| 1 | /* |
| 2 | Copyright (C) 1999-2007 The Botan Project. All rights reserved. |
| 3 | |
| 4 | Redistribution and use in source and binary forms, for any use, with or without |
| 5 | modification, is permitted provided that the following conditions are met: |
| 6 | |
| 7 | 1. Redistributions of source code must retain the above copyright notice, this |
| 8 | list of conditions, and the following disclaimer. |
| 9 | |
| 10 | 2. Redistributions in binary form must reproduce the above copyright notice, |
| 11 | this list of conditions, and the following disclaimer in the documentation |
| 12 | and/or other materials provided with the distribution. |
| 13 | |
| 14 | THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) "AS IS" AND ANY EXPRESS OR IMPLIED |
| 15 | WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| 16 | MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. |
| 17 | |
| 18 | IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE FOR ANY DIRECT, |
| 19 | INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| 20 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 21 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 22 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
| 23 | OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| 24 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | */ |
| 26 | // LICENSEHEADER_END |
| 27 | namespace QCA { // WRAPNS_LINE |
| 28 | /************************************************* |
| 29 | * Karatsuba Multiplication Source File * |
| 30 | * (C) 1999-2007 The Botan Project * |
| 31 | *************************************************/ |
| 32 | |
| 33 | } // WRAPNS_LINE |
| 34 | #include <botan/mp_core.h> |
| 35 | namespace QCA { // WRAPNS_LINE |
| 36 | } // WRAPNS_LINE |
| 37 | #include <botan/mem_ops.h> |
| 38 | namespace QCA { // WRAPNS_LINE |
| 39 | |
| 40 | namespace Botan { |
| 41 | |
| 42 | namespace { |
| 43 | |
| 44 | /************************************************* |
| 45 | * Simple O(N^2) Multiplication * |
| 46 | *************************************************/ |
| 47 | void bigint_simple_mul(word z[], const word x[], u32bit x_size, const word y[], u32bit y_size) |
| 48 | { |
| 49 | clear_mem(ptr: z, n: x_size + y_size); |
| 50 | |
| 51 | for (u32bit j = 0; j != x_size; ++j) |
| 52 | z[j + y_size] = bigint_mul_add_words(z + j, y, y_size, x[j]); |
| 53 | } |
| 54 | |
| 55 | /************************************************* |
| 56 | * Karatsuba Multiplication Operation * |
| 57 | *************************************************/ |
| 58 | void karatsuba_mul(word z[], const word x[], const word y[], u32bit N, word workspace[]) |
| 59 | { |
| 60 | const u32bit KARATSUBA_MUL_LOWER_SIZE = BOTAN_KARAT_MUL_THRESHOLD; |
| 61 | |
| 62 | if (N == 6) |
| 63 | bigint_comba_mul6(z, x, y); |
| 64 | else if (N == 8) |
| 65 | bigint_comba_mul8(z, x, y); |
| 66 | else if (N < KARATSUBA_MUL_LOWER_SIZE || N % 2) |
| 67 | bigint_simple_mul(z, x, x_size: N, y, y_size: N); |
| 68 | else { |
| 69 | const u32bit N2 = N / 2; |
| 70 | |
| 71 | const word *x0 = x; |
| 72 | const word *x1 = x + N2; |
| 73 | const word *y0 = y; |
| 74 | const word *y1 = y + N2; |
| 75 | word *z0 = z; |
| 76 | word *z1 = z + N; |
| 77 | |
| 78 | const s32bit cmp0 = bigint_cmp(x0, N2, x1, N2); |
| 79 | const s32bit cmp1 = bigint_cmp(y1, N2, y0, N2); |
| 80 | |
| 81 | clear_mem(ptr: workspace, n: 2 * N); |
| 82 | |
| 83 | if (cmp0 && cmp1) { |
| 84 | if (cmp0 > 0) |
| 85 | bigint_sub3(z0, x0, N2, x1, N2); |
| 86 | else |
| 87 | bigint_sub3(z0, x1, N2, x0, N2); |
| 88 | |
| 89 | if (cmp1 > 0) |
| 90 | bigint_sub3(z1, y1, N2, y0, N2); |
| 91 | else |
| 92 | bigint_sub3(z1, y0, N2, y1, N2); |
| 93 | |
| 94 | karatsuba_mul(z: workspace, x: z0, y: z1, N: N2, workspace: workspace + N); |
| 95 | } |
| 96 | |
| 97 | karatsuba_mul(z: z0, x: x0, y: y0, N: N2, workspace: workspace + N); |
| 98 | karatsuba_mul(z: z1, x: x1, y: y1, N: N2, workspace: workspace + N); |
| 99 | |
| 100 | word carry = bigint_add3_nc(workspace + N, z0, N, z1, N); |
| 101 | carry += bigint_add2_nc(z + N2, N, workspace + N, N); |
| 102 | bigint_add2_nc(z + N + N2, N2, &carry, 1); |
| 103 | |
| 104 | if ((cmp0 == cmp1) || (cmp0 == 0) || (cmp1 == 0)) |
| 105 | bigint_add2(z + N2, 2 * N - N2, workspace, N); |
| 106 | else |
| 107 | bigint_sub2(z + N2, 2 * N - N2, workspace, N); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | /************************************************* |
| 112 | * Pick a good size for the Karatsuba multiply * |
| 113 | *************************************************/ |
| 114 | u32bit karatsuba_size(u32bit z_size, u32bit x_size, u32bit x_sw, u32bit y_size, u32bit y_sw) |
| 115 | { |
| 116 | if (x_sw > x_size || x_sw > y_size || y_sw > x_size || y_sw > y_size) |
| 117 | return 0; |
| 118 | |
| 119 | if (((x_size == x_sw) && (x_size % 2)) || ((y_size == y_sw) && (y_size % 2))) |
| 120 | return 0; |
| 121 | |
| 122 | u32bit start = (x_sw > y_sw) ? x_sw : y_sw; |
| 123 | u32bit end = (x_size < y_size) ? x_size : y_size; |
| 124 | |
| 125 | if (start == end) { |
| 126 | if (start % 2) |
| 127 | return 0; |
| 128 | return start; |
| 129 | } |
| 130 | |
| 131 | for (u32bit j = start; j <= end; ++j) { |
| 132 | if (j % 2) |
| 133 | continue; |
| 134 | |
| 135 | if (2 * j > z_size) |
| 136 | return 0; |
| 137 | |
| 138 | if (x_sw <= j && j <= x_size && y_sw <= j && j <= y_size) { |
| 139 | if (j % 4 == 2 && (j + 2) <= x_size && (j + 2) <= y_size && 2 * (j + 2) <= z_size) |
| 140 | return j + 2; |
| 141 | return j; |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | return 0; |
| 146 | } |
| 147 | |
| 148 | /************************************************* |
| 149 | * Handle small operand multiplies * |
| 150 | *************************************************/ |
| 151 | void handle_small_mul(word z[], |
| 152 | u32bit z_size, |
| 153 | const word x[], |
| 154 | u32bit x_size, |
| 155 | u32bit x_sw, |
| 156 | const word y[], |
| 157 | u32bit y_size, |
| 158 | u32bit y_sw) |
| 159 | { |
| 160 | if (x_sw == 1) |
| 161 | bigint_linmul3(z, y, y_sw, x[0]); |
| 162 | else if (y_sw == 1) |
| 163 | bigint_linmul3(z, x, x_sw, y[0]); |
| 164 | |
| 165 | else if (x_sw <= 4 && x_size >= 4 && y_sw <= 4 && y_size >= 4 && z_size >= 8) |
| 166 | bigint_comba_mul4(z, x, y); |
| 167 | |
| 168 | else if (x_sw <= 6 && x_size >= 6 && y_sw <= 6 && y_size >= 6 && z_size >= 12) |
| 169 | bigint_comba_mul6(z, x, y); |
| 170 | |
| 171 | else if (x_sw <= 8 && x_size >= 8 && y_sw <= 8 && y_size >= 8 && z_size >= 16) |
| 172 | bigint_comba_mul8(z, x, y); |
| 173 | |
| 174 | else |
| 175 | bigint_simple_mul(z, x, x_size: x_sw, y, y_size: y_sw); |
| 176 | } |
| 177 | |
| 178 | } |
| 179 | |
| 180 | /************************************************* |
| 181 | * Multiplication Algorithm Dispatcher * |
| 182 | *************************************************/ |
| 183 | void bigint_mul(word z[], |
| 184 | u32bit z_size, |
| 185 | word workspace[], |
| 186 | const word x[], |
| 187 | u32bit x_size, |
| 188 | u32bit x_sw, |
| 189 | const word y[], |
| 190 | u32bit y_size, |
| 191 | u32bit y_sw) |
| 192 | { |
| 193 | if (x_size <= 8 || y_size <= 8) { |
| 194 | handle_small_mul(z, z_size, x, x_size, x_sw, y, y_size, y_sw); |
| 195 | return; |
| 196 | } |
| 197 | |
| 198 | const u32bit N = karatsuba_size(z_size, x_size, x_sw, y_size, y_sw); |
| 199 | |
| 200 | if (N) { |
| 201 | clear_mem(ptr: workspace, n: 2 * N); |
| 202 | karatsuba_mul(z, x, y, N, workspace); |
| 203 | } else |
| 204 | bigint_simple_mul(z, x, x_size: x_sw, y, y_size: y_sw); |
| 205 | } |
| 206 | |
| 207 | } |
| 208 | } // WRAPNS_LINE |
| 209 | |