1 | /* |
2 | * This file is part of KQuickCharts |
3 | * SPDX-FileCopyrightText: 2019 Arjen Hiemstra <ahiemstra@heimr.nl> |
4 | * |
5 | * SPDX-License-Identifier: LGPL-2.1-only OR LGPL-3.0-only OR LicenseRef-KDE-Accepted-LGPL |
6 | */ |
7 | |
8 | #include "LineChart.h" |
9 | |
10 | #include <cmath> |
11 | |
12 | #include <QPainter> |
13 | #include <QPainterPath> |
14 | #include <QQuickWindow> |
15 | |
16 | #include "RangeGroup.h" |
17 | #include "datasource/ChartDataSource.h" |
18 | #include "scenegraph/LineChartNode.h" |
19 | |
20 | static const float PixelsPerStep = 2.0; |
21 | |
22 | |
23 | QList<QVector2D> interpolatePoints(const QList<QVector2D> &points, float height); |
24 | QList<float> calculateTangents(const QList<QVector2D> &points, float height); |
25 | QVector2D cubicHermite(const QVector2D &first, const QVector2D &second, float step, float mFirst, float mSecond); |
26 | |
27 | QColor colorWithAlpha(const QColor &color, qreal opacity) |
28 | { |
29 | auto result = color; |
30 | result.setRedF(result.redF() * opacity); |
31 | result.setGreenF(result.greenF() * opacity); |
32 | result.setBlueF(result.blueF() * opacity); |
33 | result.setAlphaF(opacity); |
34 | return result; |
35 | } |
36 | |
37 | LineChartAttached::LineChartAttached(QObject *parent) |
38 | : QObject(parent) |
39 | { |
40 | } |
41 | |
42 | QVariant LineChartAttached::value() const |
43 | { |
44 | return m_value; |
45 | } |
46 | |
47 | void LineChartAttached::setValue(const QVariant &value) |
48 | { |
49 | if (value == m_value) { |
50 | return; |
51 | } |
52 | |
53 | m_value = value; |
54 | Q_EMIT valueChanged(); |
55 | } |
56 | |
57 | QColor LineChartAttached::color() const |
58 | { |
59 | return m_color; |
60 | } |
61 | |
62 | void LineChartAttached::setColor(const QColor &color) |
63 | { |
64 | if (color == m_color) { |
65 | return; |
66 | } |
67 | |
68 | m_color = color; |
69 | Q_EMIT colorChanged(); |
70 | } |
71 | |
72 | QString LineChartAttached::name() const |
73 | { |
74 | return m_name; |
75 | } |
76 | |
77 | void LineChartAttached::setName(const QString &newName) |
78 | { |
79 | if (newName == m_name) { |
80 | return; |
81 | } |
82 | |
83 | m_name = newName; |
84 | Q_EMIT nameChanged(); |
85 | } |
86 | |
87 | QString LineChartAttached::shortName() const |
88 | { |
89 | if (m_shortName.isEmpty()) { |
90 | return m_name; |
91 | } else { |
92 | return m_shortName; |
93 | } |
94 | } |
95 | |
96 | void LineChartAttached::setShortName(const QString &newShortName) |
97 | { |
98 | if (newShortName == m_shortName) { |
99 | return; |
100 | } |
101 | |
102 | m_shortName = newShortName; |
103 | Q_EMIT shortNameChanged(); |
104 | } |
105 | |
106 | LineChart::LineChart(QQuickItem *parent) |
107 | : XYChart(parent) |
108 | { |
109 | } |
110 | |
111 | bool LineChart::interpolate() const |
112 | { |
113 | return m_interpolate; |
114 | } |
115 | |
116 | qreal LineChart::lineWidth() const |
117 | { |
118 | return m_lineWidth; |
119 | } |
120 | |
121 | qreal LineChart::fillOpacity() const |
122 | { |
123 | return m_fillOpacity; |
124 | } |
125 | |
126 | void LineChart::setInterpolate(bool newInterpolate) |
127 | { |
128 | if (newInterpolate == m_interpolate) { |
129 | return; |
130 | } |
131 | |
132 | m_interpolate = newInterpolate; |
133 | polish(); |
134 | Q_EMIT interpolateChanged(); |
135 | } |
136 | |
137 | void LineChart::setLineWidth(qreal width) |
138 | { |
139 | if (qFuzzyCompare(p1: m_lineWidth, p2: width)) { |
140 | return; |
141 | } |
142 | |
143 | m_lineWidth = width; |
144 | update(); |
145 | Q_EMIT lineWidthChanged(); |
146 | } |
147 | |
148 | void LineChart::setFillOpacity(qreal opacity) |
149 | { |
150 | if (qFuzzyCompare(p1: m_fillOpacity, p2: opacity)) { |
151 | return; |
152 | } |
153 | |
154 | m_fillOpacity = opacity; |
155 | update(); |
156 | Q_EMIT fillOpacityChanged(); |
157 | } |
158 | |
159 | ChartDataSource *LineChart::fillColorSource() const |
160 | { |
161 | return m_fillColorSource; |
162 | } |
163 | |
164 | void LineChart::setFillColorSource(ChartDataSource *newFillColorSource) |
165 | { |
166 | if (newFillColorSource == m_fillColorSource) { |
167 | return; |
168 | } |
169 | |
170 | m_fillColorSource = newFillColorSource; |
171 | update(); |
172 | Q_EMIT fillColorSourceChanged(); |
173 | } |
174 | |
175 | QQmlComponent *LineChart::pointDelegate() const |
176 | { |
177 | return m_pointDelegate; |
178 | } |
179 | |
180 | void LineChart::setPointDelegate(QQmlComponent *newPointDelegate) |
181 | { |
182 | if (newPointDelegate == m_pointDelegate) { |
183 | return; |
184 | } |
185 | |
186 | m_pointDelegate = newPointDelegate; |
187 | for (auto entry : std::as_const(t&: m_pointDelegates)) { |
188 | qDeleteAll(c: entry); |
189 | } |
190 | m_pointDelegates.clear(); |
191 | polish(); |
192 | Q_EMIT pointDelegateChanged(); |
193 | } |
194 | |
195 | void LineChart::updatePolish() |
196 | { |
197 | if (m_rangeInvalid) { |
198 | updateComputedRange(); |
199 | m_rangeInvalid = false; |
200 | } |
201 | |
202 | QList<QVector2D> previousValues; |
203 | |
204 | const auto range = computedRange(); |
205 | const auto sources = valueSources(); |
206 | for (int i = 0; i < sources.size(); ++i) { |
207 | auto valueSource = sources.at(i); |
208 | |
209 | float stepSize = width() / (range.distanceX - 1); |
210 | QList<QVector2D> values(range.distanceX); |
211 | auto generator = [&, i = range.startX]() mutable -> QVector2D { |
212 | float value = 0; |
213 | if (range.distanceY != 0) { |
214 | value = (valueSource->item(index: i).toFloat() - range.startY) / range.distanceY; |
215 | } |
216 | |
217 | auto result = QVector2D{direction() == Direction::ZeroAtStart ? i * stepSize : float(boundingRect().right()) - i * stepSize, value}; |
218 | i++; |
219 | return result; |
220 | }; |
221 | |
222 | if (direction() == Direction::ZeroAtStart) { |
223 | std::generate_n(first: values.begin(), n: range.distanceX, gen: generator); |
224 | } else { |
225 | std::generate_n(first: values.rbegin(), n: range.distanceX, gen: generator); |
226 | } |
227 | |
228 | if (stacked() && !previousValues.isEmpty()) { |
229 | if (values.size() != previousValues.size()) { |
230 | qWarning() << "Value source" << valueSource->objectName() |
231 | << "has a different number of elements from the previous source. Ignoring stacking for this source." ; |
232 | } else { |
233 | std::for_each(first: values.begin(), last: values.end(), f: [previousValues, i = 0](QVector2D &point) mutable { |
234 | point.setY(point.y() + previousValues.at(i: i++).y()); |
235 | }); |
236 | } |
237 | } |
238 | previousValues = values; |
239 | |
240 | if (m_pointDelegate) { |
241 | auto &delegates = m_pointDelegates[valueSource]; |
242 | if (delegates.size() != values.size()) { |
243 | qDeleteAll(c: delegates); |
244 | createPointDelegates(values, sourceIndex: i); |
245 | } else { |
246 | for (int item = 0; item < values.size(); ++item) { |
247 | auto delegate = delegates.at(i: item); |
248 | updatePointDelegate(delegate, position: values.at(i: item), value: valueSource->item(index: item), sourceIndex: i); |
249 | } |
250 | } |
251 | } |
252 | |
253 | if (m_interpolate) { |
254 | m_values[valueSource] = interpolatePoints(points: values, height: height()); |
255 | } else { |
256 | m_values[valueSource] = values; |
257 | } |
258 | } |
259 | |
260 | const auto pointKeys = m_pointDelegates.keys(); |
261 | for (auto key : pointKeys) { |
262 | if (!sources.contains(t: key)) { |
263 | qDeleteAll(c: m_pointDelegates[key]); |
264 | m_pointDelegates.remove(key); |
265 | } |
266 | } |
267 | |
268 | update(); |
269 | } |
270 | |
271 | QSGNode *LineChart::updatePaintNode(QSGNode *node, QQuickItem::UpdatePaintNodeData *data) |
272 | { |
273 | Q_UNUSED(data); |
274 | |
275 | if (!node) { |
276 | node = new QSGNode(); |
277 | } |
278 | |
279 | const auto sources = valueSources(); |
280 | for (int i = 0; i < sources.size(); ++i) { |
281 | int childIndex = sources.size() - 1 - i; |
282 | while (childIndex >= node->childCount()) { |
283 | node->appendChildNode(node: new LineChartNode{}); |
284 | } |
285 | auto lineNode = static_cast<LineChartNode *>(node->childAtIndex(i: childIndex)); |
286 | auto color = colorSource() ? colorSource()->item(index: i).value<QColor>() : Qt::black; |
287 | auto fillColor = m_fillColorSource ? m_fillColorSource->item(index: i).value<QColor>() : colorWithAlpha(color, opacity: m_fillOpacity); |
288 | updateLineNode(node: lineNode, lineColor: color, fillColor, valueSource: sources.at(i)); |
289 | } |
290 | |
291 | while (node->childCount() > sources.size()) { |
292 | // removeChildNode unfortunately does not take care of deletion so we |
293 | // need to handle this manually. |
294 | auto lastNode = node->childAtIndex(i: node->childCount() - 1); |
295 | node->removeChildNode(node: lastNode); |
296 | delete lastNode; |
297 | } |
298 | |
299 | return node; |
300 | } |
301 | |
302 | void LineChart::onDataChanged() |
303 | { |
304 | m_rangeInvalid = true; |
305 | polish(); |
306 | } |
307 | |
308 | void LineChart::geometryChange(const QRectF &newGeometry, const QRectF &oldGeometry) |
309 | { |
310 | XYChart::geometryChange(newGeometry, oldGeometry); |
311 | if (newGeometry != oldGeometry) { |
312 | polish(); |
313 | } |
314 | } |
315 | |
316 | void LineChart::updateLineNode(LineChartNode *node, const QColor &lineColor, const QColor &fillColor, ChartDataSource *valueSource) |
317 | { |
318 | if (window()) { |
319 | node->setRect(rect: boundingRect(), devicePixelRatio: window()->devicePixelRatio()); |
320 | } else { |
321 | node->setRect(rect: boundingRect(), devicePixelRatio: 1.0); |
322 | } |
323 | node->setLineColor(lineColor); |
324 | node->setFillColor(fillColor); |
325 | node->setLineWidth(m_lineWidth); |
326 | |
327 | auto values = m_values.value(key: valueSource); |
328 | node->setValues(values); |
329 | |
330 | node->updatePoints(); |
331 | } |
332 | |
333 | void LineChart::createPointDelegates(const QList<QVector2D> &values, int sourceIndex) |
334 | { |
335 | auto valueSource = valueSources().at(i: sourceIndex); |
336 | |
337 | QList<QQuickItem *> delegates; |
338 | for (int i = 0; i < values.size(); ++i) { |
339 | auto delegate = qobject_cast<QQuickItem *>(o: m_pointDelegate->beginCreate(qmlContext(m_pointDelegate))); |
340 | if (!delegate) { |
341 | qWarning() << "Delegate creation for point" << i << "of value source" << valueSource->objectName() |
342 | << "failed, make sure pointDelegate is a QQuickItem" ; |
343 | delegate = new QQuickItem(this); |
344 | } |
345 | |
346 | delegate->setParent(this); |
347 | delegate->setParentItem(this); |
348 | updatePointDelegate(delegate, position: values.at(i), value: valueSource->item(index: i), sourceIndex); |
349 | |
350 | m_pointDelegate->completeCreate(); |
351 | |
352 | delegates.append(t: delegate); |
353 | } |
354 | |
355 | m_pointDelegates.insert(key: valueSource, value: delegates); |
356 | } |
357 | |
358 | void LineChart::updatePointDelegate(QQuickItem *delegate, const QVector2D &position, const QVariant &value, int sourceIndex) |
359 | { |
360 | auto pos = QPointF{position.x() - delegate->width() / 2, (1.0 - position.y()) * height() - delegate->height() / 2}; |
361 | delegate->setPosition(pos); |
362 | |
363 | auto attached = static_cast<LineChartAttached *>(qmlAttachedPropertiesObject<LineChart>(obj: delegate, create: true)); |
364 | attached->setValue(value); |
365 | attached->setColor(colorSource() ? colorSource()->item(index: sourceIndex).value<QColor>() : Qt::black); |
366 | attached->setName(nameSource() ? nameSource()->item(index: sourceIndex).toString() : QString{}); |
367 | attached->setShortName(shortNameSource() ? shortNameSource()->item(index: sourceIndex).toString() : QString{}); |
368 | } |
369 | |
370 | // Smoothly interpolate between points, using monotonic cubic interpolation. |
371 | QList<QVector2D> interpolatePoints(const QList<QVector2D> &points, float height) |
372 | { |
373 | if (points.size() < 2) { |
374 | return points; |
375 | } |
376 | |
377 | auto tangents = calculateTangents(points, height); |
378 | |
379 | QList<QVector2D> result; |
380 | |
381 | auto current = QVector2D{0.0, points.first().y() * height}; |
382 | result.append(t: QVector2D{0.0, points.first().y()}); |
383 | |
384 | for (int i = 0; i < points.size() - 1; ++i) { |
385 | auto next = QVector2D{points.at(i: i + 1).x(), points.at(i: i + 1).y() * height}; |
386 | |
387 | auto currentTangent = tangents.at(i); |
388 | auto nextTangent = tangents.at(i: i + 1); |
389 | |
390 | auto stepCount = int(std::max(a: 1.0f, b: (next.x() - current.x()) / PixelsPerStep)); |
391 | auto stepSize = (next.x() - current.x()) / stepCount; |
392 | |
393 | if (stepCount == 1 || qFuzzyIsNull(f: next.y() - current.y())) { |
394 | result.append(t: QVector2D{next.x(), next.y() / height}); |
395 | current = next; |
396 | continue; |
397 | } |
398 | |
399 | for (auto delta = current.x(); delta < next.x(); delta += stepSize) { |
400 | auto interpolated = cubicHermite(first: current, second: next, step: delta, mFirst: currentTangent, mSecond: nextTangent); |
401 | interpolated.setY(interpolated.y() / height); |
402 | result.append(t: interpolated); |
403 | } |
404 | |
405 | current = next; |
406 | } |
407 | |
408 | current.setY(current.y() / height); |
409 | result.append(t: current); |
410 | |
411 | return result; |
412 | } |
413 | |
414 | // This calculates the tangents for monotonic cubic spline interpolation. |
415 | // See https://en.wikipedia.org/wiki/Monotone_cubic_interpolation for details. |
416 | QList<float> calculateTangents(const QList<QVector2D> &points, float height) |
417 | { |
418 | QList<float> secantSlopes; |
419 | secantSlopes.reserve(asize: points.size()); |
420 | |
421 | QList<float> tangents; |
422 | tangents.reserve(asize: points.size()); |
423 | |
424 | float previousSlope = 0.0; |
425 | float slope = 0.0; |
426 | |
427 | for (int i = 0; i < points.size() - 1; ++i) { |
428 | auto current = points.at(i); |
429 | auto next = points.at(i: i + 1); |
430 | |
431 | previousSlope = slope; |
432 | slope = (next.y() * height - current.y() * height) / (next.x() - current.x()); |
433 | |
434 | secantSlopes.append(t: slope); |
435 | |
436 | if (i == 0) { |
437 | tangents.append(t: slope); |
438 | } else if (previousSlope * slope < 0.0) { |
439 | tangents.append(t: 0.0); |
440 | } else { |
441 | tangents.append(t: (previousSlope + slope) / 2.0); |
442 | } |
443 | } |
444 | tangents.append(t: secantSlopes.last()); |
445 | |
446 | for (int i = 0; i < points.size() - 1; ++i) { |
447 | auto slope = secantSlopes.at(i); |
448 | |
449 | if (qFuzzyIsNull(f: slope)) { |
450 | tangents[i] = 0.0; |
451 | tangents[i + 1] = 0.0; |
452 | continue; |
453 | } |
454 | |
455 | auto alpha = tangents.at(i) / slope; |
456 | auto beta = tangents.at(i: i + 1) / slope; |
457 | |
458 | if (alpha < 0.0) { |
459 | tangents[i] = 0.0; |
460 | } |
461 | |
462 | if (beta < 0.0) { |
463 | tangents[i + 1] = 0.0; |
464 | } |
465 | |
466 | auto length = alpha * alpha + beta * beta; |
467 | if (length > 9) { |
468 | auto tau = 3.0 / sqrt(x: length); |
469 | tangents[i] = tau * alpha * slope; |
470 | tangents[i + 1] = tau * beta * slope; |
471 | } |
472 | } |
473 | |
474 | return tangents; |
475 | } |
476 | |
477 | // Cubic Hermite Interpolation between two points |
478 | // Given two points, an X value between those two points and two tangents, this |
479 | // will perform cubic hermite interpolation between the two points. |
480 | // See https://en.wikipedia.org/wiki/Cubic_Hermite_spline for details as well as |
481 | // the above mentioned article on monotonic interpolation. |
482 | QVector2D cubicHermite(const QVector2D &first, const QVector2D &second, float step, float mFirst, float mSecond) |
483 | { |
484 | const auto delta = second.x() - first.x(); |
485 | const auto t = (step - first.x()) / delta; |
486 | |
487 | // Hermite basis values |
488 | // h₀₀(t) = 2t³ - 3t² + 1 |
489 | const auto h00 = 2.0f * std::pow(x: t, y: 3.0f) - 3.0f * std::pow(x: t, y: 2.0f) + 1.0f; |
490 | // h₁₀(t) = t³ - 2t² + t |
491 | const auto h10 = std::pow(x: t, y: 3.0f) - 2.0f * std::pow(x: t, y: 2.0f) + t; |
492 | // h₀₁(t) = -2t³ + 3t² |
493 | const auto h01 = -2.0f * std::pow(x: t, y: 3.0f) + 3.0f * std::pow(x: t, y: 2.0f); |
494 | // h₁₁(t) = t³ - t² |
495 | const auto h11 = std::pow(x: t, y: 3.0f) - std::pow(x: t, y: 2.0f); |
496 | |
497 | auto result = QVector2D{step, first.y() * h00 + delta * mFirst * h10 + second.y() * h01 + delta * mSecond * h11}; |
498 | return result; |
499 | } |
500 | |
501 | #include "moc_LineChart.cpp" |
502 | |