |
150 | |
151 | PR_END_EXTERN_C |
152 | #endif /* prbit_h___ */ |
153 | |