1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8#ifndef __LINUX_BPF_H__
9#define __LINUX_BPF_H__
10
11#include <linux/types.h>
12#include <linux/bpf_common.h>
13
14/* Extended instruction set based on top of classic BPF */
15
16/* instruction classes */
17#define BPF_JMP32 0x06 /* jmp mode in word width */
18#define BPF_ALU64 0x07 /* alu mode in double word width */
19
20/* ld/ldx fields */
21#define BPF_DW 0x18 /* double word (64-bit) */
22#define BPF_ATOMIC 0xc0 /* atomic memory ops - op type in immediate */
23#define BPF_XADD 0xc0 /* exclusive add - legacy name */
24
25/* alu/jmp fields */
26#define BPF_MOV 0xb0 /* mov reg to reg */
27#define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */
28
29/* change endianness of a register */
30#define BPF_END 0xd0 /* flags for endianness conversion: */
31#define BPF_TO_LE 0x00 /* convert to little-endian */
32#define BPF_TO_BE 0x08 /* convert to big-endian */
33#define BPF_FROM_LE BPF_TO_LE
34#define BPF_FROM_BE BPF_TO_BE
35
36/* jmp encodings */
37#define BPF_JNE 0x50 /* jump != */
38#define BPF_JLT 0xa0 /* LT is unsigned, '<' */
39#define BPF_JLE 0xb0 /* LE is unsigned, '<=' */
40#define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */
41#define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */
42#define BPF_JSLT 0xc0 /* SLT is signed, '<' */
43#define BPF_JSLE 0xd0 /* SLE is signed, '<=' */
44#define BPF_CALL 0x80 /* function call */
45#define BPF_EXIT 0x90 /* function return */
46
47/* atomic op type fields (stored in immediate) */
48#define BPF_FETCH 0x01 /* not an opcode on its own, used to build others */
49#define BPF_XCHG (0xe0 | BPF_FETCH) /* atomic exchange */
50#define BPF_CMPXCHG (0xf0 | BPF_FETCH) /* atomic compare-and-write */
51
52/* Register numbers */
53enum {
54 BPF_REG_0 = 0,
55 BPF_REG_1,
56 BPF_REG_2,
57 BPF_REG_3,
58 BPF_REG_4,
59 BPF_REG_5,
60 BPF_REG_6,
61 BPF_REG_7,
62 BPF_REG_8,
63 BPF_REG_9,
64 BPF_REG_10,
65 __MAX_BPF_REG,
66};
67
68/* BPF has 10 general purpose 64-bit registers and stack frame. */
69#define MAX_BPF_REG __MAX_BPF_REG
70
71struct bpf_insn {
72 __u8 code; /* opcode */
73 __u8 dst_reg:4; /* dest register */
74 __u8 src_reg:4; /* source register */
75 __s16 off; /* signed offset */
76 __s32 imm; /* signed immediate constant */
77};
78
79/* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
80struct bpf_lpm_trie_key {
81 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */
82 __u8 data[0]; /* Arbitrary size */
83};
84
85struct bpf_cgroup_storage_key {
86 __u64 cgroup_inode_id; /* cgroup inode id */
87 __u32 attach_type; /* program attach type (enum bpf_attach_type) */
88};
89
90union bpf_iter_link_info {
91 struct {
92 __u32 map_fd;
93 } map;
94};
95
96/* BPF syscall commands, see bpf(2) man-page for more details. */
97/**
98 * DOC: eBPF Syscall Preamble
99 *
100 * The operation to be performed by the **bpf**\ () system call is determined
101 * by the *cmd* argument. Each operation takes an accompanying argument,
102 * provided via *attr*, which is a pointer to a union of type *bpf_attr* (see
103 * below). The size argument is the size of the union pointed to by *attr*.
104 */
105/**
106 * DOC: eBPF Syscall Commands
107 *
108 * BPF_MAP_CREATE
109 * Description
110 * Create a map and return a file descriptor that refers to the
111 * map. The close-on-exec file descriptor flag (see **fcntl**\ (2))
112 * is automatically enabled for the new file descriptor.
113 *
114 * Applying **close**\ (2) to the file descriptor returned by
115 * **BPF_MAP_CREATE** will delete the map (but see NOTES).
116 *
117 * Return
118 * A new file descriptor (a nonnegative integer), or -1 if an
119 * error occurred (in which case, *errno* is set appropriately).
120 *
121 * BPF_MAP_LOOKUP_ELEM
122 * Description
123 * Look up an element with a given *key* in the map referred to
124 * by the file descriptor *map_fd*.
125 *
126 * The *flags* argument may be specified as one of the
127 * following:
128 *
129 * **BPF_F_LOCK**
130 * Look up the value of a spin-locked map without
131 * returning the lock. This must be specified if the
132 * elements contain a spinlock.
133 *
134 * Return
135 * Returns zero on success. On error, -1 is returned and *errno*
136 * is set appropriately.
137 *
138 * BPF_MAP_UPDATE_ELEM
139 * Description
140 * Create or update an element (key/value pair) in a specified map.
141 *
142 * The *flags* argument should be specified as one of the
143 * following:
144 *
145 * **BPF_ANY**
146 * Create a new element or update an existing element.
147 * **BPF_NOEXIST**
148 * Create a new element only if it did not exist.
149 * **BPF_EXIST**
150 * Update an existing element.
151 * **BPF_F_LOCK**
152 * Update a spin_lock-ed map element.
153 *
154 * Return
155 * Returns zero on success. On error, -1 is returned and *errno*
156 * is set appropriately.
157 *
158 * May set *errno* to **EINVAL**, **EPERM**, **ENOMEM**,
159 * **E2BIG**, **EEXIST**, or **ENOENT**.
160 *
161 * **E2BIG**
162 * The number of elements in the map reached the
163 * *max_entries* limit specified at map creation time.
164 * **EEXIST**
165 * If *flags* specifies **BPF_NOEXIST** and the element
166 * with *key* already exists in the map.
167 * **ENOENT**
168 * If *flags* specifies **BPF_EXIST** and the element with
169 * *key* does not exist in the map.
170 *
171 * BPF_MAP_DELETE_ELEM
172 * Description
173 * Look up and delete an element by key in a specified map.
174 *
175 * Return
176 * Returns zero on success. On error, -1 is returned and *errno*
177 * is set appropriately.
178 *
179 * BPF_MAP_GET_NEXT_KEY
180 * Description
181 * Look up an element by key in a specified map and return the key
182 * of the next element. Can be used to iterate over all elements
183 * in the map.
184 *
185 * Return
186 * Returns zero on success. On error, -1 is returned and *errno*
187 * is set appropriately.
188 *
189 * The following cases can be used to iterate over all elements of
190 * the map:
191 *
192 * * If *key* is not found, the operation returns zero and sets
193 * the *next_key* pointer to the key of the first element.
194 * * If *key* is found, the operation returns zero and sets the
195 * *next_key* pointer to the key of the next element.
196 * * If *key* is the last element, returns -1 and *errno* is set
197 * to **ENOENT**.
198 *
199 * May set *errno* to **ENOMEM**, **EFAULT**, **EPERM**, or
200 * **EINVAL** on error.
201 *
202 * BPF_PROG_LOAD
203 * Description
204 * Verify and load an eBPF program, returning a new file
205 * descriptor associated with the program.
206 *
207 * Applying **close**\ (2) to the file descriptor returned by
208 * **BPF_PROG_LOAD** will unload the eBPF program (but see NOTES).
209 *
210 * The close-on-exec file descriptor flag (see **fcntl**\ (2)) is
211 * automatically enabled for the new file descriptor.
212 *
213 * Return
214 * A new file descriptor (a nonnegative integer), or -1 if an
215 * error occurred (in which case, *errno* is set appropriately).
216 *
217 * BPF_OBJ_PIN
218 * Description
219 * Pin an eBPF program or map referred by the specified *bpf_fd*
220 * to the provided *pathname* on the filesystem.
221 *
222 * The *pathname* argument must not contain a dot (".").
223 *
224 * On success, *pathname* retains a reference to the eBPF object,
225 * preventing deallocation of the object when the original
226 * *bpf_fd* is closed. This allow the eBPF object to live beyond
227 * **close**\ (\ *bpf_fd*\ ), and hence the lifetime of the parent
228 * process.
229 *
230 * Applying **unlink**\ (2) or similar calls to the *pathname*
231 * unpins the object from the filesystem, removing the reference.
232 * If no other file descriptors or filesystem nodes refer to the
233 * same object, it will be deallocated (see NOTES).
234 *
235 * The filesystem type for the parent directory of *pathname* must
236 * be **BPF_FS_MAGIC**.
237 *
238 * Return
239 * Returns zero on success. On error, -1 is returned and *errno*
240 * is set appropriately.
241 *
242 * BPF_OBJ_GET
243 * Description
244 * Open a file descriptor for the eBPF object pinned to the
245 * specified *pathname*.
246 *
247 * Return
248 * A new file descriptor (a nonnegative integer), or -1 if an
249 * error occurred (in which case, *errno* is set appropriately).
250 *
251 * BPF_PROG_ATTACH
252 * Description
253 * Attach an eBPF program to a *target_fd* at the specified
254 * *attach_type* hook.
255 *
256 * The *attach_type* specifies the eBPF attachment point to
257 * attach the program to, and must be one of *bpf_attach_type*
258 * (see below).
259 *
260 * The *attach_bpf_fd* must be a valid file descriptor for a
261 * loaded eBPF program of a cgroup, flow dissector, LIRC, sockmap
262 * or sock_ops type corresponding to the specified *attach_type*.
263 *
264 * The *target_fd* must be a valid file descriptor for a kernel
265 * object which depends on the attach type of *attach_bpf_fd*:
266 *
267 * **BPF_PROG_TYPE_CGROUP_DEVICE**,
268 * **BPF_PROG_TYPE_CGROUP_SKB**,
269 * **BPF_PROG_TYPE_CGROUP_SOCK**,
270 * **BPF_PROG_TYPE_CGROUP_SOCK_ADDR**,
271 * **BPF_PROG_TYPE_CGROUP_SOCKOPT**,
272 * **BPF_PROG_TYPE_CGROUP_SYSCTL**,
273 * **BPF_PROG_TYPE_SOCK_OPS**
274 *
275 * Control Group v2 hierarchy with the eBPF controller
276 * enabled. Requires the kernel to be compiled with
277 * **CONFIG_CGROUP_BPF**.
278 *
279 * **BPF_PROG_TYPE_FLOW_DISSECTOR**
280 *
281 * Network namespace (eg /proc/self/ns/net).
282 *
283 * **BPF_PROG_TYPE_LIRC_MODE2**
284 *
285 * LIRC device path (eg /dev/lircN). Requires the kernel
286 * to be compiled with **CONFIG_BPF_LIRC_MODE2**.
287 *
288 * **BPF_PROG_TYPE_SK_SKB**,
289 * **BPF_PROG_TYPE_SK_MSG**
290 *
291 * eBPF map of socket type (eg **BPF_MAP_TYPE_SOCKHASH**).
292 *
293 * Return
294 * Returns zero on success. On error, -1 is returned and *errno*
295 * is set appropriately.
296 *
297 * BPF_PROG_DETACH
298 * Description
299 * Detach the eBPF program associated with the *target_fd* at the
300 * hook specified by *attach_type*. The program must have been
301 * previously attached using **BPF_PROG_ATTACH**.
302 *
303 * Return
304 * Returns zero on success. On error, -1 is returned and *errno*
305 * is set appropriately.
306 *
307 * BPF_PROG_TEST_RUN
308 * Description
309 * Run the eBPF program associated with the *prog_fd* a *repeat*
310 * number of times against a provided program context *ctx_in* and
311 * data *data_in*, and return the modified program context
312 * *ctx_out*, *data_out* (for example, packet data), result of the
313 * execution *retval*, and *duration* of the test run.
314 *
315 * The sizes of the buffers provided as input and output
316 * parameters *ctx_in*, *ctx_out*, *data_in*, and *data_out* must
317 * be provided in the corresponding variables *ctx_size_in*,
318 * *ctx_size_out*, *data_size_in*, and/or *data_size_out*. If any
319 * of these parameters are not provided (ie set to NULL), the
320 * corresponding size field must be zero.
321 *
322 * Some program types have particular requirements:
323 *
324 * **BPF_PROG_TYPE_SK_LOOKUP**
325 * *data_in* and *data_out* must be NULL.
326 *
327 * **BPF_PROG_TYPE_RAW_TRACEPOINT**,
328 * **BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE**
329 *
330 * *ctx_out*, *data_in* and *data_out* must be NULL.
331 * *repeat* must be zero.
332 *
333 * Return
334 * Returns zero on success. On error, -1 is returned and *errno*
335 * is set appropriately.
336 *
337 * **ENOSPC**
338 * Either *data_size_out* or *ctx_size_out* is too small.
339 * **ENOTSUPP**
340 * This command is not supported by the program type of
341 * the program referred to by *prog_fd*.
342 *
343 * BPF_PROG_GET_NEXT_ID
344 * Description
345 * Fetch the next eBPF program currently loaded into the kernel.
346 *
347 * Looks for the eBPF program with an id greater than *start_id*
348 * and updates *next_id* on success. If no other eBPF programs
349 * remain with ids higher than *start_id*, returns -1 and sets
350 * *errno* to **ENOENT**.
351 *
352 * Return
353 * Returns zero on success. On error, or when no id remains, -1
354 * is returned and *errno* is set appropriately.
355 *
356 * BPF_MAP_GET_NEXT_ID
357 * Description
358 * Fetch the next eBPF map currently loaded into the kernel.
359 *
360 * Looks for the eBPF map with an id greater than *start_id*
361 * and updates *next_id* on success. If no other eBPF maps
362 * remain with ids higher than *start_id*, returns -1 and sets
363 * *errno* to **ENOENT**.
364 *
365 * Return
366 * Returns zero on success. On error, or when no id remains, -1
367 * is returned and *errno* is set appropriately.
368 *
369 * BPF_PROG_GET_FD_BY_ID
370 * Description
371 * Open a file descriptor for the eBPF program corresponding to
372 * *prog_id*.
373 *
374 * Return
375 * A new file descriptor (a nonnegative integer), or -1 if an
376 * error occurred (in which case, *errno* is set appropriately).
377 *
378 * BPF_MAP_GET_FD_BY_ID
379 * Description
380 * Open a file descriptor for the eBPF map corresponding to
381 * *map_id*.
382 *
383 * Return
384 * A new file descriptor (a nonnegative integer), or -1 if an
385 * error occurred (in which case, *errno* is set appropriately).
386 *
387 * BPF_OBJ_GET_INFO_BY_FD
388 * Description
389 * Obtain information about the eBPF object corresponding to
390 * *bpf_fd*.
391 *
392 * Populates up to *info_len* bytes of *info*, which will be in
393 * one of the following formats depending on the eBPF object type
394 * of *bpf_fd*:
395 *
396 * * **struct bpf_prog_info**
397 * * **struct bpf_map_info**
398 * * **struct bpf_btf_info**
399 * * **struct bpf_link_info**
400 *
401 * Return
402 * Returns zero on success. On error, -1 is returned and *errno*
403 * is set appropriately.
404 *
405 * BPF_PROG_QUERY
406 * Description
407 * Obtain information about eBPF programs associated with the
408 * specified *attach_type* hook.
409 *
410 * The *target_fd* must be a valid file descriptor for a kernel
411 * object which depends on the attach type of *attach_bpf_fd*:
412 *
413 * **BPF_PROG_TYPE_CGROUP_DEVICE**,
414 * **BPF_PROG_TYPE_CGROUP_SKB**,
415 * **BPF_PROG_TYPE_CGROUP_SOCK**,
416 * **BPF_PROG_TYPE_CGROUP_SOCK_ADDR**,
417 * **BPF_PROG_TYPE_CGROUP_SOCKOPT**,
418 * **BPF_PROG_TYPE_CGROUP_SYSCTL**,
419 * **BPF_PROG_TYPE_SOCK_OPS**
420 *
421 * Control Group v2 hierarchy with the eBPF controller
422 * enabled. Requires the kernel to be compiled with
423 * **CONFIG_CGROUP_BPF**.
424 *
425 * **BPF_PROG_TYPE_FLOW_DISSECTOR**
426 *
427 * Network namespace (eg /proc/self/ns/net).
428 *
429 * **BPF_PROG_TYPE_LIRC_MODE2**
430 *
431 * LIRC device path (eg /dev/lircN). Requires the kernel
432 * to be compiled with **CONFIG_BPF_LIRC_MODE2**.
433 *
434 * **BPF_PROG_QUERY** always fetches the number of programs
435 * attached and the *attach_flags* which were used to attach those
436 * programs. Additionally, if *prog_ids* is nonzero and the number
437 * of attached programs is less than *prog_cnt*, populates
438 * *prog_ids* with the eBPF program ids of the programs attached
439 * at *target_fd*.
440 *
441 * The following flags may alter the result:
442 *
443 * **BPF_F_QUERY_EFFECTIVE**
444 * Only return information regarding programs which are
445 * currently effective at the specified *target_fd*.
446 *
447 * Return
448 * Returns zero on success. On error, -1 is returned and *errno*
449 * is set appropriately.
450 *
451 * BPF_RAW_TRACEPOINT_OPEN
452 * Description
453 * Attach an eBPF program to a tracepoint *name* to access kernel
454 * internal arguments of the tracepoint in their raw form.
455 *
456 * The *prog_fd* must be a valid file descriptor associated with
457 * a loaded eBPF program of type **BPF_PROG_TYPE_RAW_TRACEPOINT**.
458 *
459 * No ABI guarantees are made about the content of tracepoint
460 * arguments exposed to the corresponding eBPF program.
461 *
462 * Applying **close**\ (2) to the file descriptor returned by
463 * **BPF_RAW_TRACEPOINT_OPEN** will delete the map (but see NOTES).
464 *
465 * Return
466 * A new file descriptor (a nonnegative integer), or -1 if an
467 * error occurred (in which case, *errno* is set appropriately).
468 *
469 * BPF_BTF_LOAD
470 * Description
471 * Verify and load BPF Type Format (BTF) metadata into the kernel,
472 * returning a new file descriptor associated with the metadata.
473 * BTF is described in more detail at
474 * https://www.kernel.org/doc/html/latest/bpf/btf.html.
475 *
476 * The *btf* parameter must point to valid memory providing
477 * *btf_size* bytes of BTF binary metadata.
478 *
479 * The returned file descriptor can be passed to other **bpf**\ ()
480 * subcommands such as **BPF_PROG_LOAD** or **BPF_MAP_CREATE** to
481 * associate the BTF with those objects.
482 *
483 * Similar to **BPF_PROG_LOAD**, **BPF_BTF_LOAD** has optional
484 * parameters to specify a *btf_log_buf*, *btf_log_size* and
485 * *btf_log_level* which allow the kernel to return freeform log
486 * output regarding the BTF verification process.
487 *
488 * Return
489 * A new file descriptor (a nonnegative integer), or -1 if an
490 * error occurred (in which case, *errno* is set appropriately).
491 *
492 * BPF_BTF_GET_FD_BY_ID
493 * Description
494 * Open a file descriptor for the BPF Type Format (BTF)
495 * corresponding to *btf_id*.
496 *
497 * Return
498 * A new file descriptor (a nonnegative integer), or -1 if an
499 * error occurred (in which case, *errno* is set appropriately).
500 *
501 * BPF_TASK_FD_QUERY
502 * Description
503 * Obtain information about eBPF programs associated with the
504 * target process identified by *pid* and *fd*.
505 *
506 * If the *pid* and *fd* are associated with a tracepoint, kprobe
507 * or uprobe perf event, then the *prog_id* and *fd_type* will
508 * be populated with the eBPF program id and file descriptor type
509 * of type **bpf_task_fd_type**. If associated with a kprobe or
510 * uprobe, the *probe_offset* and *probe_addr* will also be
511 * populated. Optionally, if *buf* is provided, then up to
512 * *buf_len* bytes of *buf* will be populated with the name of
513 * the tracepoint, kprobe or uprobe.
514 *
515 * The resulting *prog_id* may be introspected in deeper detail
516 * using **BPF_PROG_GET_FD_BY_ID** and **BPF_OBJ_GET_INFO_BY_FD**.
517 *
518 * Return
519 * Returns zero on success. On error, -1 is returned and *errno*
520 * is set appropriately.
521 *
522 * BPF_MAP_LOOKUP_AND_DELETE_ELEM
523 * Description
524 * Look up an element with the given *key* in the map referred to
525 * by the file descriptor *fd*, and if found, delete the element.
526 *
527 * For **BPF_MAP_TYPE_QUEUE** and **BPF_MAP_TYPE_STACK** map
528 * types, the *flags* argument needs to be set to 0, but for other
529 * map types, it may be specified as:
530 *
531 * **BPF_F_LOCK**
532 * Look up and delete the value of a spin-locked map
533 * without returning the lock. This must be specified if
534 * the elements contain a spinlock.
535 *
536 * The **BPF_MAP_TYPE_QUEUE** and **BPF_MAP_TYPE_STACK** map types
537 * implement this command as a "pop" operation, deleting the top
538 * element rather than one corresponding to *key*.
539 * The *key* and *key_len* parameters should be zeroed when
540 * issuing this operation for these map types.
541 *
542 * This command is only valid for the following map types:
543 * * **BPF_MAP_TYPE_QUEUE**
544 * * **BPF_MAP_TYPE_STACK**
545 * * **BPF_MAP_TYPE_HASH**
546 * * **BPF_MAP_TYPE_PERCPU_HASH**
547 * * **BPF_MAP_TYPE_LRU_HASH**
548 * * **BPF_MAP_TYPE_LRU_PERCPU_HASH**
549 *
550 * Return
551 * Returns zero on success. On error, -1 is returned and *errno*
552 * is set appropriately.
553 *
554 * BPF_MAP_FREEZE
555 * Description
556 * Freeze the permissions of the specified map.
557 *
558 * Write permissions may be frozen by passing zero *flags*.
559 * Upon success, no future syscall invocations may alter the
560 * map state of *map_fd*. Write operations from eBPF programs
561 * are still possible for a frozen map.
562 *
563 * Not supported for maps of type **BPF_MAP_TYPE_STRUCT_OPS**.
564 *
565 * Return
566 * Returns zero on success. On error, -1 is returned and *errno*
567 * is set appropriately.
568 *
569 * BPF_BTF_GET_NEXT_ID
570 * Description
571 * Fetch the next BPF Type Format (BTF) object currently loaded
572 * into the kernel.
573 *
574 * Looks for the BTF object with an id greater than *start_id*
575 * and updates *next_id* on success. If no other BTF objects
576 * remain with ids higher than *start_id*, returns -1 and sets
577 * *errno* to **ENOENT**.
578 *
579 * Return
580 * Returns zero on success. On error, or when no id remains, -1
581 * is returned and *errno* is set appropriately.
582 *
583 * BPF_MAP_LOOKUP_BATCH
584 * Description
585 * Iterate and fetch multiple elements in a map.
586 *
587 * Two opaque values are used to manage batch operations,
588 * *in_batch* and *out_batch*. Initially, *in_batch* must be set
589 * to NULL to begin the batched operation. After each subsequent
590 * **BPF_MAP_LOOKUP_BATCH**, the caller should pass the resultant
591 * *out_batch* as the *in_batch* for the next operation to
592 * continue iteration from the current point.
593 *
594 * The *keys* and *values* are output parameters which must point
595 * to memory large enough to hold *count* items based on the key
596 * and value size of the map *map_fd*. The *keys* buffer must be
597 * of *key_size* * *count*. The *values* buffer must be of
598 * *value_size* * *count*.
599 *
600 * The *elem_flags* argument may be specified as one of the
601 * following:
602 *
603 * **BPF_F_LOCK**
604 * Look up the value of a spin-locked map without
605 * returning the lock. This must be specified if the
606 * elements contain a spinlock.
607 *
608 * On success, *count* elements from the map are copied into the
609 * user buffer, with the keys copied into *keys* and the values
610 * copied into the corresponding indices in *values*.
611 *
612 * If an error is returned and *errno* is not **EFAULT**, *count*
613 * is set to the number of successfully processed elements.
614 *
615 * Return
616 * Returns zero on success. On error, -1 is returned and *errno*
617 * is set appropriately.
618 *
619 * May set *errno* to **ENOSPC** to indicate that *keys* or
620 * *values* is too small to dump an entire bucket during
621 * iteration of a hash-based map type.
622 *
623 * BPF_MAP_LOOKUP_AND_DELETE_BATCH
624 * Description
625 * Iterate and delete all elements in a map.
626 *
627 * This operation has the same behavior as
628 * **BPF_MAP_LOOKUP_BATCH** with two exceptions:
629 *
630 * * Every element that is successfully returned is also deleted
631 * from the map. This is at least *count* elements. Note that
632 * *count* is both an input and an output parameter.
633 * * Upon returning with *errno* set to **EFAULT**, up to
634 * *count* elements may be deleted without returning the keys
635 * and values of the deleted elements.
636 *
637 * Return
638 * Returns zero on success. On error, -1 is returned and *errno*
639 * is set appropriately.
640 *
641 * BPF_MAP_UPDATE_BATCH
642 * Description
643 * Update multiple elements in a map by *key*.
644 *
645 * The *keys* and *values* are input parameters which must point
646 * to memory large enough to hold *count* items based on the key
647 * and value size of the map *map_fd*. The *keys* buffer must be
648 * of *key_size* * *count*. The *values* buffer must be of
649 * *value_size* * *count*.
650 *
651 * Each element specified in *keys* is sequentially updated to the
652 * value in the corresponding index in *values*. The *in_batch*
653 * and *out_batch* parameters are ignored and should be zeroed.
654 *
655 * The *elem_flags* argument should be specified as one of the
656 * following:
657 *
658 * **BPF_ANY**
659 * Create new elements or update a existing elements.
660 * **BPF_NOEXIST**
661 * Create new elements only if they do not exist.
662 * **BPF_EXIST**
663 * Update existing elements.
664 * **BPF_F_LOCK**
665 * Update spin_lock-ed map elements. This must be
666 * specified if the map value contains a spinlock.
667 *
668 * On success, *count* elements from the map are updated.
669 *
670 * If an error is returned and *errno* is not **EFAULT**, *count*
671 * is set to the number of successfully processed elements.
672 *
673 * Return
674 * Returns zero on success. On error, -1 is returned and *errno*
675 * is set appropriately.
676 *
677 * May set *errno* to **EINVAL**, **EPERM**, **ENOMEM**, or
678 * **E2BIG**. **E2BIG** indicates that the number of elements in
679 * the map reached the *max_entries* limit specified at map
680 * creation time.
681 *
682 * May set *errno* to one of the following error codes under
683 * specific circumstances:
684 *
685 * **EEXIST**
686 * If *flags* specifies **BPF_NOEXIST** and the element
687 * with *key* already exists in the map.
688 * **ENOENT**
689 * If *flags* specifies **BPF_EXIST** and the element with
690 * *key* does not exist in the map.
691 *
692 * BPF_MAP_DELETE_BATCH
693 * Description
694 * Delete multiple elements in a map by *key*.
695 *
696 * The *keys* parameter is an input parameter which must point
697 * to memory large enough to hold *count* items based on the key
698 * size of the map *map_fd*, that is, *key_size* * *count*.
699 *
700 * Each element specified in *keys* is sequentially deleted. The
701 * *in_batch*, *out_batch*, and *values* parameters are ignored
702 * and should be zeroed.
703 *
704 * The *elem_flags* argument may be specified as one of the
705 * following:
706 *
707 * **BPF_F_LOCK**
708 * Look up the value of a spin-locked map without
709 * returning the lock. This must be specified if the
710 * elements contain a spinlock.
711 *
712 * On success, *count* elements from the map are updated.
713 *
714 * If an error is returned and *errno* is not **EFAULT**, *count*
715 * is set to the number of successfully processed elements. If
716 * *errno* is **EFAULT**, up to *count* elements may be been
717 * deleted.
718 *
719 * Return
720 * Returns zero on success. On error, -1 is returned and *errno*
721 * is set appropriately.
722 *
723 * BPF_LINK_CREATE
724 * Description
725 * Attach an eBPF program to a *target_fd* at the specified
726 * *attach_type* hook and return a file descriptor handle for
727 * managing the link.
728 *
729 * Return
730 * A new file descriptor (a nonnegative integer), or -1 if an
731 * error occurred (in which case, *errno* is set appropriately).
732 *
733 * BPF_LINK_UPDATE
734 * Description
735 * Update the eBPF program in the specified *link_fd* to
736 * *new_prog_fd*.
737 *
738 * Return
739 * Returns zero on success. On error, -1 is returned and *errno*
740 * is set appropriately.
741 *
742 * BPF_LINK_GET_FD_BY_ID
743 * Description
744 * Open a file descriptor for the eBPF Link corresponding to
745 * *link_id*.
746 *
747 * Return
748 * A new file descriptor (a nonnegative integer), or -1 if an
749 * error occurred (in which case, *errno* is set appropriately).
750 *
751 * BPF_LINK_GET_NEXT_ID
752 * Description
753 * Fetch the next eBPF link currently loaded into the kernel.
754 *
755 * Looks for the eBPF link with an id greater than *start_id*
756 * and updates *next_id* on success. If no other eBPF links
757 * remain with ids higher than *start_id*, returns -1 and sets
758 * *errno* to **ENOENT**.
759 *
760 * Return
761 * Returns zero on success. On error, or when no id remains, -1
762 * is returned and *errno* is set appropriately.
763 *
764 * BPF_ENABLE_STATS
765 * Description
766 * Enable eBPF runtime statistics gathering.
767 *
768 * Runtime statistics gathering for the eBPF runtime is disabled
769 * by default to minimize the corresponding performance overhead.
770 * This command enables statistics globally.
771 *
772 * Multiple programs may independently enable statistics.
773 * After gathering the desired statistics, eBPF runtime statistics
774 * may be disabled again by calling **close**\ (2) for the file
775 * descriptor returned by this function. Statistics will only be
776 * disabled system-wide when all outstanding file descriptors
777 * returned by prior calls for this subcommand are closed.
778 *
779 * Return
780 * A new file descriptor (a nonnegative integer), or -1 if an
781 * error occurred (in which case, *errno* is set appropriately).
782 *
783 * BPF_ITER_CREATE
784 * Description
785 * Create an iterator on top of the specified *link_fd* (as
786 * previously created using **BPF_LINK_CREATE**) and return a
787 * file descriptor that can be used to trigger the iteration.
788 *
789 * If the resulting file descriptor is pinned to the filesystem
790 * using **BPF_OBJ_PIN**, then subsequent **read**\ (2) syscalls
791 * for that path will trigger the iterator to read kernel state
792 * using the eBPF program attached to *link_fd*.
793 *
794 * Return
795 * A new file descriptor (a nonnegative integer), or -1 if an
796 * error occurred (in which case, *errno* is set appropriately).
797 *
798 * BPF_LINK_DETACH
799 * Description
800 * Forcefully detach the specified *link_fd* from its
801 * corresponding attachment point.
802 *
803 * Return
804 * Returns zero on success. On error, -1 is returned and *errno*
805 * is set appropriately.
806 *
807 * BPF_PROG_BIND_MAP
808 * Description
809 * Bind a map to the lifetime of an eBPF program.
810 *
811 * The map identified by *map_fd* is bound to the program
812 * identified by *prog_fd* and only released when *prog_fd* is
813 * released. This may be used in cases where metadata should be
814 * associated with a program which otherwise does not contain any
815 * references to the map (for example, embedded in the eBPF
816 * program instructions).
817 *
818 * Return
819 * Returns zero on success. On error, -1 is returned and *errno*
820 * is set appropriately.
821 *
822 * NOTES
823 * eBPF objects (maps and programs) can be shared between processes.
824 *
825 * * After **fork**\ (2), the child inherits file descriptors
826 * referring to the same eBPF objects.
827 * * File descriptors referring to eBPF objects can be transferred over
828 * **unix**\ (7) domain sockets.
829 * * File descriptors referring to eBPF objects can be duplicated in the
830 * usual way, using **dup**\ (2) and similar calls.
831 * * File descriptors referring to eBPF objects can be pinned to the
832 * filesystem using the **BPF_OBJ_PIN** command of **bpf**\ (2).
833 *
834 * An eBPF object is deallocated only after all file descriptors referring
835 * to the object have been closed and no references remain pinned to the
836 * filesystem or attached (for example, bound to a program or device).
837 */
838enum bpf_cmd {
839 BPF_MAP_CREATE,
840 BPF_MAP_LOOKUP_ELEM,
841 BPF_MAP_UPDATE_ELEM,
842 BPF_MAP_DELETE_ELEM,
843 BPF_MAP_GET_NEXT_KEY,
844 BPF_PROG_LOAD,
845 BPF_OBJ_PIN,
846 BPF_OBJ_GET,
847 BPF_PROG_ATTACH,
848 BPF_PROG_DETACH,
849 BPF_PROG_TEST_RUN,
850 BPF_PROG_RUN = BPF_PROG_TEST_RUN,
851 BPF_PROG_GET_NEXT_ID,
852 BPF_MAP_GET_NEXT_ID,
853 BPF_PROG_GET_FD_BY_ID,
854 BPF_MAP_GET_FD_BY_ID,
855 BPF_OBJ_GET_INFO_BY_FD,
856 BPF_PROG_QUERY,
857 BPF_RAW_TRACEPOINT_OPEN,
858 BPF_BTF_LOAD,
859 BPF_BTF_GET_FD_BY_ID,
860 BPF_TASK_FD_QUERY,
861 BPF_MAP_LOOKUP_AND_DELETE_ELEM,
862 BPF_MAP_FREEZE,
863 BPF_BTF_GET_NEXT_ID,
864 BPF_MAP_LOOKUP_BATCH,
865 BPF_MAP_LOOKUP_AND_DELETE_BATCH,
866 BPF_MAP_UPDATE_BATCH,
867 BPF_MAP_DELETE_BATCH,
868 BPF_LINK_CREATE,
869 BPF_LINK_UPDATE,
870 BPF_LINK_GET_FD_BY_ID,
871 BPF_LINK_GET_NEXT_ID,
872 BPF_ENABLE_STATS,
873 BPF_ITER_CREATE,
874 BPF_LINK_DETACH,
875 BPF_PROG_BIND_MAP,
876};
877
878enum bpf_map_type {
879 BPF_MAP_TYPE_UNSPEC,
880 BPF_MAP_TYPE_HASH,
881 BPF_MAP_TYPE_ARRAY,
882 BPF_MAP_TYPE_PROG_ARRAY,
883 BPF_MAP_TYPE_PERF_EVENT_ARRAY,
884 BPF_MAP_TYPE_PERCPU_HASH,
885 BPF_MAP_TYPE_PERCPU_ARRAY,
886 BPF_MAP_TYPE_STACK_TRACE,
887 BPF_MAP_TYPE_CGROUP_ARRAY,
888 BPF_MAP_TYPE_LRU_HASH,
889 BPF_MAP_TYPE_LRU_PERCPU_HASH,
890 BPF_MAP_TYPE_LPM_TRIE,
891 BPF_MAP_TYPE_ARRAY_OF_MAPS,
892 BPF_MAP_TYPE_HASH_OF_MAPS,
893 BPF_MAP_TYPE_DEVMAP,
894 BPF_MAP_TYPE_SOCKMAP,
895 BPF_MAP_TYPE_CPUMAP,
896 BPF_MAP_TYPE_XSKMAP,
897 BPF_MAP_TYPE_SOCKHASH,
898 BPF_MAP_TYPE_CGROUP_STORAGE,
899 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
900 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
901 BPF_MAP_TYPE_QUEUE,
902 BPF_MAP_TYPE_STACK,
903 BPF_MAP_TYPE_SK_STORAGE,
904 BPF_MAP_TYPE_DEVMAP_HASH,
905 BPF_MAP_TYPE_STRUCT_OPS,
906 BPF_MAP_TYPE_RINGBUF,
907 BPF_MAP_TYPE_INODE_STORAGE,
908 BPF_MAP_TYPE_TASK_STORAGE,
909};
910
911/* Note that tracing related programs such as
912 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
913 * are not subject to a stable API since kernel internal data
914 * structures can change from release to release and may
915 * therefore break existing tracing BPF programs. Tracing BPF
916 * programs correspond to /a/ specific kernel which is to be
917 * analyzed, and not /a/ specific kernel /and/ all future ones.
918 */
919enum bpf_prog_type {
920 BPF_PROG_TYPE_UNSPEC,
921 BPF_PROG_TYPE_SOCKET_FILTER,
922 BPF_PROG_TYPE_KPROBE,
923 BPF_PROG_TYPE_SCHED_CLS,
924 BPF_PROG_TYPE_SCHED_ACT,
925 BPF_PROG_TYPE_TRACEPOINT,
926 BPF_PROG_TYPE_XDP,
927 BPF_PROG_TYPE_PERF_EVENT,
928 BPF_PROG_TYPE_CGROUP_SKB,
929 BPF_PROG_TYPE_CGROUP_SOCK,
930 BPF_PROG_TYPE_LWT_IN,
931 BPF_PROG_TYPE_LWT_OUT,
932 BPF_PROG_TYPE_LWT_XMIT,
933 BPF_PROG_TYPE_SOCK_OPS,
934 BPF_PROG_TYPE_SK_SKB,
935 BPF_PROG_TYPE_CGROUP_DEVICE,
936 BPF_PROG_TYPE_SK_MSG,
937 BPF_PROG_TYPE_RAW_TRACEPOINT,
938 BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
939 BPF_PROG_TYPE_LWT_SEG6LOCAL,
940 BPF_PROG_TYPE_LIRC_MODE2,
941 BPF_PROG_TYPE_SK_REUSEPORT,
942 BPF_PROG_TYPE_FLOW_DISSECTOR,
943 BPF_PROG_TYPE_CGROUP_SYSCTL,
944 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
945 BPF_PROG_TYPE_CGROUP_SOCKOPT,
946 BPF_PROG_TYPE_TRACING,
947 BPF_PROG_TYPE_STRUCT_OPS,
948 BPF_PROG_TYPE_EXT,
949 BPF_PROG_TYPE_LSM,
950 BPF_PROG_TYPE_SK_LOOKUP,
951 BPF_PROG_TYPE_SYSCALL, /* a program that can execute syscalls */
952};
953
954enum bpf_attach_type {
955 BPF_CGROUP_INET_INGRESS,
956 BPF_CGROUP_INET_EGRESS,
957 BPF_CGROUP_INET_SOCK_CREATE,
958 BPF_CGROUP_SOCK_OPS,
959 BPF_SK_SKB_STREAM_PARSER,
960 BPF_SK_SKB_STREAM_VERDICT,
961 BPF_CGROUP_DEVICE,
962 BPF_SK_MSG_VERDICT,
963 BPF_CGROUP_INET4_BIND,
964 BPF_CGROUP_INET6_BIND,
965 BPF_CGROUP_INET4_CONNECT,
966 BPF_CGROUP_INET6_CONNECT,
967 BPF_CGROUP_INET4_POST_BIND,
968 BPF_CGROUP_INET6_POST_BIND,
969 BPF_CGROUP_UDP4_SENDMSG,
970 BPF_CGROUP_UDP6_SENDMSG,
971 BPF_LIRC_MODE2,
972 BPF_FLOW_DISSECTOR,
973 BPF_CGROUP_SYSCTL,
974 BPF_CGROUP_UDP4_RECVMSG,
975 BPF_CGROUP_UDP6_RECVMSG,
976 BPF_CGROUP_GETSOCKOPT,
977 BPF_CGROUP_SETSOCKOPT,
978 BPF_TRACE_RAW_TP,
979 BPF_TRACE_FENTRY,
980 BPF_TRACE_FEXIT,
981 BPF_MODIFY_RETURN,
982 BPF_LSM_MAC,
983 BPF_TRACE_ITER,
984 BPF_CGROUP_INET4_GETPEERNAME,
985 BPF_CGROUP_INET6_GETPEERNAME,
986 BPF_CGROUP_INET4_GETSOCKNAME,
987 BPF_CGROUP_INET6_GETSOCKNAME,
988 BPF_XDP_DEVMAP,
989 BPF_CGROUP_INET_SOCK_RELEASE,
990 BPF_XDP_CPUMAP,
991 BPF_SK_LOOKUP,
992 BPF_XDP,
993 BPF_SK_SKB_VERDICT,
994 BPF_SK_REUSEPORT_SELECT,
995 BPF_SK_REUSEPORT_SELECT_OR_MIGRATE,
996 BPF_PERF_EVENT,
997 __MAX_BPF_ATTACH_TYPE
998};
999
1000#define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
1001
1002enum bpf_link_type {
1003 BPF_LINK_TYPE_UNSPEC = 0,
1004 BPF_LINK_TYPE_RAW_TRACEPOINT = 1,
1005 BPF_LINK_TYPE_TRACING = 2,
1006 BPF_LINK_TYPE_CGROUP = 3,
1007 BPF_LINK_TYPE_ITER = 4,
1008 BPF_LINK_TYPE_NETNS = 5,
1009 BPF_LINK_TYPE_XDP = 6,
1010 BPF_LINK_TYPE_PERF_EVENT = 7,
1011
1012 MAX_BPF_LINK_TYPE,
1013};
1014
1015/* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
1016 *
1017 * NONE(default): No further bpf programs allowed in the subtree.
1018 *
1019 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
1020 * the program in this cgroup yields to sub-cgroup program.
1021 *
1022 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
1023 * that cgroup program gets run in addition to the program in this cgroup.
1024 *
1025 * Only one program is allowed to be attached to a cgroup with
1026 * NONE or BPF_F_ALLOW_OVERRIDE flag.
1027 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
1028 * release old program and attach the new one. Attach flags has to match.
1029 *
1030 * Multiple programs are allowed to be attached to a cgroup with
1031 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
1032 * (those that were attached first, run first)
1033 * The programs of sub-cgroup are executed first, then programs of
1034 * this cgroup and then programs of parent cgroup.
1035 * When children program makes decision (like picking TCP CA or sock bind)
1036 * parent program has a chance to override it.
1037 *
1038 * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
1039 * programs for a cgroup. Though it's possible to replace an old program at
1040 * any position by also specifying BPF_F_REPLACE flag and position itself in
1041 * replace_bpf_fd attribute. Old program at this position will be released.
1042 *
1043 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
1044 * A cgroup with NONE doesn't allow any programs in sub-cgroups.
1045 * Ex1:
1046 * cgrp1 (MULTI progs A, B) ->
1047 * cgrp2 (OVERRIDE prog C) ->
1048 * cgrp3 (MULTI prog D) ->
1049 * cgrp4 (OVERRIDE prog E) ->
1050 * cgrp5 (NONE prog F)
1051 * the event in cgrp5 triggers execution of F,D,A,B in that order.
1052 * if prog F is detached, the execution is E,D,A,B
1053 * if prog F and D are detached, the execution is E,A,B
1054 * if prog F, E and D are detached, the execution is C,A,B
1055 *
1056 * All eligible programs are executed regardless of return code from
1057 * earlier programs.
1058 */
1059#define BPF_F_ALLOW_OVERRIDE (1U << 0)
1060#define BPF_F_ALLOW_MULTI (1U << 1)
1061#define BPF_F_REPLACE (1U << 2)
1062
1063/* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
1064 * verifier will perform strict alignment checking as if the kernel
1065 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
1066 * and NET_IP_ALIGN defined to 2.
1067 */
1068#define BPF_F_STRICT_ALIGNMENT (1U << 0)
1069
1070/* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
1071 * verifier will allow any alignment whatsoever. On platforms
1072 * with strict alignment requirements for loads ands stores (such
1073 * as sparc and mips) the verifier validates that all loads and
1074 * stores provably follow this requirement. This flag turns that
1075 * checking and enforcement off.
1076 *
1077 * It is mostly used for testing when we want to validate the
1078 * context and memory access aspects of the verifier, but because
1079 * of an unaligned access the alignment check would trigger before
1080 * the one we are interested in.
1081 */
1082#define BPF_F_ANY_ALIGNMENT (1U << 1)
1083
1084/* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
1085 * Verifier does sub-register def/use analysis and identifies instructions whose
1086 * def only matters for low 32-bit, high 32-bit is never referenced later
1087 * through implicit zero extension. Therefore verifier notifies JIT back-ends
1088 * that it is safe to ignore clearing high 32-bit for these instructions. This
1089 * saves some back-ends a lot of code-gen. However such optimization is not
1090 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
1091 * hence hasn't used verifier's analysis result. But, we really want to have a
1092 * way to be able to verify the correctness of the described optimization on
1093 * x86_64 on which testsuites are frequently exercised.
1094 *
1095 * So, this flag is introduced. Once it is set, verifier will randomize high
1096 * 32-bit for those instructions who has been identified as safe to ignore them.
1097 * Then, if verifier is not doing correct analysis, such randomization will
1098 * regress tests to expose bugs.
1099 */
1100#define BPF_F_TEST_RND_HI32 (1U << 2)
1101
1102/* The verifier internal test flag. Behavior is undefined */
1103#define BPF_F_TEST_STATE_FREQ (1U << 3)
1104
1105/* If BPF_F_SLEEPABLE is used in BPF_PROG_LOAD command, the verifier will
1106 * restrict map and helper usage for such programs. Sleepable BPF programs can
1107 * only be attached to hooks where kernel execution context allows sleeping.
1108 * Such programs are allowed to use helpers that may sleep like
1109 * bpf_copy_from_user().
1110 */
1111#define BPF_F_SLEEPABLE (1U << 4)
1112
1113/* When BPF ldimm64's insn[0].src_reg != 0 then this can have
1114 * the following extensions:
1115 *
1116 * insn[0].src_reg: BPF_PSEUDO_MAP_[FD|IDX]
1117 * insn[0].imm: map fd or fd_idx
1118 * insn[1].imm: 0
1119 * insn[0].off: 0
1120 * insn[1].off: 0
1121 * ldimm64 rewrite: address of map
1122 * verifier type: CONST_PTR_TO_MAP
1123 */
1124#define BPF_PSEUDO_MAP_FD 1
1125#define BPF_PSEUDO_MAP_IDX 5
1126
1127/* insn[0].src_reg: BPF_PSEUDO_MAP_[IDX_]VALUE
1128 * insn[0].imm: map fd or fd_idx
1129 * insn[1].imm: offset into value
1130 * insn[0].off: 0
1131 * insn[1].off: 0
1132 * ldimm64 rewrite: address of map[0]+offset
1133 * verifier type: PTR_TO_MAP_VALUE
1134 */
1135#define BPF_PSEUDO_MAP_VALUE 2
1136#define BPF_PSEUDO_MAP_IDX_VALUE 6
1137
1138/* insn[0].src_reg: BPF_PSEUDO_BTF_ID
1139 * insn[0].imm: kernel btd id of VAR
1140 * insn[1].imm: 0
1141 * insn[0].off: 0
1142 * insn[1].off: 0
1143 * ldimm64 rewrite: address of the kernel variable
1144 * verifier type: PTR_TO_BTF_ID or PTR_TO_MEM, depending on whether the var
1145 * is struct/union.
1146 */
1147#define BPF_PSEUDO_BTF_ID 3
1148/* insn[0].src_reg: BPF_PSEUDO_FUNC
1149 * insn[0].imm: insn offset to the func
1150 * insn[1].imm: 0
1151 * insn[0].off: 0
1152 * insn[1].off: 0
1153 * ldimm64 rewrite: address of the function
1154 * verifier type: PTR_TO_FUNC.
1155 */
1156#define BPF_PSEUDO_FUNC 4
1157
1158/* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
1159 * offset to another bpf function
1160 */
1161#define BPF_PSEUDO_CALL 1
1162/* when bpf_call->src_reg == BPF_PSEUDO_KFUNC_CALL,
1163 * bpf_call->imm == btf_id of a BTF_KIND_FUNC in the running kernel
1164 */
1165#define BPF_PSEUDO_KFUNC_CALL 2
1166
1167/* flags for BPF_MAP_UPDATE_ELEM command */
1168enum {
1169 BPF_ANY = 0, /* create new element or update existing */
1170 BPF_NOEXIST = 1, /* create new element if it didn't exist */
1171 BPF_EXIST = 2, /* update existing element */
1172 BPF_F_LOCK = 4, /* spin_lock-ed map_lookup/map_update */
1173};
1174
1175/* flags for BPF_MAP_CREATE command */
1176enum {
1177 BPF_F_NO_PREALLOC = (1U << 0),
1178/* Instead of having one common LRU list in the
1179 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
1180 * which can scale and perform better.
1181 * Note, the LRU nodes (including free nodes) cannot be moved
1182 * across different LRU lists.
1183 */
1184 BPF_F_NO_COMMON_LRU = (1U << 1),
1185/* Specify numa node during map creation */
1186 BPF_F_NUMA_NODE = (1U << 2),
1187
1188/* Flags for accessing BPF object from syscall side. */
1189 BPF_F_RDONLY = (1U << 3),
1190 BPF_F_WRONLY = (1U << 4),
1191
1192/* Flag for stack_map, store build_id+offset instead of pointer */
1193 BPF_F_STACK_BUILD_ID = (1U << 5),
1194
1195/* Zero-initialize hash function seed. This should only be used for testing. */
1196 BPF_F_ZERO_SEED = (1U << 6),
1197
1198/* Flags for accessing BPF object from program side. */
1199 BPF_F_RDONLY_PROG = (1U << 7),
1200 BPF_F_WRONLY_PROG = (1U << 8),
1201
1202/* Clone map from listener for newly accepted socket */
1203 BPF_F_CLONE = (1U << 9),
1204
1205/* Enable memory-mapping BPF map */
1206 BPF_F_MMAPABLE = (1U << 10),
1207
1208/* Share perf_event among processes */
1209 BPF_F_PRESERVE_ELEMS = (1U << 11),
1210
1211/* Create a map that is suitable to be an inner map with dynamic max entries */
1212 BPF_F_INNER_MAP = (1U << 12),
1213};
1214
1215/* Flags for BPF_PROG_QUERY. */
1216
1217/* Query effective (directly attached + inherited from ancestor cgroups)
1218 * programs that will be executed for events within a cgroup.
1219 * attach_flags with this flag are returned only for directly attached programs.
1220 */
1221#define BPF_F_QUERY_EFFECTIVE (1U << 0)
1222
1223/* Flags for BPF_PROG_TEST_RUN */
1224
1225/* If set, run the test on the cpu specified by bpf_attr.test.cpu */
1226#define BPF_F_TEST_RUN_ON_CPU (1U << 0)
1227
1228/* type for BPF_ENABLE_STATS */
1229enum bpf_stats_type {
1230 /* enabled run_time_ns and run_cnt */
1231 BPF_STATS_RUN_TIME = 0,
1232};
1233
1234enum bpf_stack_build_id_status {
1235 /* user space need an empty entry to identify end of a trace */
1236 BPF_STACK_BUILD_ID_EMPTY = 0,
1237 /* with valid build_id and offset */
1238 BPF_STACK_BUILD_ID_VALID = 1,
1239 /* couldn't get build_id, fallback to ip */
1240 BPF_STACK_BUILD_ID_IP = 2,
1241};
1242
1243#define BPF_BUILD_ID_SIZE 20
1244struct bpf_stack_build_id {
1245 __s32 status;
1246 unsigned char build_id[BPF_BUILD_ID_SIZE];
1247 union {
1248 __u64 offset;
1249 __u64 ip;
1250 };
1251};
1252
1253#define BPF_OBJ_NAME_LEN 16U
1254
1255union bpf_attr {
1256 struct { /* anonymous struct used by BPF_MAP_CREATE command */
1257 __u32 map_type; /* one of enum bpf_map_type */
1258 __u32 key_size; /* size of key in bytes */
1259 __u32 value_size; /* size of value in bytes */
1260 __u32 max_entries; /* max number of entries in a map */
1261 __u32 map_flags; /* BPF_MAP_CREATE related
1262 * flags defined above.
1263 */
1264 __u32 inner_map_fd; /* fd pointing to the inner map */
1265 __u32 numa_node; /* numa node (effective only if
1266 * BPF_F_NUMA_NODE is set).
1267 */
1268 char map_name[BPF_OBJ_NAME_LEN];
1269 __u32 map_ifindex; /* ifindex of netdev to create on */
1270 __u32 btf_fd; /* fd pointing to a BTF type data */
1271 __u32 btf_key_type_id; /* BTF type_id of the key */
1272 __u32 btf_value_type_id; /* BTF type_id of the value */
1273 __u32 btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
1274 * struct stored as the
1275 * map value
1276 */
1277 };
1278
1279 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
1280 __u32 map_fd;
1281 __aligned_u64 key;
1282 union {
1283 __aligned_u64 value;
1284 __aligned_u64 next_key;
1285 };
1286 __u64 flags;
1287 };
1288
1289 struct { /* struct used by BPF_MAP_*_BATCH commands */
1290 __aligned_u64 in_batch; /* start batch,
1291 * NULL to start from beginning
1292 */
1293 __aligned_u64 out_batch; /* output: next start batch */
1294 __aligned_u64 keys;
1295 __aligned_u64 values;
1296 __u32 count; /* input/output:
1297 * input: # of key/value
1298 * elements
1299 * output: # of filled elements
1300 */
1301 __u32 map_fd;
1302 __u64 elem_flags;
1303 __u64 flags;
1304 } batch;
1305
1306 struct { /* anonymous struct used by BPF_PROG_LOAD command */
1307 __u32 prog_type; /* one of enum bpf_prog_type */
1308 __u32 insn_cnt;
1309 __aligned_u64 insns;
1310 __aligned_u64 license;
1311 __u32 log_level; /* verbosity level of verifier */
1312 __u32 log_size; /* size of user buffer */
1313 __aligned_u64 log_buf; /* user supplied buffer */
1314 __u32 kern_version; /* not used */
1315 __u32 prog_flags;
1316 char prog_name[BPF_OBJ_NAME_LEN];
1317 __u32 prog_ifindex; /* ifindex of netdev to prep for */
1318 /* For some prog types expected attach type must be known at
1319 * load time to verify attach type specific parts of prog
1320 * (context accesses, allowed helpers, etc).
1321 */
1322 __u32 expected_attach_type;
1323 __u32 prog_btf_fd; /* fd pointing to BTF type data */
1324 __u32 func_info_rec_size; /* userspace bpf_func_info size */
1325 __aligned_u64 func_info; /* func info */
1326 __u32 func_info_cnt; /* number of bpf_func_info records */
1327 __u32 line_info_rec_size; /* userspace bpf_line_info size */
1328 __aligned_u64 line_info; /* line info */
1329 __u32 line_info_cnt; /* number of bpf_line_info records */
1330 __u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1331 union {
1332 /* valid prog_fd to attach to bpf prog */
1333 __u32 attach_prog_fd;
1334 /* or valid module BTF object fd or 0 to attach to vmlinux */
1335 __u32 attach_btf_obj_fd;
1336 };
1337 __u32 :32; /* pad */
1338 __aligned_u64 fd_array; /* array of FDs */
1339 };
1340
1341 struct { /* anonymous struct used by BPF_OBJ_* commands */
1342 __aligned_u64 pathname;
1343 __u32 bpf_fd;
1344 __u32 file_flags;
1345 };
1346
1347 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
1348 __u32 target_fd; /* container object to attach to */
1349 __u32 attach_bpf_fd; /* eBPF program to attach */
1350 __u32 attach_type;
1351 __u32 attach_flags;
1352 __u32 replace_bpf_fd; /* previously attached eBPF
1353 * program to replace if
1354 * BPF_F_REPLACE is used
1355 */
1356 };
1357
1358 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
1359 __u32 prog_fd;
1360 __u32 retval;
1361 __u32 data_size_in; /* input: len of data_in */
1362 __u32 data_size_out; /* input/output: len of data_out
1363 * returns ENOSPC if data_out
1364 * is too small.
1365 */
1366 __aligned_u64 data_in;
1367 __aligned_u64 data_out;
1368 __u32 repeat;
1369 __u32 duration;
1370 __u32 ctx_size_in; /* input: len of ctx_in */
1371 __u32 ctx_size_out; /* input/output: len of ctx_out
1372 * returns ENOSPC if ctx_out
1373 * is too small.
1374 */
1375 __aligned_u64 ctx_in;
1376 __aligned_u64 ctx_out;
1377 __u32 flags;
1378 __u32 cpu;
1379 } test;
1380
1381 struct { /* anonymous struct used by BPF_*_GET_*_ID */
1382 union {
1383 __u32 start_id;
1384 __u32 prog_id;
1385 __u32 map_id;
1386 __u32 btf_id;
1387 __u32 link_id;
1388 };
1389 __u32 next_id;
1390 __u32 open_flags;
1391 };
1392
1393 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
1394 __u32 bpf_fd;
1395 __u32 info_len;
1396 __aligned_u64 info;
1397 } info;
1398
1399 struct { /* anonymous struct used by BPF_PROG_QUERY command */
1400 __u32 target_fd; /* container object to query */
1401 __u32 attach_type;
1402 __u32 query_flags;
1403 __u32 attach_flags;
1404 __aligned_u64 prog_ids;
1405 __u32 prog_cnt;
1406 } query;
1407
1408 struct { /* anonymous struct used by BPF_RAW_TRACEPOINT_OPEN command */
1409 __u64 name;
1410 __u32 prog_fd;
1411 } raw_tracepoint;
1412
1413 struct { /* anonymous struct for BPF_BTF_LOAD */
1414 __aligned_u64 btf;
1415 __aligned_u64 btf_log_buf;
1416 __u32 btf_size;
1417 __u32 btf_log_size;
1418 __u32 btf_log_level;
1419 };
1420
1421 struct {
1422 __u32 pid; /* input: pid */
1423 __u32 fd; /* input: fd */
1424 __u32 flags; /* input: flags */
1425 __u32 buf_len; /* input/output: buf len */
1426 __aligned_u64 buf; /* input/output:
1427 * tp_name for tracepoint
1428 * symbol for kprobe
1429 * filename for uprobe
1430 */
1431 __u32 prog_id; /* output: prod_id */
1432 __u32 fd_type; /* output: BPF_FD_TYPE_* */
1433 __u64 probe_offset; /* output: probe_offset */
1434 __u64 probe_addr; /* output: probe_addr */
1435 } task_fd_query;
1436
1437 struct { /* struct used by BPF_LINK_CREATE command */
1438 __u32 prog_fd; /* eBPF program to attach */
1439 union {
1440 __u32 target_fd; /* object to attach to */
1441 __u32 target_ifindex; /* target ifindex */
1442 };
1443 __u32 attach_type; /* attach type */
1444 __u32 flags; /* extra flags */
1445 union {
1446 __u32 target_btf_id; /* btf_id of target to attach to */
1447 struct {
1448 __aligned_u64 iter_info; /* extra bpf_iter_link_info */
1449 __u32 iter_info_len; /* iter_info length */
1450 };
1451 struct {
1452 /* black box user-provided value passed through
1453 * to BPF program at the execution time and
1454 * accessible through bpf_get_attach_cookie() BPF helper
1455 */
1456 __u64 bpf_cookie;
1457 } perf_event;
1458 };
1459 } link_create;
1460
1461 struct { /* struct used by BPF_LINK_UPDATE command */
1462 __u32 link_fd; /* link fd */
1463 /* new program fd to update link with */
1464 __u32 new_prog_fd;
1465 __u32 flags; /* extra flags */
1466 /* expected link's program fd; is specified only if
1467 * BPF_F_REPLACE flag is set in flags */
1468 __u32 old_prog_fd;
1469 } link_update;
1470
1471 struct {
1472 __u32 link_fd;
1473 } link_detach;
1474
1475 struct { /* struct used by BPF_ENABLE_STATS command */
1476 __u32 type;
1477 } enable_stats;
1478
1479 struct { /* struct used by BPF_ITER_CREATE command */
1480 __u32 link_fd;
1481 __u32 flags;
1482 } iter_create;
1483
1484 struct { /* struct used by BPF_PROG_BIND_MAP command */
1485 __u32 prog_fd;
1486 __u32 map_fd;
1487 __u32 flags; /* extra flags */
1488 } prog_bind_map;
1489
1490} __attribute__((aligned(8)));
1491
1492/* The description below is an attempt at providing documentation to eBPF
1493 * developers about the multiple available eBPF helper functions. It can be
1494 * parsed and used to produce a manual page. The workflow is the following,
1495 * and requires the rst2man utility:
1496 *
1497 * $ ./scripts/bpf_doc.py \
1498 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
1499 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
1500 * $ man /tmp/bpf-helpers.7
1501 *
1502 * Note that in order to produce this external documentation, some RST
1503 * formatting is used in the descriptions to get "bold" and "italics" in
1504 * manual pages. Also note that the few trailing white spaces are
1505 * intentional, removing them would break paragraphs for rst2man.
1506 *
1507 * Start of BPF helper function descriptions:
1508 *
1509 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
1510 * Description
1511 * Perform a lookup in *map* for an entry associated to *key*.
1512 * Return
1513 * Map value associated to *key*, or **NULL** if no entry was
1514 * found.
1515 *
1516 * long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
1517 * Description
1518 * Add or update the value of the entry associated to *key* in
1519 * *map* with *value*. *flags* is one of:
1520 *
1521 * **BPF_NOEXIST**
1522 * The entry for *key* must not exist in the map.
1523 * **BPF_EXIST**
1524 * The entry for *key* must already exist in the map.
1525 * **BPF_ANY**
1526 * No condition on the existence of the entry for *key*.
1527 *
1528 * Flag value **BPF_NOEXIST** cannot be used for maps of types
1529 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all
1530 * elements always exist), the helper would return an error.
1531 * Return
1532 * 0 on success, or a negative error in case of failure.
1533 *
1534 * long bpf_map_delete_elem(struct bpf_map *map, const void *key)
1535 * Description
1536 * Delete entry with *key* from *map*.
1537 * Return
1538 * 0 on success, or a negative error in case of failure.
1539 *
1540 * long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
1541 * Description
1542 * For tracing programs, safely attempt to read *size* bytes from
1543 * kernel space address *unsafe_ptr* and store the data in *dst*.
1544 *
1545 * Generally, use **bpf_probe_read_user**\ () or
1546 * **bpf_probe_read_kernel**\ () instead.
1547 * Return
1548 * 0 on success, or a negative error in case of failure.
1549 *
1550 * u64 bpf_ktime_get_ns(void)
1551 * Description
1552 * Return the time elapsed since system boot, in nanoseconds.
1553 * Does not include time the system was suspended.
1554 * See: **clock_gettime**\ (**CLOCK_MONOTONIC**)
1555 * Return
1556 * Current *ktime*.
1557 *
1558 * long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
1559 * Description
1560 * This helper is a "printk()-like" facility for debugging. It
1561 * prints a message defined by format *fmt* (of size *fmt_size*)
1562 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
1563 * available. It can take up to three additional **u64**
1564 * arguments (as an eBPF helpers, the total number of arguments is
1565 * limited to five).
1566 *
1567 * Each time the helper is called, it appends a line to the trace.
1568 * Lines are discarded while *\/sys/kernel/debug/tracing/trace* is
1569 * open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this.
1570 * The format of the trace is customizable, and the exact output
1571 * one will get depends on the options set in
1572 * *\/sys/kernel/debug/tracing/trace_options* (see also the
1573 * *README* file under the same directory). However, it usually
1574 * defaults to something like:
1575 *
1576 * ::
1577 *
1578 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>
1579 *
1580 * In the above:
1581 *
1582 * * ``telnet`` is the name of the current task.
1583 * * ``470`` is the PID of the current task.
1584 * * ``001`` is the CPU number on which the task is
1585 * running.
1586 * * In ``.N..``, each character refers to a set of
1587 * options (whether irqs are enabled, scheduling
1588 * options, whether hard/softirqs are running, level of
1589 * preempt_disabled respectively). **N** means that
1590 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
1591 * are set.
1592 * * ``419421.045894`` is a timestamp.
1593 * * ``0x00000001`` is a fake value used by BPF for the
1594 * instruction pointer register.
1595 * * ``<formatted msg>`` is the message formatted with
1596 * *fmt*.
1597 *
1598 * The conversion specifiers supported by *fmt* are similar, but
1599 * more limited than for printk(). They are **%d**, **%i**,
1600 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
1601 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
1602 * of field, padding with zeroes, etc.) is available, and the
1603 * helper will return **-EINVAL** (but print nothing) if it
1604 * encounters an unknown specifier.
1605 *
1606 * Also, note that **bpf_trace_printk**\ () is slow, and should
1607 * only be used for debugging purposes. For this reason, a notice
1608 * block (spanning several lines) is printed to kernel logs and
1609 * states that the helper should not be used "for production use"
1610 * the first time this helper is used (or more precisely, when
1611 * **trace_printk**\ () buffers are allocated). For passing values
1612 * to user space, perf events should be preferred.
1613 * Return
1614 * The number of bytes written to the buffer, or a negative error
1615 * in case of failure.
1616 *
1617 * u32 bpf_get_prandom_u32(void)
1618 * Description
1619 * Get a pseudo-random number.
1620 *
1621 * From a security point of view, this helper uses its own
1622 * pseudo-random internal state, and cannot be used to infer the
1623 * seed of other random functions in the kernel. However, it is
1624 * essential to note that the generator used by the helper is not
1625 * cryptographically secure.
1626 * Return
1627 * A random 32-bit unsigned value.
1628 *
1629 * u32 bpf_get_smp_processor_id(void)
1630 * Description
1631 * Get the SMP (symmetric multiprocessing) processor id. Note that
1632 * all programs run with preemption disabled, which means that the
1633 * SMP processor id is stable during all the execution of the
1634 * program.
1635 * Return
1636 * The SMP id of the processor running the program.
1637 *
1638 * long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
1639 * Description
1640 * Store *len* bytes from address *from* into the packet
1641 * associated to *skb*, at *offset*. *flags* are a combination of
1642 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the
1643 * checksum for the packet after storing the bytes) and
1644 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
1645 * **->swhash** and *skb*\ **->l4hash** to 0).
1646 *
1647 * A call to this helper is susceptible to change the underlying
1648 * packet buffer. Therefore, at load time, all checks on pointers
1649 * previously done by the verifier are invalidated and must be
1650 * performed again, if the helper is used in combination with
1651 * direct packet access.
1652 * Return
1653 * 0 on success, or a negative error in case of failure.
1654 *
1655 * long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
1656 * Description
1657 * Recompute the layer 3 (e.g. IP) checksum for the packet
1658 * associated to *skb*. Computation is incremental, so the helper
1659 * must know the former value of the header field that was
1660 * modified (*from*), the new value of this field (*to*), and the
1661 * number of bytes (2 or 4) for this field, stored in *size*.
1662 * Alternatively, it is possible to store the difference between
1663 * the previous and the new values of the header field in *to*, by
1664 * setting *from* and *size* to 0. For both methods, *offset*
1665 * indicates the location of the IP checksum within the packet.
1666 *
1667 * This helper works in combination with **bpf_csum_diff**\ (),
1668 * which does not update the checksum in-place, but offers more
1669 * flexibility and can handle sizes larger than 2 or 4 for the
1670 * checksum to update.
1671 *
1672 * A call to this helper is susceptible to change the underlying
1673 * packet buffer. Therefore, at load time, all checks on pointers
1674 * previously done by the verifier are invalidated and must be
1675 * performed again, if the helper is used in combination with
1676 * direct packet access.
1677 * Return
1678 * 0 on success, or a negative error in case of failure.
1679 *
1680 * long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
1681 * Description
1682 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
1683 * packet associated to *skb*. Computation is incremental, so the
1684 * helper must know the former value of the header field that was
1685 * modified (*from*), the new value of this field (*to*), and the
1686 * number of bytes (2 or 4) for this field, stored on the lowest
1687 * four bits of *flags*. Alternatively, it is possible to store
1688 * the difference between the previous and the new values of the
1689 * header field in *to*, by setting *from* and the four lowest
1690 * bits of *flags* to 0. For both methods, *offset* indicates the
1691 * location of the IP checksum within the packet. In addition to
1692 * the size of the field, *flags* can be added (bitwise OR) actual
1693 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
1694 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
1695 * for updates resulting in a null checksum the value is set to
1696 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
1697 * the checksum is to be computed against a pseudo-header.
1698 *
1699 * This helper works in combination with **bpf_csum_diff**\ (),
1700 * which does not update the checksum in-place, but offers more
1701 * flexibility and can handle sizes larger than 2 or 4 for the
1702 * checksum to update.
1703 *
1704 * A call to this helper is susceptible to change the underlying
1705 * packet buffer. Therefore, at load time, all checks on pointers
1706 * previously done by the verifier are invalidated and must be
1707 * performed again, if the helper is used in combination with
1708 * direct packet access.
1709 * Return
1710 * 0 on success, or a negative error in case of failure.
1711 *
1712 * long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
1713 * Description
1714 * This special helper is used to trigger a "tail call", or in
1715 * other words, to jump into another eBPF program. The same stack
1716 * frame is used (but values on stack and in registers for the
1717 * caller are not accessible to the callee). This mechanism allows
1718 * for program chaining, either for raising the maximum number of
1719 * available eBPF instructions, or to execute given programs in
1720 * conditional blocks. For security reasons, there is an upper
1721 * limit to the number of successive tail calls that can be
1722 * performed.
1723 *
1724 * Upon call of this helper, the program attempts to jump into a
1725 * program referenced at index *index* in *prog_array_map*, a
1726 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
1727 * *ctx*, a pointer to the context.
1728 *
1729 * If the call succeeds, the kernel immediately runs the first
1730 * instruction of the new program. This is not a function call,
1731 * and it never returns to the previous program. If the call
1732 * fails, then the helper has no effect, and the caller continues
1733 * to run its subsequent instructions. A call can fail if the
1734 * destination program for the jump does not exist (i.e. *index*
1735 * is superior to the number of entries in *prog_array_map*), or
1736 * if the maximum number of tail calls has been reached for this
1737 * chain of programs. This limit is defined in the kernel by the
1738 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
1739 * which is currently set to 32.
1740 * Return
1741 * 0 on success, or a negative error in case of failure.
1742 *
1743 * long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
1744 * Description
1745 * Clone and redirect the packet associated to *skb* to another
1746 * net device of index *ifindex*. Both ingress and egress
1747 * interfaces can be used for redirection. The **BPF_F_INGRESS**
1748 * value in *flags* is used to make the distinction (ingress path
1749 * is selected if the flag is present, egress path otherwise).
1750 * This is the only flag supported for now.
1751 *
1752 * In comparison with **bpf_redirect**\ () helper,
1753 * **bpf_clone_redirect**\ () has the associated cost of
1754 * duplicating the packet buffer, but this can be executed out of
1755 * the eBPF program. Conversely, **bpf_redirect**\ () is more
1756 * efficient, but it is handled through an action code where the
1757 * redirection happens only after the eBPF program has returned.
1758 *
1759 * A call to this helper is susceptible to change the underlying
1760 * packet buffer. Therefore, at load time, all checks on pointers
1761 * previously done by the verifier are invalidated and must be
1762 * performed again, if the helper is used in combination with
1763 * direct packet access.
1764 * Return
1765 * 0 on success, or a negative error in case of failure. Positive
1766 * error indicates a potential drop or congestion in the target
1767 * device. The particular positive error codes are not defined.
1768 *
1769 * u64 bpf_get_current_pid_tgid(void)
1770 * Return
1771 * A 64-bit integer containing the current tgid and pid, and
1772 * created as such:
1773 * *current_task*\ **->tgid << 32 \|**
1774 * *current_task*\ **->pid**.
1775 *
1776 * u64 bpf_get_current_uid_gid(void)
1777 * Return
1778 * A 64-bit integer containing the current GID and UID, and
1779 * created as such: *current_gid* **<< 32 \|** *current_uid*.
1780 *
1781 * long bpf_get_current_comm(void *buf, u32 size_of_buf)
1782 * Description
1783 * Copy the **comm** attribute of the current task into *buf* of
1784 * *size_of_buf*. The **comm** attribute contains the name of
1785 * the executable (excluding the path) for the current task. The
1786 * *size_of_buf* must be strictly positive. On success, the
1787 * helper makes sure that the *buf* is NUL-terminated. On failure,
1788 * it is filled with zeroes.
1789 * Return
1790 * 0 on success, or a negative error in case of failure.
1791 *
1792 * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
1793 * Description
1794 * Retrieve the classid for the current task, i.e. for the net_cls
1795 * cgroup to which *skb* belongs.
1796 *
1797 * This helper can be used on TC egress path, but not on ingress.
1798 *
1799 * The net_cls cgroup provides an interface to tag network packets
1800 * based on a user-provided identifier for all traffic coming from
1801 * the tasks belonging to the related cgroup. See also the related
1802 * kernel documentation, available from the Linux sources in file
1803 * *Documentation/admin-guide/cgroup-v1/net_cls.rst*.
1804 *
1805 * The Linux kernel has two versions for cgroups: there are
1806 * cgroups v1 and cgroups v2. Both are available to users, who can
1807 * use a mixture of them, but note that the net_cls cgroup is for
1808 * cgroup v1 only. This makes it incompatible with BPF programs
1809 * run on cgroups, which is a cgroup-v2-only feature (a socket can
1810 * only hold data for one version of cgroups at a time).
1811 *
1812 * This helper is only available is the kernel was compiled with
1813 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
1814 * "**y**" or to "**m**".
1815 * Return
1816 * The classid, or 0 for the default unconfigured classid.
1817 *
1818 * long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
1819 * Description
1820 * Push a *vlan_tci* (VLAN tag control information) of protocol
1821 * *vlan_proto* to the packet associated to *skb*, then update
1822 * the checksum. Note that if *vlan_proto* is different from
1823 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
1824 * be **ETH_P_8021Q**.
1825 *
1826 * A call to this helper is susceptible to change the underlying
1827 * packet buffer. Therefore, at load time, all checks on pointers
1828 * previously done by the verifier are invalidated and must be
1829 * performed again, if the helper is used in combination with
1830 * direct packet access.
1831 * Return
1832 * 0 on success, or a negative error in case of failure.
1833 *
1834 * long bpf_skb_vlan_pop(struct sk_buff *skb)
1835 * Description
1836 * Pop a VLAN header from the packet associated to *skb*.
1837 *
1838 * A call to this helper is susceptible to change the underlying
1839 * packet buffer. Therefore, at load time, all checks on pointers
1840 * previously done by the verifier are invalidated and must be
1841 * performed again, if the helper is used in combination with
1842 * direct packet access.
1843 * Return
1844 * 0 on success, or a negative error in case of failure.
1845 *
1846 * long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
1847 * Description
1848 * Get tunnel metadata. This helper takes a pointer *key* to an
1849 * empty **struct bpf_tunnel_key** of **size**, that will be
1850 * filled with tunnel metadata for the packet associated to *skb*.
1851 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
1852 * indicates that the tunnel is based on IPv6 protocol instead of
1853 * IPv4.
1854 *
1855 * The **struct bpf_tunnel_key** is an object that generalizes the
1856 * principal parameters used by various tunneling protocols into a
1857 * single struct. This way, it can be used to easily make a
1858 * decision based on the contents of the encapsulation header,
1859 * "summarized" in this struct. In particular, it holds the IP
1860 * address of the remote end (IPv4 or IPv6, depending on the case)
1861 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
1862 * this struct exposes the *key*\ **->tunnel_id**, which is
1863 * generally mapped to a VNI (Virtual Network Identifier), making
1864 * it programmable together with the **bpf_skb_set_tunnel_key**\
1865 * () helper.
1866 *
1867 * Let's imagine that the following code is part of a program
1868 * attached to the TC ingress interface, on one end of a GRE
1869 * tunnel, and is supposed to filter out all messages coming from
1870 * remote ends with IPv4 address other than 10.0.0.1:
1871 *
1872 * ::
1873 *
1874 * int ret;
1875 * struct bpf_tunnel_key key = {};
1876 *
1877 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
1878 * if (ret < 0)
1879 * return TC_ACT_SHOT; // drop packet
1880 *
1881 * if (key.remote_ipv4 != 0x0a000001)
1882 * return TC_ACT_SHOT; // drop packet
1883 *
1884 * return TC_ACT_OK; // accept packet
1885 *
1886 * This interface can also be used with all encapsulation devices
1887 * that can operate in "collect metadata" mode: instead of having
1888 * one network device per specific configuration, the "collect
1889 * metadata" mode only requires a single device where the
1890 * configuration can be extracted from this helper.
1891 *
1892 * This can be used together with various tunnels such as VXLan,
1893 * Geneve, GRE or IP in IP (IPIP).
1894 * Return
1895 * 0 on success, or a negative error in case of failure.
1896 *
1897 * long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
1898 * Description
1899 * Populate tunnel metadata for packet associated to *skb.* The
1900 * tunnel metadata is set to the contents of *key*, of *size*. The
1901 * *flags* can be set to a combination of the following values:
1902 *
1903 * **BPF_F_TUNINFO_IPV6**
1904 * Indicate that the tunnel is based on IPv6 protocol
1905 * instead of IPv4.
1906 * **BPF_F_ZERO_CSUM_TX**
1907 * For IPv4 packets, add a flag to tunnel metadata
1908 * indicating that checksum computation should be skipped
1909 * and checksum set to zeroes.
1910 * **BPF_F_DONT_FRAGMENT**
1911 * Add a flag to tunnel metadata indicating that the
1912 * packet should not be fragmented.
1913 * **BPF_F_SEQ_NUMBER**
1914 * Add a flag to tunnel metadata indicating that a
1915 * sequence number should be added to tunnel header before
1916 * sending the packet. This flag was added for GRE
1917 * encapsulation, but might be used with other protocols
1918 * as well in the future.
1919 *
1920 * Here is a typical usage on the transmit path:
1921 *
1922 * ::
1923 *
1924 * struct bpf_tunnel_key key;
1925 * populate key ...
1926 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
1927 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
1928 *
1929 * See also the description of the **bpf_skb_get_tunnel_key**\ ()
1930 * helper for additional information.
1931 * Return
1932 * 0 on success, or a negative error in case of failure.
1933 *
1934 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
1935 * Description
1936 * Read the value of a perf event counter. This helper relies on a
1937 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
1938 * the perf event counter is selected when *map* is updated with
1939 * perf event file descriptors. The *map* is an array whose size
1940 * is the number of available CPUs, and each cell contains a value
1941 * relative to one CPU. The value to retrieve is indicated by
1942 * *flags*, that contains the index of the CPU to look up, masked
1943 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1944 * **BPF_F_CURRENT_CPU** to indicate that the value for the
1945 * current CPU should be retrieved.
1946 *
1947 * Note that before Linux 4.13, only hardware perf event can be
1948 * retrieved.
1949 *
1950 * Also, be aware that the newer helper
1951 * **bpf_perf_event_read_value**\ () is recommended over
1952 * **bpf_perf_event_read**\ () in general. The latter has some ABI
1953 * quirks where error and counter value are used as a return code
1954 * (which is wrong to do since ranges may overlap). This issue is
1955 * fixed with **bpf_perf_event_read_value**\ (), which at the same
1956 * time provides more features over the **bpf_perf_event_read**\
1957 * () interface. Please refer to the description of
1958 * **bpf_perf_event_read_value**\ () for details.
1959 * Return
1960 * The value of the perf event counter read from the map, or a
1961 * negative error code in case of failure.
1962 *
1963 * long bpf_redirect(u32 ifindex, u64 flags)
1964 * Description
1965 * Redirect the packet to another net device of index *ifindex*.
1966 * This helper is somewhat similar to **bpf_clone_redirect**\
1967 * (), except that the packet is not cloned, which provides
1968 * increased performance.
1969 *
1970 * Except for XDP, both ingress and egress interfaces can be used
1971 * for redirection. The **BPF_F_INGRESS** value in *flags* is used
1972 * to make the distinction (ingress path is selected if the flag
1973 * is present, egress path otherwise). Currently, XDP only
1974 * supports redirection to the egress interface, and accepts no
1975 * flag at all.
1976 *
1977 * The same effect can also be attained with the more generic
1978 * **bpf_redirect_map**\ (), which uses a BPF map to store the
1979 * redirect target instead of providing it directly to the helper.
1980 * Return
1981 * For XDP, the helper returns **XDP_REDIRECT** on success or
1982 * **XDP_ABORTED** on error. For other program types, the values
1983 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
1984 * error.
1985 *
1986 * u32 bpf_get_route_realm(struct sk_buff *skb)
1987 * Description
1988 * Retrieve the realm or the route, that is to say the
1989 * **tclassid** field of the destination for the *skb*. The
1990 * identifier retrieved is a user-provided tag, similar to the
1991 * one used with the net_cls cgroup (see description for
1992 * **bpf_get_cgroup_classid**\ () helper), but here this tag is
1993 * held by a route (a destination entry), not by a task.
1994 *
1995 * Retrieving this identifier works with the clsact TC egress hook
1996 * (see also **tc-bpf(8)**), or alternatively on conventional
1997 * classful egress qdiscs, but not on TC ingress path. In case of
1998 * clsact TC egress hook, this has the advantage that, internally,
1999 * the destination entry has not been dropped yet in the transmit
2000 * path. Therefore, the destination entry does not need to be
2001 * artificially held via **netif_keep_dst**\ () for a classful
2002 * qdisc until the *skb* is freed.
2003 *
2004 * This helper is available only if the kernel was compiled with
2005 * **CONFIG_IP_ROUTE_CLASSID** configuration option.
2006 * Return
2007 * The realm of the route for the packet associated to *skb*, or 0
2008 * if none was found.
2009 *
2010 * long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2011 * Description
2012 * Write raw *data* blob into a special BPF perf event held by
2013 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2014 * event must have the following attributes: **PERF_SAMPLE_RAW**
2015 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2016 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2017 *
2018 * The *flags* are used to indicate the index in *map* for which
2019 * the value must be put, masked with **BPF_F_INDEX_MASK**.
2020 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2021 * to indicate that the index of the current CPU core should be
2022 * used.
2023 *
2024 * The value to write, of *size*, is passed through eBPF stack and
2025 * pointed by *data*.
2026 *
2027 * The context of the program *ctx* needs also be passed to the
2028 * helper.
2029 *
2030 * On user space, a program willing to read the values needs to
2031 * call **perf_event_open**\ () on the perf event (either for
2032 * one or for all CPUs) and to store the file descriptor into the
2033 * *map*. This must be done before the eBPF program can send data
2034 * into it. An example is available in file
2035 * *samples/bpf/trace_output_user.c* in the Linux kernel source
2036 * tree (the eBPF program counterpart is in
2037 * *samples/bpf/trace_output_kern.c*).
2038 *
2039 * **bpf_perf_event_output**\ () achieves better performance
2040 * than **bpf_trace_printk**\ () for sharing data with user
2041 * space, and is much better suitable for streaming data from eBPF
2042 * programs.
2043 *
2044 * Note that this helper is not restricted to tracing use cases
2045 * and can be used with programs attached to TC or XDP as well,
2046 * where it allows for passing data to user space listeners. Data
2047 * can be:
2048 *
2049 * * Only custom structs,
2050 * * Only the packet payload, or
2051 * * A combination of both.
2052 * Return
2053 * 0 on success, or a negative error in case of failure.
2054 *
2055 * long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
2056 * Description
2057 * This helper was provided as an easy way to load data from a
2058 * packet. It can be used to load *len* bytes from *offset* from
2059 * the packet associated to *skb*, into the buffer pointed by
2060 * *to*.
2061 *
2062 * Since Linux 4.7, usage of this helper has mostly been replaced
2063 * by "direct packet access", enabling packet data to be
2064 * manipulated with *skb*\ **->data** and *skb*\ **->data_end**
2065 * pointing respectively to the first byte of packet data and to
2066 * the byte after the last byte of packet data. However, it
2067 * remains useful if one wishes to read large quantities of data
2068 * at once from a packet into the eBPF stack.
2069 * Return
2070 * 0 on success, or a negative error in case of failure.
2071 *
2072 * long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
2073 * Description
2074 * Walk a user or a kernel stack and return its id. To achieve
2075 * this, the helper needs *ctx*, which is a pointer to the context
2076 * on which the tracing program is executed, and a pointer to a
2077 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**.
2078 *
2079 * The last argument, *flags*, holds the number of stack frames to
2080 * skip (from 0 to 255), masked with
2081 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
2082 * a combination of the following flags:
2083 *
2084 * **BPF_F_USER_STACK**
2085 * Collect a user space stack instead of a kernel stack.
2086 * **BPF_F_FAST_STACK_CMP**
2087 * Compare stacks by hash only.
2088 * **BPF_F_REUSE_STACKID**
2089 * If two different stacks hash into the same *stackid*,
2090 * discard the old one.
2091 *
2092 * The stack id retrieved is a 32 bit long integer handle which
2093 * can be further combined with other data (including other stack
2094 * ids) and used as a key into maps. This can be useful for
2095 * generating a variety of graphs (such as flame graphs or off-cpu
2096 * graphs).
2097 *
2098 * For walking a stack, this helper is an improvement over
2099 * **bpf_probe_read**\ (), which can be used with unrolled loops
2100 * but is not efficient and consumes a lot of eBPF instructions.
2101 * Instead, **bpf_get_stackid**\ () can collect up to
2102 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
2103 * this limit can be controlled with the **sysctl** program, and
2104 * that it should be manually increased in order to profile long
2105 * user stacks (such as stacks for Java programs). To do so, use:
2106 *
2107 * ::
2108 *
2109 * # sysctl kernel.perf_event_max_stack=<new value>
2110 * Return
2111 * The positive or null stack id on success, or a negative error
2112 * in case of failure.
2113 *
2114 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
2115 * Description
2116 * Compute a checksum difference, from the raw buffer pointed by
2117 * *from*, of length *from_size* (that must be a multiple of 4),
2118 * towards the raw buffer pointed by *to*, of size *to_size*
2119 * (same remark). An optional *seed* can be added to the value
2120 * (this can be cascaded, the seed may come from a previous call
2121 * to the helper).
2122 *
2123 * This is flexible enough to be used in several ways:
2124 *
2125 * * With *from_size* == 0, *to_size* > 0 and *seed* set to
2126 * checksum, it can be used when pushing new data.
2127 * * With *from_size* > 0, *to_size* == 0 and *seed* set to
2128 * checksum, it can be used when removing data from a packet.
2129 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
2130 * can be used to compute a diff. Note that *from_size* and
2131 * *to_size* do not need to be equal.
2132 *
2133 * This helper can be used in combination with
2134 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
2135 * which one can feed in the difference computed with
2136 * **bpf_csum_diff**\ ().
2137 * Return
2138 * The checksum result, or a negative error code in case of
2139 * failure.
2140 *
2141 * long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
2142 * Description
2143 * Retrieve tunnel options metadata for the packet associated to
2144 * *skb*, and store the raw tunnel option data to the buffer *opt*
2145 * of *size*.
2146 *
2147 * This helper can be used with encapsulation devices that can
2148 * operate in "collect metadata" mode (please refer to the related
2149 * note in the description of **bpf_skb_get_tunnel_key**\ () for
2150 * more details). A particular example where this can be used is
2151 * in combination with the Geneve encapsulation protocol, where it
2152 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
2153 * and retrieving arbitrary TLVs (Type-Length-Value headers) from
2154 * the eBPF program. This allows for full customization of these
2155 * headers.
2156 * Return
2157 * The size of the option data retrieved.
2158 *
2159 * long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
2160 * Description
2161 * Set tunnel options metadata for the packet associated to *skb*
2162 * to the option data contained in the raw buffer *opt* of *size*.
2163 *
2164 * See also the description of the **bpf_skb_get_tunnel_opt**\ ()
2165 * helper for additional information.
2166 * Return
2167 * 0 on success, or a negative error in case of failure.
2168 *
2169 * long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
2170 * Description
2171 * Change the protocol of the *skb* to *proto*. Currently
2172 * supported are transition from IPv4 to IPv6, and from IPv6 to
2173 * IPv4. The helper takes care of the groundwork for the
2174 * transition, including resizing the socket buffer. The eBPF
2175 * program is expected to fill the new headers, if any, via
2176 * **skb_store_bytes**\ () and to recompute the checksums with
2177 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
2178 * (). The main case for this helper is to perform NAT64
2179 * operations out of an eBPF program.
2180 *
2181 * Internally, the GSO type is marked as dodgy so that headers are
2182 * checked and segments are recalculated by the GSO/GRO engine.
2183 * The size for GSO target is adapted as well.
2184 *
2185 * All values for *flags* are reserved for future usage, and must
2186 * be left at zero.
2187 *
2188 * A call to this helper is susceptible to change the underlying
2189 * packet buffer. Therefore, at load time, all checks on pointers
2190 * previously done by the verifier are invalidated and must be
2191 * performed again, if the helper is used in combination with
2192 * direct packet access.
2193 * Return
2194 * 0 on success, or a negative error in case of failure.
2195 *
2196 * long bpf_skb_change_type(struct sk_buff *skb, u32 type)
2197 * Description
2198 * Change the packet type for the packet associated to *skb*. This
2199 * comes down to setting *skb*\ **->pkt_type** to *type*, except
2200 * the eBPF program does not have a write access to *skb*\
2201 * **->pkt_type** beside this helper. Using a helper here allows
2202 * for graceful handling of errors.
2203 *
2204 * The major use case is to change incoming *skb*s to
2205 * **PACKET_HOST** in a programmatic way instead of having to
2206 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
2207 * example.
2208 *
2209 * Note that *type* only allows certain values. At this time, they
2210 * are:
2211 *
2212 * **PACKET_HOST**
2213 * Packet is for us.
2214 * **PACKET_BROADCAST**
2215 * Send packet to all.
2216 * **PACKET_MULTICAST**
2217 * Send packet to group.
2218 * **PACKET_OTHERHOST**
2219 * Send packet to someone else.
2220 * Return
2221 * 0 on success, or a negative error in case of failure.
2222 *
2223 * long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
2224 * Description
2225 * Check whether *skb* is a descendant of the cgroup2 held by
2226 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
2227 * Return
2228 * The return value depends on the result of the test, and can be:
2229 *
2230 * * 0, if the *skb* failed the cgroup2 descendant test.
2231 * * 1, if the *skb* succeeded the cgroup2 descendant test.
2232 * * A negative error code, if an error occurred.
2233 *
2234 * u32 bpf_get_hash_recalc(struct sk_buff *skb)
2235 * Description
2236 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is
2237 * not set, in particular if the hash was cleared due to mangling,
2238 * recompute this hash. Later accesses to the hash can be done
2239 * directly with *skb*\ **->hash**.
2240 *
2241 * Calling **bpf_set_hash_invalid**\ (), changing a packet
2242 * prototype with **bpf_skb_change_proto**\ (), or calling
2243 * **bpf_skb_store_bytes**\ () with the
2244 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear
2245 * the hash and to trigger a new computation for the next call to
2246 * **bpf_get_hash_recalc**\ ().
2247 * Return
2248 * The 32-bit hash.
2249 *
2250 * u64 bpf_get_current_task(void)
2251 * Return
2252 * A pointer to the current task struct.
2253 *
2254 * long bpf_probe_write_user(void *dst, const void *src, u32 len)
2255 * Description
2256 * Attempt in a safe way to write *len* bytes from the buffer
2257 * *src* to *dst* in memory. It only works for threads that are in
2258 * user context, and *dst* must be a valid user space address.
2259 *
2260 * This helper should not be used to implement any kind of
2261 * security mechanism because of TOC-TOU attacks, but rather to
2262 * debug, divert, and manipulate execution of semi-cooperative
2263 * processes.
2264 *
2265 * Keep in mind that this feature is meant for experiments, and it
2266 * has a risk of crashing the system and running programs.
2267 * Therefore, when an eBPF program using this helper is attached,
2268 * a warning including PID and process name is printed to kernel
2269 * logs.
2270 * Return
2271 * 0 on success, or a negative error in case of failure.
2272 *
2273 * long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
2274 * Description
2275 * Check whether the probe is being run is the context of a given
2276 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by
2277 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
2278 * Return
2279 * The return value depends on the result of the test, and can be:
2280 *
2281 * * 1, if current task belongs to the cgroup2.
2282 * * 0, if current task does not belong to the cgroup2.
2283 * * A negative error code, if an error occurred.
2284 *
2285 * long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
2286 * Description
2287 * Resize (trim or grow) the packet associated to *skb* to the
2288 * new *len*. The *flags* are reserved for future usage, and must
2289 * be left at zero.
2290 *
2291 * The basic idea is that the helper performs the needed work to
2292 * change the size of the packet, then the eBPF program rewrites
2293 * the rest via helpers like **bpf_skb_store_bytes**\ (),
2294 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
2295 * and others. This helper is a slow path utility intended for
2296 * replies with control messages. And because it is targeted for
2297 * slow path, the helper itself can afford to be slow: it
2298 * implicitly linearizes, unclones and drops offloads from the
2299 * *skb*.
2300 *
2301 * A call to this helper is susceptible to change the underlying
2302 * packet buffer. Therefore, at load time, all checks on pointers
2303 * previously done by the verifier are invalidated and must be
2304 * performed again, if the helper is used in combination with
2305 * direct packet access.
2306 * Return
2307 * 0 on success, or a negative error in case of failure.
2308 *
2309 * long bpf_skb_pull_data(struct sk_buff *skb, u32 len)
2310 * Description
2311 * Pull in non-linear data in case the *skb* is non-linear and not
2312 * all of *len* are part of the linear section. Make *len* bytes
2313 * from *skb* readable and writable. If a zero value is passed for
2314 * *len*, then the whole length of the *skb* is pulled.
2315 *
2316 * This helper is only needed for reading and writing with direct
2317 * packet access.
2318 *
2319 * For direct packet access, testing that offsets to access
2320 * are within packet boundaries (test on *skb*\ **->data_end**) is
2321 * susceptible to fail if offsets are invalid, or if the requested
2322 * data is in non-linear parts of the *skb*. On failure the
2323 * program can just bail out, or in the case of a non-linear
2324 * buffer, use a helper to make the data available. The
2325 * **bpf_skb_load_bytes**\ () helper is a first solution to access
2326 * the data. Another one consists in using **bpf_skb_pull_data**
2327 * to pull in once the non-linear parts, then retesting and
2328 * eventually access the data.
2329 *
2330 * At the same time, this also makes sure the *skb* is uncloned,
2331 * which is a necessary condition for direct write. As this needs
2332 * to be an invariant for the write part only, the verifier
2333 * detects writes and adds a prologue that is calling
2334 * **bpf_skb_pull_data()** to effectively unclone the *skb* from
2335 * the very beginning in case it is indeed cloned.
2336 *
2337 * A call to this helper is susceptible to change the underlying
2338 * packet buffer. Therefore, at load time, all checks on pointers
2339 * previously done by the verifier are invalidated and must be
2340 * performed again, if the helper is used in combination with
2341 * direct packet access.
2342 * Return
2343 * 0 on success, or a negative error in case of failure.
2344 *
2345 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
2346 * Description
2347 * Add the checksum *csum* into *skb*\ **->csum** in case the
2348 * driver has supplied a checksum for the entire packet into that
2349 * field. Return an error otherwise. This helper is intended to be
2350 * used in combination with **bpf_csum_diff**\ (), in particular
2351 * when the checksum needs to be updated after data has been
2352 * written into the packet through direct packet access.
2353 * Return
2354 * The checksum on success, or a negative error code in case of
2355 * failure.
2356 *
2357 * void bpf_set_hash_invalid(struct sk_buff *skb)
2358 * Description
2359 * Invalidate the current *skb*\ **->hash**. It can be used after
2360 * mangling on headers through direct packet access, in order to
2361 * indicate that the hash is outdated and to trigger a
2362 * recalculation the next time the kernel tries to access this
2363 * hash or when the **bpf_get_hash_recalc**\ () helper is called.
2364 *
2365 * long bpf_get_numa_node_id(void)
2366 * Description
2367 * Return the id of the current NUMA node. The primary use case
2368 * for this helper is the selection of sockets for the local NUMA
2369 * node, when the program is attached to sockets using the
2370 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
2371 * but the helper is also available to other eBPF program types,
2372 * similarly to **bpf_get_smp_processor_id**\ ().
2373 * Return
2374 * The id of current NUMA node.
2375 *
2376 * long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
2377 * Description
2378 * Grows headroom of packet associated to *skb* and adjusts the
2379 * offset of the MAC header accordingly, adding *len* bytes of
2380 * space. It automatically extends and reallocates memory as
2381 * required.
2382 *
2383 * This helper can be used on a layer 3 *skb* to push a MAC header
2384 * for redirection into a layer 2 device.
2385 *
2386 * All values for *flags* are reserved for future usage, and must
2387 * be left at zero.
2388 *
2389 * A call to this helper is susceptible to change the underlying
2390 * packet buffer. Therefore, at load time, all checks on pointers
2391 * previously done by the verifier are invalidated and must be
2392 * performed again, if the helper is used in combination with
2393 * direct packet access.
2394 * Return
2395 * 0 on success, or a negative error in case of failure.
2396 *
2397 * long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
2398 * Description
2399 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
2400 * it is possible to use a negative value for *delta*. This helper
2401 * can be used to prepare the packet for pushing or popping
2402 * headers.
2403 *
2404 * A call to this helper is susceptible to change the underlying
2405 * packet buffer. Therefore, at load time, all checks on pointers
2406 * previously done by the verifier are invalidated and must be
2407 * performed again, if the helper is used in combination with
2408 * direct packet access.
2409 * Return
2410 * 0 on success, or a negative error in case of failure.
2411 *
2412 * long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
2413 * Description
2414 * Copy a NUL terminated string from an unsafe kernel address
2415 * *unsafe_ptr* to *dst*. See **bpf_probe_read_kernel_str**\ () for
2416 * more details.
2417 *
2418 * Generally, use **bpf_probe_read_user_str**\ () or
2419 * **bpf_probe_read_kernel_str**\ () instead.
2420 * Return
2421 * On success, the strictly positive length of the string,
2422 * including the trailing NUL character. On error, a negative
2423 * value.
2424 *
2425 * u64 bpf_get_socket_cookie(struct sk_buff *skb)
2426 * Description
2427 * If the **struct sk_buff** pointed by *skb* has a known socket,
2428 * retrieve the cookie (generated by the kernel) of this socket.
2429 * If no cookie has been set yet, generate a new cookie. Once
2430 * generated, the socket cookie remains stable for the life of the
2431 * socket. This helper can be useful for monitoring per socket
2432 * networking traffic statistics as it provides a global socket
2433 * identifier that can be assumed unique.
2434 * Return
2435 * A 8-byte long unique number on success, or 0 if the socket
2436 * field is missing inside *skb*.
2437 *
2438 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
2439 * Description
2440 * Equivalent to bpf_get_socket_cookie() helper that accepts
2441 * *skb*, but gets socket from **struct bpf_sock_addr** context.
2442 * Return
2443 * A 8-byte long unique number.
2444 *
2445 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
2446 * Description
2447 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
2448 * *skb*, but gets socket from **struct bpf_sock_ops** context.
2449 * Return
2450 * A 8-byte long unique number.
2451 *
2452 * u64 bpf_get_socket_cookie(struct sock *sk)
2453 * Description
2454 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
2455 * *sk*, but gets socket from a BTF **struct sock**. This helper
2456 * also works for sleepable programs.
2457 * Return
2458 * A 8-byte long unique number or 0 if *sk* is NULL.
2459 *
2460 * u32 bpf_get_socket_uid(struct sk_buff *skb)
2461 * Return
2462 * The owner UID of the socket associated to *skb*. If the socket
2463 * is **NULL**, or if it is not a full socket (i.e. if it is a
2464 * time-wait or a request socket instead), **overflowuid** value
2465 * is returned (note that **overflowuid** might also be the actual
2466 * UID value for the socket).
2467 *
2468 * long bpf_set_hash(struct sk_buff *skb, u32 hash)
2469 * Description
2470 * Set the full hash for *skb* (set the field *skb*\ **->hash**)
2471 * to value *hash*.
2472 * Return
2473 * 0
2474 *
2475 * long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
2476 * Description
2477 * Emulate a call to **setsockopt()** on the socket associated to
2478 * *bpf_socket*, which must be a full socket. The *level* at
2479 * which the option resides and the name *optname* of the option
2480 * must be specified, see **setsockopt(2)** for more information.
2481 * The option value of length *optlen* is pointed by *optval*.
2482 *
2483 * *bpf_socket* should be one of the following:
2484 *
2485 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
2486 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**
2487 * and **BPF_CGROUP_INET6_CONNECT**.
2488 *
2489 * This helper actually implements a subset of **setsockopt()**.
2490 * It supports the following *level*\ s:
2491 *
2492 * * **SOL_SOCKET**, which supports the following *optname*\ s:
2493 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
2494 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**,
2495 * **SO_BINDTODEVICE**, **SO_KEEPALIVE**.
2496 * * **IPPROTO_TCP**, which supports the following *optname*\ s:
2497 * **TCP_CONGESTION**, **TCP_BPF_IW**,
2498 * **TCP_BPF_SNDCWND_CLAMP**, **TCP_SAVE_SYN**,
2499 * **TCP_KEEPIDLE**, **TCP_KEEPINTVL**, **TCP_KEEPCNT**,
2500 * **TCP_SYNCNT**, **TCP_USER_TIMEOUT**, **TCP_NOTSENT_LOWAT**.
2501 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
2502 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
2503 * Return
2504 * 0 on success, or a negative error in case of failure.
2505 *
2506 * long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
2507 * Description
2508 * Grow or shrink the room for data in the packet associated to
2509 * *skb* by *len_diff*, and according to the selected *mode*.
2510 *
2511 * By default, the helper will reset any offloaded checksum
2512 * indicator of the skb to CHECKSUM_NONE. This can be avoided
2513 * by the following flag:
2514 *
2515 * * **BPF_F_ADJ_ROOM_NO_CSUM_RESET**: Do not reset offloaded
2516 * checksum data of the skb to CHECKSUM_NONE.
2517 *
2518 * There are two supported modes at this time:
2519 *
2520 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
2521 * (room space is added or removed below the layer 2 header).
2522 *
2523 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
2524 * (room space is added or removed below the layer 3 header).
2525 *
2526 * The following flags are supported at this time:
2527 *
2528 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
2529 * Adjusting mss in this way is not allowed for datagrams.
2530 *
2531 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
2532 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
2533 * Any new space is reserved to hold a tunnel header.
2534 * Configure skb offsets and other fields accordingly.
2535 *
2536 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
2537 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
2538 * Use with ENCAP_L3 flags to further specify the tunnel type.
2539 *
2540 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
2541 * Use with ENCAP_L3/L4 flags to further specify the tunnel
2542 * type; *len* is the length of the inner MAC header.
2543 *
2544 * * **BPF_F_ADJ_ROOM_ENCAP_L2_ETH**:
2545 * Use with BPF_F_ADJ_ROOM_ENCAP_L2 flag to further specify the
2546 * L2 type as Ethernet.
2547 *
2548 * A call to this helper is susceptible to change the underlying
2549 * packet buffer. Therefore, at load time, all checks on pointers
2550 * previously done by the verifier are invalidated and must be
2551 * performed again, if the helper is used in combination with
2552 * direct packet access.
2553 * Return
2554 * 0 on success, or a negative error in case of failure.
2555 *
2556 * long bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
2557 * Description
2558 * Redirect the packet to the endpoint referenced by *map* at
2559 * index *key*. Depending on its type, this *map* can contain
2560 * references to net devices (for forwarding packets through other
2561 * ports), or to CPUs (for redirecting XDP frames to another CPU;
2562 * but this is only implemented for native XDP (with driver
2563 * support) as of this writing).
2564 *
2565 * The lower two bits of *flags* are used as the return code if
2566 * the map lookup fails. This is so that the return value can be
2567 * one of the XDP program return codes up to **XDP_TX**, as chosen
2568 * by the caller. The higher bits of *flags* can be set to
2569 * BPF_F_BROADCAST or BPF_F_EXCLUDE_INGRESS as defined below.
2570 *
2571 * With BPF_F_BROADCAST the packet will be broadcasted to all the
2572 * interfaces in the map, with BPF_F_EXCLUDE_INGRESS the ingress
2573 * interface will be excluded when do broadcasting.
2574 *
2575 * See also **bpf_redirect**\ (), which only supports redirecting
2576 * to an ifindex, but doesn't require a map to do so.
2577 * Return
2578 * **XDP_REDIRECT** on success, or the value of the two lower bits
2579 * of the *flags* argument on error.
2580 *
2581 * long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
2582 * Description
2583 * Redirect the packet to the socket referenced by *map* (of type
2584 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
2585 * egress interfaces can be used for redirection. The
2586 * **BPF_F_INGRESS** value in *flags* is used to make the
2587 * distinction (ingress path is selected if the flag is present,
2588 * egress path otherwise). This is the only flag supported for now.
2589 * Return
2590 * **SK_PASS** on success, or **SK_DROP** on error.
2591 *
2592 * long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2593 * Description
2594 * Add an entry to, or update a *map* referencing sockets. The
2595 * *skops* is used as a new value for the entry associated to
2596 * *key*. *flags* is one of:
2597 *
2598 * **BPF_NOEXIST**
2599 * The entry for *key* must not exist in the map.
2600 * **BPF_EXIST**
2601 * The entry for *key* must already exist in the map.
2602 * **BPF_ANY**
2603 * No condition on the existence of the entry for *key*.
2604 *
2605 * If the *map* has eBPF programs (parser and verdict), those will
2606 * be inherited by the socket being added. If the socket is
2607 * already attached to eBPF programs, this results in an error.
2608 * Return
2609 * 0 on success, or a negative error in case of failure.
2610 *
2611 * long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
2612 * Description
2613 * Adjust the address pointed by *xdp_md*\ **->data_meta** by
2614 * *delta* (which can be positive or negative). Note that this
2615 * operation modifies the address stored in *xdp_md*\ **->data**,
2616 * so the latter must be loaded only after the helper has been
2617 * called.
2618 *
2619 * The use of *xdp_md*\ **->data_meta** is optional and programs
2620 * are not required to use it. The rationale is that when the
2621 * packet is processed with XDP (e.g. as DoS filter), it is
2622 * possible to push further meta data along with it before passing
2623 * to the stack, and to give the guarantee that an ingress eBPF
2624 * program attached as a TC classifier on the same device can pick
2625 * this up for further post-processing. Since TC works with socket
2626 * buffers, it remains possible to set from XDP the **mark** or
2627 * **priority** pointers, or other pointers for the socket buffer.
2628 * Having this scratch space generic and programmable allows for
2629 * more flexibility as the user is free to store whatever meta
2630 * data they need.
2631 *
2632 * A call to this helper is susceptible to change the underlying
2633 * packet buffer. Therefore, at load time, all checks on pointers
2634 * previously done by the verifier are invalidated and must be
2635 * performed again, if the helper is used in combination with
2636 * direct packet access.
2637 * Return
2638 * 0 on success, or a negative error in case of failure.
2639 *
2640 * long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
2641 * Description
2642 * Read the value of a perf event counter, and store it into *buf*
2643 * of size *buf_size*. This helper relies on a *map* of type
2644 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
2645 * counter is selected when *map* is updated with perf event file
2646 * descriptors. The *map* is an array whose size is the number of
2647 * available CPUs, and each cell contains a value relative to one
2648 * CPU. The value to retrieve is indicated by *flags*, that
2649 * contains the index of the CPU to look up, masked with
2650 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
2651 * **BPF_F_CURRENT_CPU** to indicate that the value for the
2652 * current CPU should be retrieved.
2653 *
2654 * This helper behaves in a way close to
2655 * **bpf_perf_event_read**\ () helper, save that instead of
2656 * just returning the value observed, it fills the *buf*
2657 * structure. This allows for additional data to be retrieved: in
2658 * particular, the enabled and running times (in *buf*\
2659 * **->enabled** and *buf*\ **->running**, respectively) are
2660 * copied. In general, **bpf_perf_event_read_value**\ () is
2661 * recommended over **bpf_perf_event_read**\ (), which has some
2662 * ABI issues and provides fewer functionalities.
2663 *
2664 * These values are interesting, because hardware PMU (Performance
2665 * Monitoring Unit) counters are limited resources. When there are
2666 * more PMU based perf events opened than available counters,
2667 * kernel will multiplex these events so each event gets certain
2668 * percentage (but not all) of the PMU time. In case that
2669 * multiplexing happens, the number of samples or counter value
2670 * will not reflect the case compared to when no multiplexing
2671 * occurs. This makes comparison between different runs difficult.
2672 * Typically, the counter value should be normalized before
2673 * comparing to other experiments. The usual normalization is done
2674 * as follows.
2675 *
2676 * ::
2677 *
2678 * normalized_counter = counter * t_enabled / t_running
2679 *
2680 * Where t_enabled is the time enabled for event and t_running is
2681 * the time running for event since last normalization. The
2682 * enabled and running times are accumulated since the perf event
2683 * open. To achieve scaling factor between two invocations of an
2684 * eBPF program, users can use CPU id as the key (which is
2685 * typical for perf array usage model) to remember the previous
2686 * value and do the calculation inside the eBPF program.
2687 * Return
2688 * 0 on success, or a negative error in case of failure.
2689 *
2690 * long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
2691 * Description
2692 * For en eBPF program attached to a perf event, retrieve the
2693 * value of the event counter associated to *ctx* and store it in
2694 * the structure pointed by *buf* and of size *buf_size*. Enabled
2695 * and running times are also stored in the structure (see
2696 * description of helper **bpf_perf_event_read_value**\ () for
2697 * more details).
2698 * Return
2699 * 0 on success, or a negative error in case of failure.
2700 *
2701 * long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
2702 * Description
2703 * Emulate a call to **getsockopt()** on the socket associated to
2704 * *bpf_socket*, which must be a full socket. The *level* at
2705 * which the option resides and the name *optname* of the option
2706 * must be specified, see **getsockopt(2)** for more information.
2707 * The retrieved value is stored in the structure pointed by
2708 * *opval* and of length *optlen*.
2709 *
2710 * *bpf_socket* should be one of the following:
2711 *
2712 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
2713 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**
2714 * and **BPF_CGROUP_INET6_CONNECT**.
2715 *
2716 * This helper actually implements a subset of **getsockopt()**.
2717 * It supports the following *level*\ s:
2718 *
2719 * * **IPPROTO_TCP**, which supports *optname*
2720 * **TCP_CONGESTION**.
2721 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
2722 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
2723 * Return
2724 * 0 on success, or a negative error in case of failure.
2725 *
2726 * long bpf_override_return(struct pt_regs *regs, u64 rc)
2727 * Description
2728 * Used for error injection, this helper uses kprobes to override
2729 * the return value of the probed function, and to set it to *rc*.
2730 * The first argument is the context *regs* on which the kprobe
2731 * works.
2732 *
2733 * This helper works by setting the PC (program counter)
2734 * to an override function which is run in place of the original
2735 * probed function. This means the probed function is not run at
2736 * all. The replacement function just returns with the required
2737 * value.
2738 *
2739 * This helper has security implications, and thus is subject to
2740 * restrictions. It is only available if the kernel was compiled
2741 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
2742 * option, and in this case it only works on functions tagged with
2743 * **ALLOW_ERROR_INJECTION** in the kernel code.
2744 *
2745 * Also, the helper is only available for the architectures having
2746 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
2747 * x86 architecture is the only one to support this feature.
2748 * Return
2749 * 0
2750 *
2751 * long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
2752 * Description
2753 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field
2754 * for the full TCP socket associated to *bpf_sock_ops* to
2755 * *argval*.
2756 *
2757 * The primary use of this field is to determine if there should
2758 * be calls to eBPF programs of type
2759 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
2760 * code. A program of the same type can change its value, per
2761 * connection and as necessary, when the connection is
2762 * established. This field is directly accessible for reading, but
2763 * this helper must be used for updates in order to return an
2764 * error if an eBPF program tries to set a callback that is not
2765 * supported in the current kernel.
2766 *
2767 * *argval* is a flag array which can combine these flags:
2768 *
2769 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
2770 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
2771 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
2772 * * **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
2773 *
2774 * Therefore, this function can be used to clear a callback flag by
2775 * setting the appropriate bit to zero. e.g. to disable the RTO
2776 * callback:
2777 *
2778 * **bpf_sock_ops_cb_flags_set(bpf_sock,**
2779 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
2780 *
2781 * Here are some examples of where one could call such eBPF
2782 * program:
2783 *
2784 * * When RTO fires.
2785 * * When a packet is retransmitted.
2786 * * When the connection terminates.
2787 * * When a packet is sent.
2788 * * When a packet is received.
2789 * Return
2790 * Code **-EINVAL** if the socket is not a full TCP socket;
2791 * otherwise, a positive number containing the bits that could not
2792 * be set is returned (which comes down to 0 if all bits were set
2793 * as required).
2794 *
2795 * long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
2796 * Description
2797 * This helper is used in programs implementing policies at the
2798 * socket level. If the message *msg* is allowed to pass (i.e. if
2799 * the verdict eBPF program returns **SK_PASS**), redirect it to
2800 * the socket referenced by *map* (of type
2801 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
2802 * egress interfaces can be used for redirection. The
2803 * **BPF_F_INGRESS** value in *flags* is used to make the
2804 * distinction (ingress path is selected if the flag is present,
2805 * egress path otherwise). This is the only flag supported for now.
2806 * Return
2807 * **SK_PASS** on success, or **SK_DROP** on error.
2808 *
2809 * long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
2810 * Description
2811 * For socket policies, apply the verdict of the eBPF program to
2812 * the next *bytes* (number of bytes) of message *msg*.
2813 *
2814 * For example, this helper can be used in the following cases:
2815 *
2816 * * A single **sendmsg**\ () or **sendfile**\ () system call
2817 * contains multiple logical messages that the eBPF program is
2818 * supposed to read and for which it should apply a verdict.
2819 * * An eBPF program only cares to read the first *bytes* of a
2820 * *msg*. If the message has a large payload, then setting up
2821 * and calling the eBPF program repeatedly for all bytes, even
2822 * though the verdict is already known, would create unnecessary
2823 * overhead.
2824 *
2825 * When called from within an eBPF program, the helper sets a
2826 * counter internal to the BPF infrastructure, that is used to
2827 * apply the last verdict to the next *bytes*. If *bytes* is
2828 * smaller than the current data being processed from a
2829 * **sendmsg**\ () or **sendfile**\ () system call, the first
2830 * *bytes* will be sent and the eBPF program will be re-run with
2831 * the pointer for start of data pointing to byte number *bytes*
2832 * **+ 1**. If *bytes* is larger than the current data being
2833 * processed, then the eBPF verdict will be applied to multiple
2834 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are
2835 * consumed.
2836 *
2837 * Note that if a socket closes with the internal counter holding
2838 * a non-zero value, this is not a problem because data is not
2839 * being buffered for *bytes* and is sent as it is received.
2840 * Return
2841 * 0
2842 *
2843 * long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
2844 * Description
2845 * For socket policies, prevent the execution of the verdict eBPF
2846 * program for message *msg* until *bytes* (byte number) have been
2847 * accumulated.
2848 *
2849 * This can be used when one needs a specific number of bytes
2850 * before a verdict can be assigned, even if the data spans
2851 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
2852 * case would be a user calling **sendmsg**\ () repeatedly with
2853 * 1-byte long message segments. Obviously, this is bad for
2854 * performance, but it is still valid. If the eBPF program needs
2855 * *bytes* bytes to validate a header, this helper can be used to
2856 * prevent the eBPF program to be called again until *bytes* have
2857 * been accumulated.
2858 * Return
2859 * 0
2860 *
2861 * long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
2862 * Description
2863 * For socket policies, pull in non-linear data from user space
2864 * for *msg* and set pointers *msg*\ **->data** and *msg*\
2865 * **->data_end** to *start* and *end* bytes offsets into *msg*,
2866 * respectively.
2867 *
2868 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2869 * *msg* it can only parse data that the (**data**, **data_end**)
2870 * pointers have already consumed. For **sendmsg**\ () hooks this
2871 * is likely the first scatterlist element. But for calls relying
2872 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will
2873 * be the range (**0**, **0**) because the data is shared with
2874 * user space and by default the objective is to avoid allowing
2875 * user space to modify data while (or after) eBPF verdict is
2876 * being decided. This helper can be used to pull in data and to
2877 * set the start and end pointer to given values. Data will be
2878 * copied if necessary (i.e. if data was not linear and if start
2879 * and end pointers do not point to the same chunk).
2880 *
2881 * A call to this helper is susceptible to change the underlying
2882 * packet buffer. Therefore, at load time, all checks on pointers
2883 * previously done by the verifier are invalidated and must be
2884 * performed again, if the helper is used in combination with
2885 * direct packet access.
2886 *
2887 * All values for *flags* are reserved for future usage, and must
2888 * be left at zero.
2889 * Return
2890 * 0 on success, or a negative error in case of failure.
2891 *
2892 * long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
2893 * Description
2894 * Bind the socket associated to *ctx* to the address pointed by
2895 * *addr*, of length *addr_len*. This allows for making outgoing
2896 * connection from the desired IP address, which can be useful for
2897 * example when all processes inside a cgroup should use one
2898 * single IP address on a host that has multiple IP configured.
2899 *
2900 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The
2901 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or
2902 * **AF_INET6**). It's advised to pass zero port (**sin_port**
2903 * or **sin6_port**) which triggers IP_BIND_ADDRESS_NO_PORT-like
2904 * behavior and lets the kernel efficiently pick up an unused
2905 * port as long as 4-tuple is unique. Passing non-zero port might
2906 * lead to degraded performance.
2907 * Return
2908 * 0 on success, or a negative error in case of failure.
2909 *
2910 * long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
2911 * Description
2912 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
2913 * possible to both shrink and grow the packet tail.
2914 * Shrink done via *delta* being a negative integer.
2915 *
2916 * A call to this helper is susceptible to change the underlying
2917 * packet buffer. Therefore, at load time, all checks on pointers
2918 * previously done by the verifier are invalidated and must be
2919 * performed again, if the helper is used in combination with
2920 * direct packet access.
2921 * Return
2922 * 0 on success, or a negative error in case of failure.
2923 *
2924 * long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
2925 * Description
2926 * Retrieve the XFRM state (IP transform framework, see also
2927 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
2928 *
2929 * The retrieved value is stored in the **struct bpf_xfrm_state**
2930 * pointed by *xfrm_state* and of length *size*.
2931 *
2932 * All values for *flags* are reserved for future usage, and must
2933 * be left at zero.
2934 *
2935 * This helper is available only if the kernel was compiled with
2936 * **CONFIG_XFRM** configuration option.
2937 * Return
2938 * 0 on success, or a negative error in case of failure.
2939 *
2940 * long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
2941 * Description
2942 * Return a user or a kernel stack in bpf program provided buffer.
2943 * To achieve this, the helper needs *ctx*, which is a pointer
2944 * to the context on which the tracing program is executed.
2945 * To store the stacktrace, the bpf program provides *buf* with
2946 * a nonnegative *size*.
2947 *
2948 * The last argument, *flags*, holds the number of stack frames to
2949 * skip (from 0 to 255), masked with
2950 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
2951 * the following flags:
2952 *
2953 * **BPF_F_USER_STACK**
2954 * Collect a user space stack instead of a kernel stack.
2955 * **BPF_F_USER_BUILD_ID**
2956 * Collect buildid+offset instead of ips for user stack,
2957 * only valid if **BPF_F_USER_STACK** is also specified.
2958 *
2959 * **bpf_get_stack**\ () can collect up to
2960 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
2961 * to sufficient large buffer size. Note that
2962 * this limit can be controlled with the **sysctl** program, and
2963 * that it should be manually increased in order to profile long
2964 * user stacks (such as stacks for Java programs). To do so, use:
2965 *
2966 * ::
2967 *
2968 * # sysctl kernel.perf_event_max_stack=<new value>
2969 * Return
2970 * The non-negative copied *buf* length equal to or less than
2971 * *size* on success, or a negative error in case of failure.
2972 *
2973 * long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
2974 * Description
2975 * This helper is similar to **bpf_skb_load_bytes**\ () in that
2976 * it provides an easy way to load *len* bytes from *offset*
2977 * from the packet associated to *skb*, into the buffer pointed
2978 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that
2979 * a fifth argument *start_header* exists in order to select a
2980 * base offset to start from. *start_header* can be one of:
2981 *
2982 * **BPF_HDR_START_MAC**
2983 * Base offset to load data from is *skb*'s mac header.
2984 * **BPF_HDR_START_NET**
2985 * Base offset to load data from is *skb*'s network header.
2986 *
2987 * In general, "direct packet access" is the preferred method to
2988 * access packet data, however, this helper is in particular useful
2989 * in socket filters where *skb*\ **->data** does not always point
2990 * to the start of the mac header and where "direct packet access"
2991 * is not available.
2992 * Return
2993 * 0 on success, or a negative error in case of failure.
2994 *
2995 * long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
2996 * Description
2997 * Do FIB lookup in kernel tables using parameters in *params*.
2998 * If lookup is successful and result shows packet is to be
2999 * forwarded, the neighbor tables are searched for the nexthop.
3000 * If successful (ie., FIB lookup shows forwarding and nexthop
3001 * is resolved), the nexthop address is returned in ipv4_dst
3002 * or ipv6_dst based on family, smac is set to mac address of
3003 * egress device, dmac is set to nexthop mac address, rt_metric
3004 * is set to metric from route (IPv4/IPv6 only), and ifindex
3005 * is set to the device index of the nexthop from the FIB lookup.
3006 *
3007 * *plen* argument is the size of the passed in struct.
3008 * *flags* argument can be a combination of one or more of the
3009 * following values:
3010 *
3011 * **BPF_FIB_LOOKUP_DIRECT**
3012 * Do a direct table lookup vs full lookup using FIB
3013 * rules.
3014 * **BPF_FIB_LOOKUP_OUTPUT**
3015 * Perform lookup from an egress perspective (default is
3016 * ingress).
3017 *
3018 * *ctx* is either **struct xdp_md** for XDP programs or
3019 * **struct sk_buff** tc cls_act programs.
3020 * Return
3021 * * < 0 if any input argument is invalid
3022 * * 0 on success (packet is forwarded, nexthop neighbor exists)
3023 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
3024 * packet is not forwarded or needs assist from full stack
3025 *
3026 * If lookup fails with BPF_FIB_LKUP_RET_FRAG_NEEDED, then the MTU
3027 * was exceeded and output params->mtu_result contains the MTU.
3028 *
3029 * long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
3030 * Description
3031 * Add an entry to, or update a sockhash *map* referencing sockets.
3032 * The *skops* is used as a new value for the entry associated to
3033 * *key*. *flags* is one of:
3034 *
3035 * **BPF_NOEXIST**
3036 * The entry for *key* must not exist in the map.
3037 * **BPF_EXIST**
3038 * The entry for *key* must already exist in the map.
3039 * **BPF_ANY**
3040 * No condition on the existence of the entry for *key*.
3041 *
3042 * If the *map* has eBPF programs (parser and verdict), those will
3043 * be inherited by the socket being added. If the socket is
3044 * already attached to eBPF programs, this results in an error.
3045 * Return
3046 * 0 on success, or a negative error in case of failure.
3047 *
3048 * long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
3049 * Description
3050 * This helper is used in programs implementing policies at the
3051 * socket level. If the message *msg* is allowed to pass (i.e. if
3052 * the verdict eBPF program returns **SK_PASS**), redirect it to
3053 * the socket referenced by *map* (of type
3054 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
3055 * egress interfaces can be used for redirection. The
3056 * **BPF_F_INGRESS** value in *flags* is used to make the
3057 * distinction (ingress path is selected if the flag is present,
3058 * egress path otherwise). This is the only flag supported for now.
3059 * Return
3060 * **SK_PASS** on success, or **SK_DROP** on error.
3061 *
3062 * long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
3063 * Description
3064 * This helper is used in programs implementing policies at the
3065 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
3066 * if the verdict eBPF program returns **SK_PASS**), redirect it
3067 * to the socket referenced by *map* (of type
3068 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
3069 * egress interfaces can be used for redirection. The
3070 * **BPF_F_INGRESS** value in *flags* is used to make the
3071 * distinction (ingress path is selected if the flag is present,
3072 * egress otherwise). This is the only flag supported for now.
3073 * Return
3074 * **SK_PASS** on success, or **SK_DROP** on error.
3075 *
3076 * long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
3077 * Description
3078 * Encapsulate the packet associated to *skb* within a Layer 3
3079 * protocol header. This header is provided in the buffer at
3080 * address *hdr*, with *len* its size in bytes. *type* indicates
3081 * the protocol of the header and can be one of:
3082 *
3083 * **BPF_LWT_ENCAP_SEG6**
3084 * IPv6 encapsulation with Segment Routing Header
3085 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
3086 * the IPv6 header is computed by the kernel.
3087 * **BPF_LWT_ENCAP_SEG6_INLINE**
3088 * Only works if *skb* contains an IPv6 packet. Insert a
3089 * Segment Routing Header (**struct ipv6_sr_hdr**) inside
3090 * the IPv6 header.
3091 * **BPF_LWT_ENCAP_IP**
3092 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header
3093 * must be IPv4 or IPv6, followed by zero or more
3094 * additional headers, up to **LWT_BPF_MAX_HEADROOM**
3095 * total bytes in all prepended headers. Please note that
3096 * if **skb_is_gso**\ (*skb*) is true, no more than two
3097 * headers can be prepended, and the inner header, if
3098 * present, should be either GRE or UDP/GUE.
3099 *
3100 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
3101 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
3102 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
3103 * **BPF_PROG_TYPE_LWT_XMIT**.
3104 *
3105 * A call to this helper is susceptible to change the underlying
3106 * packet buffer. Therefore, at load time, all checks on pointers
3107 * previously done by the verifier are invalidated and must be
3108 * performed again, if the helper is used in combination with
3109 * direct packet access.
3110 * Return
3111 * 0 on success, or a negative error in case of failure.
3112 *
3113 * long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
3114 * Description
3115 * Store *len* bytes from address *from* into the packet
3116 * associated to *skb*, at *offset*. Only the flags, tag and TLVs
3117 * inside the outermost IPv6 Segment Routing Header can be
3118 * modified through this helper.
3119 *
3120 * A call to this helper is susceptible to change the underlying
3121 * packet buffer. Therefore, at load time, all checks on pointers
3122 * previously done by the verifier are invalidated and must be
3123 * performed again, if the helper is used in combination with
3124 * direct packet access.
3125 * Return
3126 * 0 on success, or a negative error in case of failure.
3127 *
3128 * long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
3129 * Description
3130 * Adjust the size allocated to TLVs in the outermost IPv6
3131 * Segment Routing Header contained in the packet associated to
3132 * *skb*, at position *offset* by *delta* bytes. Only offsets
3133 * after the segments are accepted. *delta* can be as well
3134 * positive (growing) as negative (shrinking).
3135 *
3136 * A call to this helper is susceptible to change the underlying
3137 * packet buffer. Therefore, at load time, all checks on pointers
3138 * previously done by the verifier are invalidated and must be
3139 * performed again, if the helper is used in combination with
3140 * direct packet access.
3141 * Return
3142 * 0 on success, or a negative error in case of failure.
3143 *
3144 * long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
3145 * Description
3146 * Apply an IPv6 Segment Routing action of type *action* to the
3147 * packet associated to *skb*. Each action takes a parameter
3148 * contained at address *param*, and of length *param_len* bytes.
3149 * *action* can be one of:
3150 *
3151 * **SEG6_LOCAL_ACTION_END_X**
3152 * End.X action: Endpoint with Layer-3 cross-connect.
3153 * Type of *param*: **struct in6_addr**.
3154 * **SEG6_LOCAL_ACTION_END_T**
3155 * End.T action: Endpoint with specific IPv6 table lookup.
3156 * Type of *param*: **int**.
3157 * **SEG6_LOCAL_ACTION_END_B6**
3158 * End.B6 action: Endpoint bound to an SRv6 policy.
3159 * Type of *param*: **struct ipv6_sr_hdr**.
3160 * **SEG6_LOCAL_ACTION_END_B6_ENCAP**
3161 * End.B6.Encap action: Endpoint bound to an SRv6
3162 * encapsulation policy.
3163 * Type of *param*: **struct ipv6_sr_hdr**.
3164 *
3165 * A call to this helper is susceptible to change the underlying
3166 * packet buffer. Therefore, at load time, all checks on pointers
3167 * previously done by the verifier are invalidated and must be
3168 * performed again, if the helper is used in combination with
3169 * direct packet access.
3170 * Return
3171 * 0 on success, or a negative error in case of failure.
3172 *
3173 * long bpf_rc_repeat(void *ctx)
3174 * Description
3175 * This helper is used in programs implementing IR decoding, to
3176 * report a successfully decoded repeat key message. This delays
3177 * the generation of a key up event for previously generated
3178 * key down event.
3179 *
3180 * Some IR protocols like NEC have a special IR message for
3181 * repeating last button, for when a button is held down.
3182 *
3183 * The *ctx* should point to the lirc sample as passed into
3184 * the program.
3185 *
3186 * This helper is only available is the kernel was compiled with
3187 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3188 * "**y**".
3189 * Return
3190 * 0
3191 *
3192 * long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
3193 * Description
3194 * This helper is used in programs implementing IR decoding, to
3195 * report a successfully decoded key press with *scancode*,
3196 * *toggle* value in the given *protocol*. The scancode will be
3197 * translated to a keycode using the rc keymap, and reported as
3198 * an input key down event. After a period a key up event is
3199 * generated. This period can be extended by calling either
3200 * **bpf_rc_keydown**\ () again with the same values, or calling
3201 * **bpf_rc_repeat**\ ().
3202 *
3203 * Some protocols include a toggle bit, in case the button was
3204 * released and pressed again between consecutive scancodes.
3205 *
3206 * The *ctx* should point to the lirc sample as passed into
3207 * the program.
3208 *
3209 * The *protocol* is the decoded protocol number (see
3210 * **enum rc_proto** for some predefined values).
3211 *
3212 * This helper is only available is the kernel was compiled with
3213 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3214 * "**y**".
3215 * Return
3216 * 0
3217 *
3218 * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
3219 * Description
3220 * Return the cgroup v2 id of the socket associated with the *skb*.
3221 * This is roughly similar to the **bpf_get_cgroup_classid**\ ()
3222 * helper for cgroup v1 by providing a tag resp. identifier that
3223 * can be matched on or used for map lookups e.g. to implement
3224 * policy. The cgroup v2 id of a given path in the hierarchy is
3225 * exposed in user space through the f_handle API in order to get
3226 * to the same 64-bit id.
3227 *
3228 * This helper can be used on TC egress path, but not on ingress,
3229 * and is available only if the kernel was compiled with the
3230 * **CONFIG_SOCK_CGROUP_DATA** configuration option.
3231 * Return
3232 * The id is returned or 0 in case the id could not be retrieved.
3233 *
3234 * u64 bpf_get_current_cgroup_id(void)
3235 * Return
3236 * A 64-bit integer containing the current cgroup id based
3237 * on the cgroup within which the current task is running.
3238 *
3239 * void *bpf_get_local_storage(void *map, u64 flags)
3240 * Description
3241 * Get the pointer to the local storage area.
3242 * The type and the size of the local storage is defined
3243 * by the *map* argument.
3244 * The *flags* meaning is specific for each map type,
3245 * and has to be 0 for cgroup local storage.
3246 *
3247 * Depending on the BPF program type, a local storage area
3248 * can be shared between multiple instances of the BPF program,
3249 * running simultaneously.
3250 *
3251 * A user should care about the synchronization by himself.
3252 * For example, by using the **BPF_ATOMIC** instructions to alter
3253 * the shared data.
3254 * Return
3255 * A pointer to the local storage area.
3256 *
3257 * long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
3258 * Description
3259 * Select a **SO_REUSEPORT** socket from a
3260 * **BPF_MAP_TYPE_REUSEPORT_SOCKARRAY** *map*.
3261 * It checks the selected socket is matching the incoming
3262 * request in the socket buffer.
3263 * Return
3264 * 0 on success, or a negative error in case of failure.
3265 *
3266 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
3267 * Description
3268 * Return id of cgroup v2 that is ancestor of cgroup associated
3269 * with the *skb* at the *ancestor_level*. The root cgroup is at
3270 * *ancestor_level* zero and each step down the hierarchy
3271 * increments the level. If *ancestor_level* == level of cgroup
3272 * associated with *skb*, then return value will be same as that
3273 * of **bpf_skb_cgroup_id**\ ().
3274 *
3275 * The helper is useful to implement policies based on cgroups
3276 * that are upper in hierarchy than immediate cgroup associated
3277 * with *skb*.
3278 *
3279 * The format of returned id and helper limitations are same as in
3280 * **bpf_skb_cgroup_id**\ ().
3281 * Return
3282 * The id is returned or 0 in case the id could not be retrieved.
3283 *
3284 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3285 * Description
3286 * Look for TCP socket matching *tuple*, optionally in a child
3287 * network namespace *netns*. The return value must be checked,
3288 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3289 *
3290 * The *ctx* should point to the context of the program, such as
3291 * the skb or socket (depending on the hook in use). This is used
3292 * to determine the base network namespace for the lookup.
3293 *
3294 * *tuple_size* must be one of:
3295 *
3296 * **sizeof**\ (*tuple*\ **->ipv4**)
3297 * Look for an IPv4 socket.
3298 * **sizeof**\ (*tuple*\ **->ipv6**)
3299 * Look for an IPv6 socket.
3300 *
3301 * If the *netns* is a negative signed 32-bit integer, then the
3302 * socket lookup table in the netns associated with the *ctx*
3303 * will be used. For the TC hooks, this is the netns of the device
3304 * in the skb. For socket hooks, this is the netns of the socket.
3305 * If *netns* is any other signed 32-bit value greater than or
3306 * equal to zero then it specifies the ID of the netns relative to
3307 * the netns associated with the *ctx*. *netns* values beyond the
3308 * range of 32-bit integers are reserved for future use.
3309 *
3310 * All values for *flags* are reserved for future usage, and must
3311 * be left at zero.
3312 *
3313 * This helper is available only if the kernel was compiled with
3314 * **CONFIG_NET** configuration option.
3315 * Return
3316 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3317 * For sockets with reuseport option, the **struct bpf_sock**
3318 * result is from *reuse*\ **->socks**\ [] using the hash of the
3319 * tuple.
3320 *
3321 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3322 * Description
3323 * Look for UDP socket matching *tuple*, optionally in a child
3324 * network namespace *netns*. The return value must be checked,
3325 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3326 *
3327 * The *ctx* should point to the context of the program, such as
3328 * the skb or socket (depending on the hook in use). This is used
3329 * to determine the base network namespace for the lookup.
3330 *
3331 * *tuple_size* must be one of:
3332 *
3333 * **sizeof**\ (*tuple*\ **->ipv4**)
3334 * Look for an IPv4 socket.
3335 * **sizeof**\ (*tuple*\ **->ipv6**)
3336 * Look for an IPv6 socket.
3337 *
3338 * If the *netns* is a negative signed 32-bit integer, then the
3339 * socket lookup table in the netns associated with the *ctx*
3340 * will be used. For the TC hooks, this is the netns of the device
3341 * in the skb. For socket hooks, this is the netns of the socket.
3342 * If *netns* is any other signed 32-bit value greater than or
3343 * equal to zero then it specifies the ID of the netns relative to
3344 * the netns associated with the *ctx*. *netns* values beyond the
3345 * range of 32-bit integers are reserved for future use.
3346 *
3347 * All values for *flags* are reserved for future usage, and must
3348 * be left at zero.
3349 *
3350 * This helper is available only if the kernel was compiled with
3351 * **CONFIG_NET** configuration option.
3352 * Return
3353 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3354 * For sockets with reuseport option, the **struct bpf_sock**
3355 * result is from *reuse*\ **->socks**\ [] using the hash of the
3356 * tuple.
3357 *
3358 * long bpf_sk_release(void *sock)
3359 * Description
3360 * Release the reference held by *sock*. *sock* must be a
3361 * non-**NULL** pointer that was returned from
3362 * **bpf_sk_lookup_xxx**\ ().
3363 * Return
3364 * 0 on success, or a negative error in case of failure.
3365 *
3366 * long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
3367 * Description
3368 * Push an element *value* in *map*. *flags* is one of:
3369 *
3370 * **BPF_EXIST**
3371 * If the queue/stack is full, the oldest element is
3372 * removed to make room for this.
3373 * Return
3374 * 0 on success, or a negative error in case of failure.
3375 *
3376 * long bpf_map_pop_elem(struct bpf_map *map, void *value)
3377 * Description
3378 * Pop an element from *map*.
3379 * Return
3380 * 0 on success, or a negative error in case of failure.
3381 *
3382 * long bpf_map_peek_elem(struct bpf_map *map, void *value)
3383 * Description
3384 * Get an element from *map* without removing it.
3385 * Return
3386 * 0 on success, or a negative error in case of failure.
3387 *
3388 * long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
3389 * Description
3390 * For socket policies, insert *len* bytes into *msg* at offset
3391 * *start*.
3392 *
3393 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
3394 * *msg* it may want to insert metadata or options into the *msg*.
3395 * This can later be read and used by any of the lower layer BPF
3396 * hooks.
3397 *
3398 * This helper may fail if under memory pressure (a malloc
3399 * fails) in these cases BPF programs will get an appropriate
3400 * error and BPF programs will need to handle them.
3401 * Return
3402 * 0 on success, or a negative error in case of failure.
3403 *
3404 * long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
3405 * Description
3406 * Will remove *len* bytes from a *msg* starting at byte *start*.
3407 * This may result in **ENOMEM** errors under certain situations if
3408 * an allocation and copy are required due to a full ring buffer.
3409 * However, the helper will try to avoid doing the allocation
3410 * if possible. Other errors can occur if input parameters are
3411 * invalid either due to *start* byte not being valid part of *msg*
3412 * payload and/or *pop* value being to large.
3413 * Return
3414 * 0 on success, or a negative error in case of failure.
3415 *
3416 * long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
3417 * Description
3418 * This helper is used in programs implementing IR decoding, to
3419 * report a successfully decoded pointer movement.
3420 *
3421 * The *ctx* should point to the lirc sample as passed into
3422 * the program.
3423 *
3424 * This helper is only available is the kernel was compiled with
3425 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3426 * "**y**".
3427 * Return
3428 * 0
3429 *
3430 * long bpf_spin_lock(struct bpf_spin_lock *lock)
3431 * Description
3432 * Acquire a spinlock represented by the pointer *lock*, which is
3433 * stored as part of a value of a map. Taking the lock allows to
3434 * safely update the rest of the fields in that value. The
3435 * spinlock can (and must) later be released with a call to
3436 * **bpf_spin_unlock**\ (\ *lock*\ ).
3437 *
3438 * Spinlocks in BPF programs come with a number of restrictions
3439 * and constraints:
3440 *
3441 * * **bpf_spin_lock** objects are only allowed inside maps of
3442 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
3443 * list could be extended in the future).
3444 * * BTF description of the map is mandatory.
3445 * * The BPF program can take ONE lock at a time, since taking two
3446 * or more could cause dead locks.
3447 * * Only one **struct bpf_spin_lock** is allowed per map element.
3448 * * When the lock is taken, calls (either BPF to BPF or helpers)
3449 * are not allowed.
3450 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
3451 * allowed inside a spinlock-ed region.
3452 * * The BPF program MUST call **bpf_spin_unlock**\ () to release
3453 * the lock, on all execution paths, before it returns.
3454 * * The BPF program can access **struct bpf_spin_lock** only via
3455 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
3456 * helpers. Loading or storing data into the **struct
3457 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
3458 * * To use the **bpf_spin_lock**\ () helper, the BTF description
3459 * of the map value must be a struct and have **struct
3460 * bpf_spin_lock** *anyname*\ **;** field at the top level.
3461 * Nested lock inside another struct is not allowed.
3462 * * The **struct bpf_spin_lock** *lock* field in a map value must
3463 * be aligned on a multiple of 4 bytes in that value.
3464 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
3465 * the **bpf_spin_lock** field to user space.
3466 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
3467 * a BPF program, do not update the **bpf_spin_lock** field.
3468 * * **bpf_spin_lock** cannot be on the stack or inside a
3469 * networking packet (it can only be inside of a map values).
3470 * * **bpf_spin_lock** is available to root only.
3471 * * Tracing programs and socket filter programs cannot use
3472 * **bpf_spin_lock**\ () due to insufficient preemption checks
3473 * (but this may change in the future).
3474 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map.
3475 * Return
3476 * 0
3477 *
3478 * long bpf_spin_unlock(struct bpf_spin_lock *lock)
3479 * Description
3480 * Release the *lock* previously locked by a call to
3481 * **bpf_spin_lock**\ (\ *lock*\ ).
3482 * Return
3483 * 0
3484 *
3485 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
3486 * Description
3487 * This helper gets a **struct bpf_sock** pointer such
3488 * that all the fields in this **bpf_sock** can be accessed.
3489 * Return
3490 * A **struct bpf_sock** pointer on success, or **NULL** in
3491 * case of failure.
3492 *
3493 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
3494 * Description
3495 * This helper gets a **struct bpf_tcp_sock** pointer from a
3496 * **struct bpf_sock** pointer.
3497 * Return
3498 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in
3499 * case of failure.
3500 *
3501 * long bpf_skb_ecn_set_ce(struct sk_buff *skb)
3502 * Description
3503 * Set ECN (Explicit Congestion Notification) field of IP header
3504 * to **CE** (Congestion Encountered) if current value is **ECT**
3505 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6
3506 * and IPv4.
3507 * Return
3508 * 1 if the **CE** flag is set (either by the current helper call
3509 * or because it was already present), 0 if it is not set.
3510 *
3511 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
3512 * Description
3513 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
3514 * **bpf_sk_release**\ () is unnecessary and not allowed.
3515 * Return
3516 * A **struct bpf_sock** pointer on success, or **NULL** in
3517 * case of failure.
3518 *
3519 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3520 * Description
3521 * Look for TCP socket matching *tuple*, optionally in a child
3522 * network namespace *netns*. The return value must be checked,
3523 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3524 *
3525 * This function is identical to **bpf_sk_lookup_tcp**\ (), except
3526 * that it also returns timewait or request sockets. Use
3527 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
3528 * full structure.
3529 *
3530 * This helper is available only if the kernel was compiled with
3531 * **CONFIG_NET** configuration option.
3532 * Return
3533 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3534 * For sockets with reuseport option, the **struct bpf_sock**
3535 * result is from *reuse*\ **->socks**\ [] using the hash of the
3536 * tuple.
3537 *
3538 * long bpf_tcp_check_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
3539 * Description
3540 * Check whether *iph* and *th* contain a valid SYN cookie ACK for
3541 * the listening socket in *sk*.
3542 *
3543 * *iph* points to the start of the IPv4 or IPv6 header, while
3544 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
3545 * **sizeof**\ (**struct ip6hdr**).
3546 *
3547 * *th* points to the start of the TCP header, while *th_len*
3548 * contains **sizeof**\ (**struct tcphdr**).
3549 * Return
3550 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
3551 * error otherwise.
3552 *
3553 * long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
3554 * Description
3555 * Get name of sysctl in /proc/sys/ and copy it into provided by
3556 * program buffer *buf* of size *buf_len*.
3557 *
3558 * The buffer is always NUL terminated, unless it's zero-sized.
3559 *
3560 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
3561 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
3562 * only (e.g. "tcp_mem").
3563 * Return
3564 * Number of character copied (not including the trailing NUL).
3565 *
3566 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
3567 * truncated name in this case).
3568 *
3569 * long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
3570 * Description
3571 * Get current value of sysctl as it is presented in /proc/sys
3572 * (incl. newline, etc), and copy it as a string into provided
3573 * by program buffer *buf* of size *buf_len*.
3574 *
3575 * The whole value is copied, no matter what file position user
3576 * space issued e.g. sys_read at.
3577 *
3578 * The buffer is always NUL terminated, unless it's zero-sized.
3579 * Return
3580 * Number of character copied (not including the trailing NUL).
3581 *
3582 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
3583 * truncated name in this case).
3584 *
3585 * **-EINVAL** if current value was unavailable, e.g. because
3586 * sysctl is uninitialized and read returns -EIO for it.
3587 *
3588 * long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
3589 * Description
3590 * Get new value being written by user space to sysctl (before
3591 * the actual write happens) and copy it as a string into
3592 * provided by program buffer *buf* of size *buf_len*.
3593 *
3594 * User space may write new value at file position > 0.
3595 *
3596 * The buffer is always NUL terminated, unless it's zero-sized.
3597 * Return
3598 * Number of character copied (not including the trailing NUL).
3599 *
3600 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
3601 * truncated name in this case).
3602 *
3603 * **-EINVAL** if sysctl is being read.
3604 *
3605 * long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
3606 * Description
3607 * Override new value being written by user space to sysctl with
3608 * value provided by program in buffer *buf* of size *buf_len*.
3609 *
3610 * *buf* should contain a string in same form as provided by user
3611 * space on sysctl write.
3612 *
3613 * User space may write new value at file position > 0. To override
3614 * the whole sysctl value file position should be set to zero.
3615 * Return
3616 * 0 on success.
3617 *
3618 * **-E2BIG** if the *buf_len* is too big.
3619 *
3620 * **-EINVAL** if sysctl is being read.
3621 *
3622 * long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
3623 * Description
3624 * Convert the initial part of the string from buffer *buf* of
3625 * size *buf_len* to a long integer according to the given base
3626 * and save the result in *res*.
3627 *
3628 * The string may begin with an arbitrary amount of white space
3629 * (as determined by **isspace**\ (3)) followed by a single
3630 * optional '**-**' sign.
3631 *
3632 * Five least significant bits of *flags* encode base, other bits
3633 * are currently unused.
3634 *
3635 * Base must be either 8, 10, 16 or 0 to detect it automatically
3636 * similar to user space **strtol**\ (3).
3637 * Return
3638 * Number of characters consumed on success. Must be positive but
3639 * no more than *buf_len*.
3640 *
3641 * **-EINVAL** if no valid digits were found or unsupported base
3642 * was provided.
3643 *
3644 * **-ERANGE** if resulting value was out of range.
3645 *
3646 * long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
3647 * Description
3648 * Convert the initial part of the string from buffer *buf* of
3649 * size *buf_len* to an unsigned long integer according to the
3650 * given base and save the result in *res*.
3651 *
3652 * The string may begin with an arbitrary amount of white space
3653 * (as determined by **isspace**\ (3)).
3654 *
3655 * Five least significant bits of *flags* encode base, other bits
3656 * are currently unused.
3657 *
3658 * Base must be either 8, 10, 16 or 0 to detect it automatically
3659 * similar to user space **strtoul**\ (3).
3660 * Return
3661 * Number of characters consumed on success. Must be positive but
3662 * no more than *buf_len*.
3663 *
3664 * **-EINVAL** if no valid digits were found or unsupported base
3665 * was provided.
3666 *
3667 * **-ERANGE** if resulting value was out of range.
3668 *
3669 * void *bpf_sk_storage_get(struct bpf_map *map, void *sk, void *value, u64 flags)
3670 * Description
3671 * Get a bpf-local-storage from a *sk*.
3672 *
3673 * Logically, it could be thought of getting the value from
3674 * a *map* with *sk* as the **key**. From this
3675 * perspective, the usage is not much different from
3676 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
3677 * helper enforces the key must be a full socket and the map must
3678 * be a **BPF_MAP_TYPE_SK_STORAGE** also.
3679 *
3680 * Underneath, the value is stored locally at *sk* instead of
3681 * the *map*. The *map* is used as the bpf-local-storage
3682 * "type". The bpf-local-storage "type" (i.e. the *map*) is
3683 * searched against all bpf-local-storages residing at *sk*.
3684 *
3685 * *sk* is a kernel **struct sock** pointer for LSM program.
3686 * *sk* is a **struct bpf_sock** pointer for other program types.
3687 *
3688 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
3689 * used such that a new bpf-local-storage will be
3690 * created if one does not exist. *value* can be used
3691 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
3692 * the initial value of a bpf-local-storage. If *value* is
3693 * **NULL**, the new bpf-local-storage will be zero initialized.
3694 * Return
3695 * A bpf-local-storage pointer is returned on success.
3696 *
3697 * **NULL** if not found or there was an error in adding
3698 * a new bpf-local-storage.
3699 *
3700 * long bpf_sk_storage_delete(struct bpf_map *map, void *sk)
3701 * Description
3702 * Delete a bpf-local-storage from a *sk*.
3703 * Return
3704 * 0 on success.
3705 *
3706 * **-ENOENT** if the bpf-local-storage cannot be found.
3707 * **-EINVAL** if sk is not a fullsock (e.g. a request_sock).
3708 *
3709 * long bpf_send_signal(u32 sig)
3710 * Description
3711 * Send signal *sig* to the process of the current task.
3712 * The signal may be delivered to any of this process's threads.
3713 * Return
3714 * 0 on success or successfully queued.
3715 *
3716 * **-EBUSY** if work queue under nmi is full.
3717 *
3718 * **-EINVAL** if *sig* is invalid.
3719 *
3720 * **-EPERM** if no permission to send the *sig*.
3721 *
3722 * **-EAGAIN** if bpf program can try again.
3723 *
3724 * s64 bpf_tcp_gen_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
3725 * Description
3726 * Try to issue a SYN cookie for the packet with corresponding
3727 * IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
3728 *
3729 * *iph* points to the start of the IPv4 or IPv6 header, while
3730 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
3731 * **sizeof**\ (**struct ip6hdr**).
3732 *
3733 * *th* points to the start of the TCP header, while *th_len*
3734 * contains the length of the TCP header.
3735 * Return
3736 * On success, lower 32 bits hold the generated SYN cookie in
3737 * followed by 16 bits which hold the MSS value for that cookie,
3738 * and the top 16 bits are unused.
3739 *
3740 * On failure, the returned value is one of the following:
3741 *
3742 * **-EINVAL** SYN cookie cannot be issued due to error
3743 *
3744 * **-ENOENT** SYN cookie should not be issued (no SYN flood)
3745 *
3746 * **-EOPNOTSUPP** kernel configuration does not enable SYN cookies
3747 *
3748 * **-EPROTONOSUPPORT** IP packet version is not 4 or 6
3749 *
3750 * long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
3751 * Description
3752 * Write raw *data* blob into a special BPF perf event held by
3753 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
3754 * event must have the following attributes: **PERF_SAMPLE_RAW**
3755 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
3756 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
3757 *
3758 * The *flags* are used to indicate the index in *map* for which
3759 * the value must be put, masked with **BPF_F_INDEX_MASK**.
3760 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
3761 * to indicate that the index of the current CPU core should be
3762 * used.
3763 *
3764 * The value to write, of *size*, is passed through eBPF stack and
3765 * pointed by *data*.
3766 *
3767 * *ctx* is a pointer to in-kernel struct sk_buff.
3768 *
3769 * This helper is similar to **bpf_perf_event_output**\ () but
3770 * restricted to raw_tracepoint bpf programs.
3771 * Return
3772 * 0 on success, or a negative error in case of failure.
3773 *
3774 * long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
3775 * Description
3776 * Safely attempt to read *size* bytes from user space address
3777 * *unsafe_ptr* and store the data in *dst*.
3778 * Return
3779 * 0 on success, or a negative error in case of failure.
3780 *
3781 * long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
3782 * Description
3783 * Safely attempt to read *size* bytes from kernel space address
3784 * *unsafe_ptr* and store the data in *dst*.
3785 * Return
3786 * 0 on success, or a negative error in case of failure.
3787 *
3788 * long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
3789 * Description
3790 * Copy a NUL terminated string from an unsafe user address
3791 * *unsafe_ptr* to *dst*. The *size* should include the
3792 * terminating NUL byte. In case the string length is smaller than
3793 * *size*, the target is not padded with further NUL bytes. If the
3794 * string length is larger than *size*, just *size*-1 bytes are
3795 * copied and the last byte is set to NUL.
3796 *
3797 * On success, returns the number of bytes that were written,
3798 * including the terminal NUL. This makes this helper useful in
3799 * tracing programs for reading strings, and more importantly to
3800 * get its length at runtime. See the following snippet:
3801 *
3802 * ::
3803 *
3804 * SEC("kprobe/sys_open")
3805 * void bpf_sys_open(struct pt_regs *ctx)
3806 * {
3807 * char buf[PATHLEN]; // PATHLEN is defined to 256
3808 * int res = bpf_probe_read_user_str(buf, sizeof(buf),
3809 * ctx->di);
3810 *
3811 * // Consume buf, for example push it to
3812 * // userspace via bpf_perf_event_output(); we
3813 * // can use res (the string length) as event
3814 * // size, after checking its boundaries.
3815 * }
3816 *
3817 * In comparison, using **bpf_probe_read_user**\ () helper here
3818 * instead to read the string would require to estimate the length
3819 * at compile time, and would often result in copying more memory
3820 * than necessary.
3821 *
3822 * Another useful use case is when parsing individual process
3823 * arguments or individual environment variables navigating
3824 * *current*\ **->mm->arg_start** and *current*\
3825 * **->mm->env_start**: using this helper and the return value,
3826 * one can quickly iterate at the right offset of the memory area.
3827 * Return
3828 * On success, the strictly positive length of the output string,
3829 * including the trailing NUL character. On error, a negative
3830 * value.
3831 *
3832 * long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
3833 * Description
3834 * Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
3835 * to *dst*. Same semantics as with **bpf_probe_read_user_str**\ () apply.
3836 * Return
3837 * On success, the strictly positive length of the string, including
3838 * the trailing NUL character. On error, a negative value.
3839 *
3840 * long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
3841 * Description
3842 * Send out a tcp-ack. *tp* is the in-kernel struct **tcp_sock**.
3843 * *rcv_nxt* is the ack_seq to be sent out.
3844 * Return
3845 * 0 on success, or a negative error in case of failure.
3846 *
3847 * long bpf_send_signal_thread(u32 sig)
3848 * Description
3849 * Send signal *sig* to the thread corresponding to the current task.
3850 * Return
3851 * 0 on success or successfully queued.
3852 *
3853 * **-EBUSY** if work queue under nmi is full.
3854 *
3855 * **-EINVAL** if *sig* is invalid.
3856 *
3857 * **-EPERM** if no permission to send the *sig*.
3858 *
3859 * **-EAGAIN** if bpf program can try again.
3860 *
3861 * u64 bpf_jiffies64(void)
3862 * Description
3863 * Obtain the 64bit jiffies
3864 * Return
3865 * The 64 bit jiffies
3866 *
3867 * long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags)
3868 * Description
3869 * For an eBPF program attached to a perf event, retrieve the
3870 * branch records (**struct perf_branch_entry**) associated to *ctx*
3871 * and store it in the buffer pointed by *buf* up to size
3872 * *size* bytes.
3873 * Return
3874 * On success, number of bytes written to *buf*. On error, a
3875 * negative value.
3876 *
3877 * The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to
3878 * instead return the number of bytes required to store all the
3879 * branch entries. If this flag is set, *buf* may be NULL.
3880 *
3881 * **-EINVAL** if arguments invalid or **size** not a multiple
3882 * of **sizeof**\ (**struct perf_branch_entry**\ ).
3883 *
3884 * **-ENOENT** if architecture does not support branch records.
3885 *
3886 * long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size)
3887 * Description
3888 * Returns 0 on success, values for *pid* and *tgid* as seen from the current
3889 * *namespace* will be returned in *nsdata*.
3890 * Return
3891 * 0 on success, or one of the following in case of failure:
3892 *
3893 * **-EINVAL** if dev and inum supplied don't match dev_t and inode number
3894 * with nsfs of current task, or if dev conversion to dev_t lost high bits.
3895 *
3896 * **-ENOENT** if pidns does not exists for the current task.
3897 *
3898 * long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
3899 * Description
3900 * Write raw *data* blob into a special BPF perf event held by
3901 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
3902 * event must have the following attributes: **PERF_SAMPLE_RAW**
3903 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
3904 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
3905 *
3906 * The *flags* are used to indicate the index in *map* for which
3907 * the value must be put, masked with **BPF_F_INDEX_MASK**.
3908 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
3909 * to indicate that the index of the current CPU core should be
3910 * used.
3911 *
3912 * The value to write, of *size*, is passed through eBPF stack and
3913 * pointed by *data*.
3914 *
3915 * *ctx* is a pointer to in-kernel struct xdp_buff.
3916 *
3917 * This helper is similar to **bpf_perf_eventoutput**\ () but
3918 * restricted to raw_tracepoint bpf programs.
3919 * Return
3920 * 0 on success, or a negative error in case of failure.
3921 *
3922 * u64 bpf_get_netns_cookie(void *ctx)
3923 * Description
3924 * Retrieve the cookie (generated by the kernel) of the network
3925 * namespace the input *ctx* is associated with. The network
3926 * namespace cookie remains stable for its lifetime and provides
3927 * a global identifier that can be assumed unique. If *ctx* is
3928 * NULL, then the helper returns the cookie for the initial
3929 * network namespace. The cookie itself is very similar to that
3930 * of **bpf_get_socket_cookie**\ () helper, but for network
3931 * namespaces instead of sockets.
3932 * Return
3933 * A 8-byte long opaque number.
3934 *
3935 * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)
3936 * Description
3937 * Return id of cgroup v2 that is ancestor of the cgroup associated
3938 * with the current task at the *ancestor_level*. The root cgroup
3939 * is at *ancestor_level* zero and each step down the hierarchy
3940 * increments the level. If *ancestor_level* == level of cgroup
3941 * associated with the current task, then return value will be the
3942 * same as that of **bpf_get_current_cgroup_id**\ ().
3943 *
3944 * The helper is useful to implement policies based on cgroups
3945 * that are upper in hierarchy than immediate cgroup associated
3946 * with the current task.
3947 *
3948 * The format of returned id and helper limitations are same as in
3949 * **bpf_get_current_cgroup_id**\ ().
3950 * Return
3951 * The id is returned or 0 in case the id could not be retrieved.
3952 *
3953 * long bpf_sk_assign(struct sk_buff *skb, void *sk, u64 flags)
3954 * Description
3955 * Helper is overloaded depending on BPF program type. This
3956 * description applies to **BPF_PROG_TYPE_SCHED_CLS** and
3957 * **BPF_PROG_TYPE_SCHED_ACT** programs.
3958 *
3959 * Assign the *sk* to the *skb*. When combined with appropriate
3960 * routing configuration to receive the packet towards the socket,
3961 * will cause *skb* to be delivered to the specified socket.
3962 * Subsequent redirection of *skb* via **bpf_redirect**\ (),
3963 * **bpf_clone_redirect**\ () or other methods outside of BPF may
3964 * interfere with successful delivery to the socket.
3965 *
3966 * This operation is only valid from TC ingress path.
3967 *
3968 * The *flags* argument must be zero.
3969 * Return
3970 * 0 on success, or a negative error in case of failure:
3971 *
3972 * **-EINVAL** if specified *flags* are not supported.
3973 *
3974 * **-ENOENT** if the socket is unavailable for assignment.
3975 *
3976 * **-ENETUNREACH** if the socket is unreachable (wrong netns).
3977 *
3978 * **-EOPNOTSUPP** if the operation is not supported, for example
3979 * a call from outside of TC ingress.
3980 *
3981 * **-ESOCKTNOSUPPORT** if the socket type is not supported
3982 * (reuseport).
3983 *
3984 * long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags)
3985 * Description
3986 * Helper is overloaded depending on BPF program type. This
3987 * description applies to **BPF_PROG_TYPE_SK_LOOKUP** programs.
3988 *
3989 * Select the *sk* as a result of a socket lookup.
3990 *
3991 * For the operation to succeed passed socket must be compatible
3992 * with the packet description provided by the *ctx* object.
3993 *
3994 * L4 protocol (**IPPROTO_TCP** or **IPPROTO_UDP**) must
3995 * be an exact match. While IP family (**AF_INET** or
3996 * **AF_INET6**) must be compatible, that is IPv6 sockets
3997 * that are not v6-only can be selected for IPv4 packets.
3998 *
3999 * Only TCP listeners and UDP unconnected sockets can be
4000 * selected. *sk* can also be NULL to reset any previous
4001 * selection.
4002 *
4003 * *flags* argument can combination of following values:
4004 *
4005 * * **BPF_SK_LOOKUP_F_REPLACE** to override the previous
4006 * socket selection, potentially done by a BPF program
4007 * that ran before us.
4008 *
4009 * * **BPF_SK_LOOKUP_F_NO_REUSEPORT** to skip
4010 * load-balancing within reuseport group for the socket
4011 * being selected.
4012 *
4013 * On success *ctx->sk* will point to the selected socket.
4014 *
4015 * Return
4016 * 0 on success, or a negative errno in case of failure.
4017 *
4018 * * **-EAFNOSUPPORT** if socket family (*sk->family*) is
4019 * not compatible with packet family (*ctx->family*).
4020 *
4021 * * **-EEXIST** if socket has been already selected,
4022 * potentially by another program, and
4023 * **BPF_SK_LOOKUP_F_REPLACE** flag was not specified.
4024 *
4025 * * **-EINVAL** if unsupported flags were specified.
4026 *
4027 * * **-EPROTOTYPE** if socket L4 protocol
4028 * (*sk->protocol*) doesn't match packet protocol
4029 * (*ctx->protocol*).
4030 *
4031 * * **-ESOCKTNOSUPPORT** if socket is not in allowed
4032 * state (TCP listening or UDP unconnected).
4033 *
4034 * u64 bpf_ktime_get_boot_ns(void)
4035 * Description
4036 * Return the time elapsed since system boot, in nanoseconds.
4037 * Does include the time the system was suspended.
4038 * See: **clock_gettime**\ (**CLOCK_BOOTTIME**)
4039 * Return
4040 * Current *ktime*.
4041 *
4042 * long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void *data, u32 data_len)
4043 * Description
4044 * **bpf_seq_printf**\ () uses seq_file **seq_printf**\ () to print
4045 * out the format string.
4046 * The *m* represents the seq_file. The *fmt* and *fmt_size* are for
4047 * the format string itself. The *data* and *data_len* are format string
4048 * arguments. The *data* are a **u64** array and corresponding format string
4049 * values are stored in the array. For strings and pointers where pointees
4050 * are accessed, only the pointer values are stored in the *data* array.
4051 * The *data_len* is the size of *data* in bytes.
4052 *
4053 * Formats **%s**, **%p{i,I}{4,6}** requires to read kernel memory.
4054 * Reading kernel memory may fail due to either invalid address or
4055 * valid address but requiring a major memory fault. If reading kernel memory
4056 * fails, the string for **%s** will be an empty string, and the ip
4057 * address for **%p{i,I}{4,6}** will be 0. Not returning error to
4058 * bpf program is consistent with what **bpf_trace_printk**\ () does for now.
4059 * Return
4060 * 0 on success, or a negative error in case of failure:
4061 *
4062 * **-EBUSY** if per-CPU memory copy buffer is busy, can try again
4063 * by returning 1 from bpf program.
4064 *
4065 * **-EINVAL** if arguments are invalid, or if *fmt* is invalid/unsupported.
4066 *
4067 * **-E2BIG** if *fmt* contains too many format specifiers.
4068 *
4069 * **-EOVERFLOW** if an overflow happened: The same object will be tried again.
4070 *
4071 * long bpf_seq_write(struct seq_file *m, const void *data, u32 len)
4072 * Description
4073 * **bpf_seq_write**\ () uses seq_file **seq_write**\ () to write the data.
4074 * The *m* represents the seq_file. The *data* and *len* represent the
4075 * data to write in bytes.
4076 * Return
4077 * 0 on success, or a negative error in case of failure:
4078 *
4079 * **-EOVERFLOW** if an overflow happened: The same object will be tried again.
4080 *
4081 * u64 bpf_sk_cgroup_id(void *sk)
4082 * Description
4083 * Return the cgroup v2 id of the socket *sk*.
4084 *
4085 * *sk* must be a non-**NULL** pointer to a socket, e.g. one
4086 * returned from **bpf_sk_lookup_xxx**\ (),
4087 * **bpf_sk_fullsock**\ (), etc. The format of returned id is
4088 * same as in **bpf_skb_cgroup_id**\ ().
4089 *
4090 * This helper is available only if the kernel was compiled with
4091 * the **CONFIG_SOCK_CGROUP_DATA** configuration option.
4092 * Return
4093 * The id is returned or 0 in case the id could not be retrieved.
4094 *
4095 * u64 bpf_sk_ancestor_cgroup_id(void *sk, int ancestor_level)
4096 * Description
4097 * Return id of cgroup v2 that is ancestor of cgroup associated
4098 * with the *sk* at the *ancestor_level*. The root cgroup is at
4099 * *ancestor_level* zero and each step down the hierarchy
4100 * increments the level. If *ancestor_level* == level of cgroup
4101 * associated with *sk*, then return value will be same as that
4102 * of **bpf_sk_cgroup_id**\ ().
4103 *
4104 * The helper is useful to implement policies based on cgroups
4105 * that are upper in hierarchy than immediate cgroup associated
4106 * with *sk*.
4107 *
4108 * The format of returned id and helper limitations are same as in
4109 * **bpf_sk_cgroup_id**\ ().
4110 * Return
4111 * The id is returned or 0 in case the id could not be retrieved.
4112 *
4113 * long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)
4114 * Description
4115 * Copy *size* bytes from *data* into a ring buffer *ringbuf*.
4116 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4117 * of new data availability is sent.
4118 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4119 * of new data availability is sent unconditionally.
4120 * If **0** is specified in *flags*, an adaptive notification
4121 * of new data availability is sent.
4122 *
4123 * An adaptive notification is a notification sent whenever the user-space
4124 * process has caught up and consumed all available payloads. In case the user-space
4125 * process is still processing a previous payload, then no notification is needed
4126 * as it will process the newly added payload automatically.
4127 * Return
4128 * 0 on success, or a negative error in case of failure.
4129 *
4130 * void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)
4131 * Description
4132 * Reserve *size* bytes of payload in a ring buffer *ringbuf*.
4133 * *flags* must be 0.
4134 * Return
4135 * Valid pointer with *size* bytes of memory available; NULL,
4136 * otherwise.
4137 *
4138 * void bpf_ringbuf_submit(void *data, u64 flags)
4139 * Description
4140 * Submit reserved ring buffer sample, pointed to by *data*.
4141 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4142 * of new data availability is sent.
4143 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4144 * of new data availability is sent unconditionally.
4145 * If **0** is specified in *flags*, an adaptive notification
4146 * of new data availability is sent.
4147 *
4148 * See 'bpf_ringbuf_output()' for the definition of adaptive notification.
4149 * Return
4150 * Nothing. Always succeeds.
4151 *
4152 * void bpf_ringbuf_discard(void *data, u64 flags)
4153 * Description
4154 * Discard reserved ring buffer sample, pointed to by *data*.
4155 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4156 * of new data availability is sent.
4157 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4158 * of new data availability is sent unconditionally.
4159 * If **0** is specified in *flags*, an adaptive notification
4160 * of new data availability is sent.
4161 *
4162 * See 'bpf_ringbuf_output()' for the definition of adaptive notification.
4163 * Return
4164 * Nothing. Always succeeds.
4165 *
4166 * u64 bpf_ringbuf_query(void *ringbuf, u64 flags)
4167 * Description
4168 * Query various characteristics of provided ring buffer. What
4169 * exactly is queries is determined by *flags*:
4170 *
4171 * * **BPF_RB_AVAIL_DATA**: Amount of data not yet consumed.
4172 * * **BPF_RB_RING_SIZE**: The size of ring buffer.
4173 * * **BPF_RB_CONS_POS**: Consumer position (can wrap around).
4174 * * **BPF_RB_PROD_POS**: Producer(s) position (can wrap around).
4175 *
4176 * Data returned is just a momentary snapshot of actual values
4177 * and could be inaccurate, so this facility should be used to
4178 * power heuristics and for reporting, not to make 100% correct
4179 * calculation.
4180 * Return
4181 * Requested value, or 0, if *flags* are not recognized.
4182 *
4183 * long bpf_csum_level(struct sk_buff *skb, u64 level)
4184 * Description
4185 * Change the skbs checksum level by one layer up or down, or
4186 * reset it entirely to none in order to have the stack perform
4187 * checksum validation. The level is applicable to the following
4188 * protocols: TCP, UDP, GRE, SCTP, FCOE. For example, a decap of
4189 * | ETH | IP | UDP | GUE | IP | TCP | into | ETH | IP | TCP |
4190 * through **bpf_skb_adjust_room**\ () helper with passing in
4191 * **BPF_F_ADJ_ROOM_NO_CSUM_RESET** flag would require one call
4192 * to **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_DEC** since
4193 * the UDP header is removed. Similarly, an encap of the latter
4194 * into the former could be accompanied by a helper call to
4195 * **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_INC** if the
4196 * skb is still intended to be processed in higher layers of the
4197 * stack instead of just egressing at tc.
4198 *
4199 * There are three supported level settings at this time:
4200 *
4201 * * **BPF_CSUM_LEVEL_INC**: Increases skb->csum_level for skbs
4202 * with CHECKSUM_UNNECESSARY.
4203 * * **BPF_CSUM_LEVEL_DEC**: Decreases skb->csum_level for skbs
4204 * with CHECKSUM_UNNECESSARY.
4205 * * **BPF_CSUM_LEVEL_RESET**: Resets skb->csum_level to 0 and
4206 * sets CHECKSUM_NONE to force checksum validation by the stack.
4207 * * **BPF_CSUM_LEVEL_QUERY**: No-op, returns the current
4208 * skb->csum_level.
4209 * Return
4210 * 0 on success, or a negative error in case of failure. In the
4211 * case of **BPF_CSUM_LEVEL_QUERY**, the current skb->csum_level
4212 * is returned or the error code -EACCES in case the skb is not
4213 * subject to CHECKSUM_UNNECESSARY.
4214 *
4215 * struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)
4216 * Description
4217 * Dynamically cast a *sk* pointer to a *tcp6_sock* pointer.
4218 * Return
4219 * *sk* if casting is valid, or **NULL** otherwise.
4220 *
4221 * struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)
4222 * Description
4223 * Dynamically cast a *sk* pointer to a *tcp_sock* pointer.
4224 * Return
4225 * *sk* if casting is valid, or **NULL** otherwise.
4226 *
4227 * struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)
4228 * Description
4229 * Dynamically cast a *sk* pointer to a *tcp_timewait_sock* pointer.
4230 * Return
4231 * *sk* if casting is valid, or **NULL** otherwise.
4232 *
4233 * struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)
4234 * Description
4235 * Dynamically cast a *sk* pointer to a *tcp_request_sock* pointer.
4236 * Return
4237 * *sk* if casting is valid, or **NULL** otherwise.
4238 *
4239 * struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)
4240 * Description
4241 * Dynamically cast a *sk* pointer to a *udp6_sock* pointer.
4242 * Return
4243 * *sk* if casting is valid, or **NULL** otherwise.
4244 *
4245 * long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags)
4246 * Description
4247 * Return a user or a kernel stack in bpf program provided buffer.
4248 * Note: the user stack will only be populated if the *task* is
4249 * the current task; all other tasks will return -EOPNOTSUPP.
4250 * To achieve this, the helper needs *task*, which is a valid
4251 * pointer to **struct task_struct**. To store the stacktrace, the
4252 * bpf program provides *buf* with a nonnegative *size*.
4253 *
4254 * The last argument, *flags*, holds the number of stack frames to
4255 * skip (from 0 to 255), masked with
4256 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
4257 * the following flags:
4258 *
4259 * **BPF_F_USER_STACK**
4260 * Collect a user space stack instead of a kernel stack.
4261 * The *task* must be the current task.
4262 * **BPF_F_USER_BUILD_ID**
4263 * Collect buildid+offset instead of ips for user stack,
4264 * only valid if **BPF_F_USER_STACK** is also specified.
4265 *
4266 * **bpf_get_task_stack**\ () can collect up to
4267 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
4268 * to sufficient large buffer size. Note that
4269 * this limit can be controlled with the **sysctl** program, and
4270 * that it should be manually increased in order to profile long
4271 * user stacks (such as stacks for Java programs). To do so, use:
4272 *
4273 * ::
4274 *
4275 * # sysctl kernel.perf_event_max_stack=<new value>
4276 * Return
4277 * The non-negative copied *buf* length equal to or less than
4278 * *size* on success, or a negative error in case of failure.
4279 *
4280 * long bpf_load_hdr_opt(struct bpf_sock_ops *skops, void *searchby_res, u32 len, u64 flags)
4281 * Description
4282 * Load header option. Support reading a particular TCP header
4283 * option for bpf program (**BPF_PROG_TYPE_SOCK_OPS**).
4284 *
4285 * If *flags* is 0, it will search the option from the
4286 * *skops*\ **->skb_data**. The comment in **struct bpf_sock_ops**
4287 * has details on what skb_data contains under different
4288 * *skops*\ **->op**.
4289 *
4290 * The first byte of the *searchby_res* specifies the
4291 * kind that it wants to search.
4292 *
4293 * If the searching kind is an experimental kind
4294 * (i.e. 253 or 254 according to RFC6994). It also
4295 * needs to specify the "magic" which is either
4296 * 2 bytes or 4 bytes. It then also needs to
4297 * specify the size of the magic by using
4298 * the 2nd byte which is "kind-length" of a TCP
4299 * header option and the "kind-length" also
4300 * includes the first 2 bytes "kind" and "kind-length"
4301 * itself as a normal TCP header option also does.
4302 *
4303 * For example, to search experimental kind 254 with
4304 * 2 byte magic 0xeB9F, the searchby_res should be
4305 * [ 254, 4, 0xeB, 0x9F, 0, 0, .... 0 ].
4306 *
4307 * To search for the standard window scale option (3),
4308 * the *searchby_res* should be [ 3, 0, 0, .... 0 ].
4309 * Note, kind-length must be 0 for regular option.
4310 *
4311 * Searching for No-Op (0) and End-of-Option-List (1) are
4312 * not supported.
4313 *
4314 * *len* must be at least 2 bytes which is the minimal size
4315 * of a header option.
4316 *
4317 * Supported flags:
4318 *
4319 * * **BPF_LOAD_HDR_OPT_TCP_SYN** to search from the
4320 * saved_syn packet or the just-received syn packet.
4321 *
4322 * Return
4323 * > 0 when found, the header option is copied to *searchby_res*.
4324 * The return value is the total length copied. On failure, a
4325 * negative error code is returned:
4326 *
4327 * **-EINVAL** if a parameter is invalid.
4328 *
4329 * **-ENOMSG** if the option is not found.
4330 *
4331 * **-ENOENT** if no syn packet is available when
4332 * **BPF_LOAD_HDR_OPT_TCP_SYN** is used.
4333 *
4334 * **-ENOSPC** if there is not enough space. Only *len* number of
4335 * bytes are copied.
4336 *
4337 * **-EFAULT** on failure to parse the header options in the
4338 * packet.
4339 *
4340 * **-EPERM** if the helper cannot be used under the current
4341 * *skops*\ **->op**.
4342 *
4343 * long bpf_store_hdr_opt(struct bpf_sock_ops *skops, const void *from, u32 len, u64 flags)
4344 * Description
4345 * Store header option. The data will be copied
4346 * from buffer *from* with length *len* to the TCP header.
4347 *
4348 * The buffer *from* should have the whole option that
4349 * includes the kind, kind-length, and the actual
4350 * option data. The *len* must be at least kind-length
4351 * long. The kind-length does not have to be 4 byte
4352 * aligned. The kernel will take care of the padding
4353 * and setting the 4 bytes aligned value to th->doff.
4354 *
4355 * This helper will check for duplicated option
4356 * by searching the same option in the outgoing skb.
4357 *
4358 * This helper can only be called during
4359 * **BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
4360 *
4361 * Return
4362 * 0 on success, or negative error in case of failure:
4363 *
4364 * **-EINVAL** If param is invalid.
4365 *
4366 * **-ENOSPC** if there is not enough space in the header.
4367 * Nothing has been written
4368 *
4369 * **-EEXIST** if the option already exists.
4370 *
4371 * **-EFAULT** on failrue to parse the existing header options.
4372 *
4373 * **-EPERM** if the helper cannot be used under the current
4374 * *skops*\ **->op**.
4375 *
4376 * long bpf_reserve_hdr_opt(struct bpf_sock_ops *skops, u32 len, u64 flags)
4377 * Description
4378 * Reserve *len* bytes for the bpf header option. The
4379 * space will be used by **bpf_store_hdr_opt**\ () later in
4380 * **BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
4381 *
4382 * If **bpf_reserve_hdr_opt**\ () is called multiple times,
4383 * the total number of bytes will be reserved.
4384 *
4385 * This helper can only be called during
4386 * **BPF_SOCK_OPS_HDR_OPT_LEN_CB**.
4387 *
4388 * Return
4389 * 0 on success, or negative error in case of failure:
4390 *
4391 * **-EINVAL** if a parameter is invalid.
4392 *
4393 * **-ENOSPC** if there is not enough space in the header.
4394 *
4395 * **-EPERM** if the helper cannot be used under the current
4396 * *skops*\ **->op**.
4397 *
4398 * void *bpf_inode_storage_get(struct bpf_map *map, void *inode, void *value, u64 flags)
4399 * Description
4400 * Get a bpf_local_storage from an *inode*.
4401 *
4402 * Logically, it could be thought of as getting the value from
4403 * a *map* with *inode* as the **key**. From this
4404 * perspective, the usage is not much different from
4405 * **bpf_map_lookup_elem**\ (*map*, **&**\ *inode*) except this
4406 * helper enforces the key must be an inode and the map must also
4407 * be a **BPF_MAP_TYPE_INODE_STORAGE**.
4408 *
4409 * Underneath, the value is stored locally at *inode* instead of
4410 * the *map*. The *map* is used as the bpf-local-storage
4411 * "type". The bpf-local-storage "type" (i.e. the *map*) is
4412 * searched against all bpf_local_storage residing at *inode*.
4413 *
4414 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
4415 * used such that a new bpf_local_storage will be
4416 * created if one does not exist. *value* can be used
4417 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
4418 * the initial value of a bpf_local_storage. If *value* is
4419 * **NULL**, the new bpf_local_storage will be zero initialized.
4420 * Return
4421 * A bpf_local_storage pointer is returned on success.
4422 *
4423 * **NULL** if not found or there was an error in adding
4424 * a new bpf_local_storage.
4425 *
4426 * int bpf_inode_storage_delete(struct bpf_map *map, void *inode)
4427 * Description
4428 * Delete a bpf_local_storage from an *inode*.
4429 * Return
4430 * 0 on success.
4431 *
4432 * **-ENOENT** if the bpf_local_storage cannot be found.
4433 *
4434 * long bpf_d_path(struct path *path, char *buf, u32 sz)
4435 * Description
4436 * Return full path for given **struct path** object, which
4437 * needs to be the kernel BTF *path* object. The path is
4438 * returned in the provided buffer *buf* of size *sz* and
4439 * is zero terminated.
4440 *
4441 * Return
4442 * On success, the strictly positive length of the string,
4443 * including the trailing NUL character. On error, a negative
4444 * value.
4445 *
4446 * long bpf_copy_from_user(void *dst, u32 size, const void *user_ptr)
4447 * Description
4448 * Read *size* bytes from user space address *user_ptr* and store
4449 * the data in *dst*. This is a wrapper of **copy_from_user**\ ().
4450 * Return
4451 * 0 on success, or a negative error in case of failure.
4452 *
4453 * long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr, u32 btf_ptr_size, u64 flags)
4454 * Description
4455 * Use BTF to store a string representation of *ptr*->ptr in *str*,
4456 * using *ptr*->type_id. This value should specify the type
4457 * that *ptr*->ptr points to. LLVM __builtin_btf_type_id(type, 1)
4458 * can be used to look up vmlinux BTF type ids. Traversing the
4459 * data structure using BTF, the type information and values are
4460 * stored in the first *str_size* - 1 bytes of *str*. Safe copy of
4461 * the pointer data is carried out to avoid kernel crashes during
4462 * operation. Smaller types can use string space on the stack;
4463 * larger programs can use map data to store the string
4464 * representation.
4465 *
4466 * The string can be subsequently shared with userspace via
4467 * bpf_perf_event_output() or ring buffer interfaces.
4468 * bpf_trace_printk() is to be avoided as it places too small
4469 * a limit on string size to be useful.
4470 *
4471 * *flags* is a combination of
4472 *
4473 * **BTF_F_COMPACT**
4474 * no formatting around type information
4475 * **BTF_F_NONAME**
4476 * no struct/union member names/types
4477 * **BTF_F_PTR_RAW**
4478 * show raw (unobfuscated) pointer values;
4479 * equivalent to printk specifier %px.
4480 * **BTF_F_ZERO**
4481 * show zero-valued struct/union members; they
4482 * are not displayed by default
4483 *
4484 * Return
4485 * The number of bytes that were written (or would have been
4486 * written if output had to be truncated due to string size),
4487 * or a negative error in cases of failure.
4488 *
4489 * long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr, u32 ptr_size, u64 flags)
4490 * Description
4491 * Use BTF to write to seq_write a string representation of
4492 * *ptr*->ptr, using *ptr*->type_id as per bpf_snprintf_btf().
4493 * *flags* are identical to those used for bpf_snprintf_btf.
4494 * Return
4495 * 0 on success or a negative error in case of failure.
4496 *
4497 * u64 bpf_skb_cgroup_classid(struct sk_buff *skb)
4498 * Description
4499 * See **bpf_get_cgroup_classid**\ () for the main description.
4500 * This helper differs from **bpf_get_cgroup_classid**\ () in that
4501 * the cgroup v1 net_cls class is retrieved only from the *skb*'s
4502 * associated socket instead of the current process.
4503 * Return
4504 * The id is returned or 0 in case the id could not be retrieved.
4505 *
4506 * long bpf_redirect_neigh(u32 ifindex, struct bpf_redir_neigh *params, int plen, u64 flags)
4507 * Description
4508 * Redirect the packet to another net device of index *ifindex*
4509 * and fill in L2 addresses from neighboring subsystem. This helper
4510 * is somewhat similar to **bpf_redirect**\ (), except that it
4511 * populates L2 addresses as well, meaning, internally, the helper
4512 * relies on the neighbor lookup for the L2 address of the nexthop.
4513 *
4514 * The helper will perform a FIB lookup based on the skb's
4515 * networking header to get the address of the next hop, unless
4516 * this is supplied by the caller in the *params* argument. The
4517 * *plen* argument indicates the len of *params* and should be set
4518 * to 0 if *params* is NULL.
4519 *
4520 * The *flags* argument is reserved and must be 0. The helper is
4521 * currently only supported for tc BPF program types, and enabled
4522 * for IPv4 and IPv6 protocols.
4523 * Return
4524 * The helper returns **TC_ACT_REDIRECT** on success or
4525 * **TC_ACT_SHOT** on error.
4526 *
4527 * void *bpf_per_cpu_ptr(const void *percpu_ptr, u32 cpu)
4528 * Description
4529 * Take a pointer to a percpu ksym, *percpu_ptr*, and return a
4530 * pointer to the percpu kernel variable on *cpu*. A ksym is an
4531 * extern variable decorated with '__ksym'. For ksym, there is a
4532 * global var (either static or global) defined of the same name
4533 * in the kernel. The ksym is percpu if the global var is percpu.
4534 * The returned pointer points to the global percpu var on *cpu*.
4535 *
4536 * bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the
4537 * kernel, except that bpf_per_cpu_ptr() may return NULL. This
4538 * happens if *cpu* is larger than nr_cpu_ids. The caller of
4539 * bpf_per_cpu_ptr() must check the returned value.
4540 * Return
4541 * A pointer pointing to the kernel percpu variable on *cpu*, or
4542 * NULL, if *cpu* is invalid.
4543 *
4544 * void *bpf_this_cpu_ptr(const void *percpu_ptr)
4545 * Description
4546 * Take a pointer to a percpu ksym, *percpu_ptr*, and return a
4547 * pointer to the percpu kernel variable on this cpu. See the
4548 * description of 'ksym' in **bpf_per_cpu_ptr**\ ().
4549 *
4550 * bpf_this_cpu_ptr() has the same semantic as this_cpu_ptr() in
4551 * the kernel. Different from **bpf_per_cpu_ptr**\ (), it would
4552 * never return NULL.
4553 * Return
4554 * A pointer pointing to the kernel percpu variable on this cpu.
4555 *
4556 * long bpf_redirect_peer(u32 ifindex, u64 flags)
4557 * Description
4558 * Redirect the packet to another net device of index *ifindex*.
4559 * This helper is somewhat similar to **bpf_redirect**\ (), except
4560 * that the redirection happens to the *ifindex*' peer device and
4561 * the netns switch takes place from ingress to ingress without
4562 * going through the CPU's backlog queue.
4563 *
4564 * The *flags* argument is reserved and must be 0. The helper is
4565 * currently only supported for tc BPF program types at the ingress
4566 * hook and for veth device types. The peer device must reside in a
4567 * different network namespace.
4568 * Return
4569 * The helper returns **TC_ACT_REDIRECT** on success or
4570 * **TC_ACT_SHOT** on error.
4571 *
4572 * void *bpf_task_storage_get(struct bpf_map *map, struct task_struct *task, void *value, u64 flags)
4573 * Description
4574 * Get a bpf_local_storage from the *task*.
4575 *
4576 * Logically, it could be thought of as getting the value from
4577 * a *map* with *task* as the **key**. From this
4578 * perspective, the usage is not much different from
4579 * **bpf_map_lookup_elem**\ (*map*, **&**\ *task*) except this
4580 * helper enforces the key must be an task_struct and the map must also
4581 * be a **BPF_MAP_TYPE_TASK_STORAGE**.
4582 *
4583 * Underneath, the value is stored locally at *task* instead of
4584 * the *map*. The *map* is used as the bpf-local-storage
4585 * "type". The bpf-local-storage "type" (i.e. the *map*) is
4586 * searched against all bpf_local_storage residing at *task*.
4587 *
4588 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
4589 * used such that a new bpf_local_storage will be
4590 * created if one does not exist. *value* can be used
4591 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
4592 * the initial value of a bpf_local_storage. If *value* is
4593 * **NULL**, the new bpf_local_storage will be zero initialized.
4594 * Return
4595 * A bpf_local_storage pointer is returned on success.
4596 *
4597 * **NULL** if not found or there was an error in adding
4598 * a new bpf_local_storage.
4599 *
4600 * long bpf_task_storage_delete(struct bpf_map *map, struct task_struct *task)
4601 * Description
4602 * Delete a bpf_local_storage from a *task*.
4603 * Return
4604 * 0 on success.
4605 *
4606 * **-ENOENT** if the bpf_local_storage cannot be found.
4607 *
4608 * struct task_struct *bpf_get_current_task_btf(void)
4609 * Description
4610 * Return a BTF pointer to the "current" task.
4611 * This pointer can also be used in helpers that accept an
4612 * *ARG_PTR_TO_BTF_ID* of type *task_struct*.
4613 * Return
4614 * Pointer to the current task.
4615 *
4616 * long bpf_bprm_opts_set(struct linux_binprm *bprm, u64 flags)
4617 * Description
4618 * Set or clear certain options on *bprm*:
4619 *
4620 * **BPF_F_BPRM_SECUREEXEC** Set the secureexec bit
4621 * which sets the **AT_SECURE** auxv for glibc. The bit
4622 * is cleared if the flag is not specified.
4623 * Return
4624 * **-EINVAL** if invalid *flags* are passed, zero otherwise.
4625 *
4626 * u64 bpf_ktime_get_coarse_ns(void)
4627 * Description
4628 * Return a coarse-grained version of the time elapsed since
4629 * system boot, in nanoseconds. Does not include time the system
4630 * was suspended.
4631 *
4632 * See: **clock_gettime**\ (**CLOCK_MONOTONIC_COARSE**)
4633 * Return
4634 * Current *ktime*.
4635 *
4636 * long bpf_ima_inode_hash(struct inode *inode, void *dst, u32 size)
4637 * Description
4638 * Returns the stored IMA hash of the *inode* (if it's avaialable).
4639 * If the hash is larger than *size*, then only *size*
4640 * bytes will be copied to *dst*
4641 * Return
4642 * The **hash_algo** is returned on success,
4643 * **-EOPNOTSUP** if IMA is disabled or **-EINVAL** if
4644 * invalid arguments are passed.
4645 *
4646 * struct socket *bpf_sock_from_file(struct file *file)
4647 * Description
4648 * If the given file represents a socket, returns the associated
4649 * socket.
4650 * Return
4651 * A pointer to a struct socket on success or NULL if the file is
4652 * not a socket.
4653 *
4654 * long bpf_check_mtu(void *ctx, u32 ifindex, u32 *mtu_len, s32 len_diff, u64 flags)
4655 * Description
4656 * Check packet size against exceeding MTU of net device (based
4657 * on *ifindex*). This helper will likely be used in combination
4658 * with helpers that adjust/change the packet size.
4659 *
4660 * The argument *len_diff* can be used for querying with a planned
4661 * size change. This allows to check MTU prior to changing packet
4662 * ctx. Providing an *len_diff* adjustment that is larger than the
4663 * actual packet size (resulting in negative packet size) will in
4664 * principle not exceed the MTU, why it is not considered a
4665 * failure. Other BPF-helpers are needed for performing the
4666 * planned size change, why the responsability for catch a negative
4667 * packet size belong in those helpers.
4668 *
4669 * Specifying *ifindex* zero means the MTU check is performed
4670 * against the current net device. This is practical if this isn't
4671 * used prior to redirect.
4672 *
4673 * On input *mtu_len* must be a valid pointer, else verifier will
4674 * reject BPF program. If the value *mtu_len* is initialized to
4675 * zero then the ctx packet size is use. When value *mtu_len* is
4676 * provided as input this specify the L3 length that the MTU check
4677 * is done against. Remember XDP and TC length operate at L2, but
4678 * this value is L3 as this correlate to MTU and IP-header tot_len
4679 * values which are L3 (similar behavior as bpf_fib_lookup).
4680 *
4681 * The Linux kernel route table can configure MTUs on a more
4682 * specific per route level, which is not provided by this helper.
4683 * For route level MTU checks use the **bpf_fib_lookup**\ ()
4684 * helper.
4685 *
4686 * *ctx* is either **struct xdp_md** for XDP programs or
4687 * **struct sk_buff** for tc cls_act programs.
4688 *
4689 * The *flags* argument can be a combination of one or more of the
4690 * following values:
4691 *
4692 * **BPF_MTU_CHK_SEGS**
4693 * This flag will only works for *ctx* **struct sk_buff**.
4694 * If packet context contains extra packet segment buffers
4695 * (often knows as GSO skb), then MTU check is harder to
4696 * check at this point, because in transmit path it is
4697 * possible for the skb packet to get re-segmented
4698 * (depending on net device features). This could still be
4699 * a MTU violation, so this flag enables performing MTU
4700 * check against segments, with a different violation
4701 * return code to tell it apart. Check cannot use len_diff.
4702 *
4703 * On return *mtu_len* pointer contains the MTU value of the net
4704 * device. Remember the net device configured MTU is the L3 size,
4705 * which is returned here and XDP and TC length operate at L2.
4706 * Helper take this into account for you, but remember when using
4707 * MTU value in your BPF-code.
4708 *
4709 * Return
4710 * * 0 on success, and populate MTU value in *mtu_len* pointer.
4711 *
4712 * * < 0 if any input argument is invalid (*mtu_len* not updated)
4713 *
4714 * MTU violations return positive values, but also populate MTU
4715 * value in *mtu_len* pointer, as this can be needed for
4716 * implementing PMTU handing:
4717 *
4718 * * **BPF_MTU_CHK_RET_FRAG_NEEDED**
4719 * * **BPF_MTU_CHK_RET_SEGS_TOOBIG**
4720 *
4721 * long bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, void *callback_ctx, u64 flags)
4722 * Description
4723 * For each element in **map**, call **callback_fn** function with
4724 * **map**, **callback_ctx** and other map-specific parameters.
4725 * The **callback_fn** should be a static function and
4726 * the **callback_ctx** should be a pointer to the stack.
4727 * The **flags** is used to control certain aspects of the helper.
4728 * Currently, the **flags** must be 0.
4729 *
4730 * The following are a list of supported map types and their
4731 * respective expected callback signatures:
4732 *
4733 * BPF_MAP_TYPE_HASH, BPF_MAP_TYPE_PERCPU_HASH,
4734 * BPF_MAP_TYPE_LRU_HASH, BPF_MAP_TYPE_LRU_PERCPU_HASH,
4735 * BPF_MAP_TYPE_ARRAY, BPF_MAP_TYPE_PERCPU_ARRAY
4736 *
4737 * long (\*callback_fn)(struct bpf_map \*map, const void \*key, void \*value, void \*ctx);
4738 *
4739 * For per_cpu maps, the map_value is the value on the cpu where the
4740 * bpf_prog is running.
4741 *
4742 * If **callback_fn** return 0, the helper will continue to the next
4743 * element. If return value is 1, the helper will skip the rest of
4744 * elements and return. Other return values are not used now.
4745 *
4746 * Return
4747 * The number of traversed map elements for success, **-EINVAL** for
4748 * invalid **flags**.
4749 *
4750 * long bpf_snprintf(char *str, u32 str_size, const char *fmt, u64 *data, u32 data_len)
4751 * Description
4752 * Outputs a string into the **str** buffer of size **str_size**
4753 * based on a format string stored in a read-only map pointed by
4754 * **fmt**.
4755 *
4756 * Each format specifier in **fmt** corresponds to one u64 element
4757 * in the **data** array. For strings and pointers where pointees
4758 * are accessed, only the pointer values are stored in the *data*
4759 * array. The *data_len* is the size of *data* in bytes.
4760 *
4761 * Formats **%s** and **%p{i,I}{4,6}** require to read kernel
4762 * memory. Reading kernel memory may fail due to either invalid
4763 * address or valid address but requiring a major memory fault. If
4764 * reading kernel memory fails, the string for **%s** will be an
4765 * empty string, and the ip address for **%p{i,I}{4,6}** will be 0.
4766 * Not returning error to bpf program is consistent with what
4767 * **bpf_trace_printk**\ () does for now.
4768 *
4769 * Return
4770 * The strictly positive length of the formatted string, including
4771 * the trailing zero character. If the return value is greater than
4772 * **str_size**, **str** contains a truncated string, guaranteed to
4773 * be zero-terminated except when **str_size** is 0.
4774 *
4775 * Or **-EBUSY** if the per-CPU memory copy buffer is busy.
4776 *
4777 * long bpf_sys_bpf(u32 cmd, void *attr, u32 attr_size)
4778 * Description
4779 * Execute bpf syscall with given arguments.
4780 * Return
4781 * A syscall result.
4782 *
4783 * long bpf_btf_find_by_name_kind(char *name, int name_sz, u32 kind, int flags)
4784 * Description
4785 * Find BTF type with given name and kind in vmlinux BTF or in module's BTFs.
4786 * Return
4787 * Returns btf_id and btf_obj_fd in lower and upper 32 bits.
4788 *
4789 * long bpf_sys_close(u32 fd)
4790 * Description
4791 * Execute close syscall for given FD.
4792 * Return
4793 * A syscall result.
4794 *
4795 * long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, u64 flags)
4796 * Description
4797 * Initialize the timer.
4798 * First 4 bits of *flags* specify clockid.
4799 * Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
4800 * All other bits of *flags* are reserved.
4801 * The verifier will reject the program if *timer* is not from
4802 * the same *map*.
4803 * Return
4804 * 0 on success.
4805 * **-EBUSY** if *timer* is already initialized.
4806 * **-EINVAL** if invalid *flags* are passed.
4807 * **-EPERM** if *timer* is in a map that doesn't have any user references.
4808 * The user space should either hold a file descriptor to a map with timers
4809 * or pin such map in bpffs. When map is unpinned or file descriptor is
4810 * closed all timers in the map will be cancelled and freed.
4811 *
4812 * long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn)
4813 * Description
4814 * Configure the timer to call *callback_fn* static function.
4815 * Return
4816 * 0 on success.
4817 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier.
4818 * **-EPERM** if *timer* is in a map that doesn't have any user references.
4819 * The user space should either hold a file descriptor to a map with timers
4820 * or pin such map in bpffs. When map is unpinned or file descriptor is
4821 * closed all timers in the map will be cancelled and freed.
4822 *
4823 * long bpf_timer_start(struct bpf_timer *timer, u64 nsecs, u64 flags)
4824 * Description
4825 * Set timer expiration N nanoseconds from the current time. The
4826 * configured callback will be invoked in soft irq context on some cpu
4827 * and will not repeat unless another bpf_timer_start() is made.
4828 * In such case the next invocation can migrate to a different cpu.
4829 * Since struct bpf_timer is a field inside map element the map
4830 * owns the timer. The bpf_timer_set_callback() will increment refcnt
4831 * of BPF program to make sure that callback_fn code stays valid.
4832 * When user space reference to a map reaches zero all timers
4833 * in a map are cancelled and corresponding program's refcnts are
4834 * decremented. This is done to make sure that Ctrl-C of a user
4835 * process doesn't leave any timers running. If map is pinned in
4836 * bpffs the callback_fn can re-arm itself indefinitely.
4837 * bpf_map_update/delete_elem() helpers and user space sys_bpf commands
4838 * cancel and free the timer in the given map element.
4839 * The map can contain timers that invoke callback_fn-s from different
4840 * programs. The same callback_fn can serve different timers from
4841 * different maps if key/value layout matches across maps.
4842 * Every bpf_timer_set_callback() can have different callback_fn.
4843 *
4844 * Return
4845 * 0 on success.
4846 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier
4847 * or invalid *flags* are passed.
4848 *
4849 * long bpf_timer_cancel(struct bpf_timer *timer)
4850 * Description
4851 * Cancel the timer and wait for callback_fn to finish if it was running.
4852 * Return
4853 * 0 if the timer was not active.
4854 * 1 if the timer was active.
4855 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier.
4856 * **-EDEADLK** if callback_fn tried to call bpf_timer_cancel() on its
4857 * own timer which would have led to a deadlock otherwise.
4858 *
4859 * u64 bpf_get_func_ip(void *ctx)
4860 * Description
4861 * Get address of the traced function (for tracing and kprobe programs).
4862 * Return
4863 * Address of the traced function.
4864 *
4865 * u64 bpf_get_attach_cookie(void *ctx)
4866 * Description
4867 * Get bpf_cookie value provided (optionally) during the program
4868 * attachment. It might be different for each individual
4869 * attachment, even if BPF program itself is the same.
4870 * Expects BPF program context *ctx* as a first argument.
4871 *
4872 * Supported for the following program types:
4873 * - kprobe/uprobe;
4874 * - tracepoint;
4875 * - perf_event.
4876 * Return
4877 * Value specified by user at BPF link creation/attachment time
4878 * or 0, if it was not specified.
4879 *
4880 * long bpf_task_pt_regs(struct task_struct *task)
4881 * Description
4882 * Get the struct pt_regs associated with **task**.
4883 * Return
4884 * A pointer to struct pt_regs.
4885 */
4886#define __BPF_FUNC_MAPPER(FN) \
4887 FN(unspec), \
4888 FN(map_lookup_elem), \
4889 FN(map_update_elem), \
4890 FN(map_delete_elem), \
4891 FN(probe_read), \
4892 FN(ktime_get_ns), \
4893 FN(trace_printk), \
4894 FN(get_prandom_u32), \
4895 FN(get_smp_processor_id), \
4896 FN(skb_store_bytes), \
4897 FN(l3_csum_replace), \
4898 FN(l4_csum_replace), \
4899 FN(tail_call), \
4900 FN(clone_redirect), \
4901 FN(get_current_pid_tgid), \
4902 FN(get_current_uid_gid), \
4903 FN(get_current_comm), \
4904 FN(get_cgroup_classid), \
4905 FN(skb_vlan_push), \
4906 FN(skb_vlan_pop), \
4907 FN(skb_get_tunnel_key), \
4908 FN(skb_set_tunnel_key), \
4909 FN(perf_event_read), \
4910 FN(redirect), \
4911 FN(get_route_realm), \
4912 FN(perf_event_output), \
4913 FN(skb_load_bytes), \
4914 FN(get_stackid), \
4915 FN(csum_diff), \
4916 FN(skb_get_tunnel_opt), \
4917 FN(skb_set_tunnel_opt), \
4918 FN(skb_change_proto), \
4919 FN(skb_change_type), \
4920 FN(skb_under_cgroup), \
4921 FN(get_hash_recalc), \
4922 FN(get_current_task), \
4923 FN(probe_write_user), \
4924 FN(current_task_under_cgroup), \
4925 FN(skb_change_tail), \
4926 FN(skb_pull_data), \
4927 FN(csum_update), \
4928 FN(set_hash_invalid), \
4929 FN(get_numa_node_id), \
4930 FN(skb_change_head), \
4931 FN(xdp_adjust_head), \
4932 FN(probe_read_str), \
4933 FN(get_socket_cookie), \
4934 FN(get_socket_uid), \
4935 FN(set_hash), \
4936 FN(setsockopt), \
4937 FN(skb_adjust_room), \
4938 FN(redirect_map), \
4939 FN(sk_redirect_map), \
4940 FN(sock_map_update), \
4941 FN(xdp_adjust_meta), \
4942 FN(perf_event_read_value), \
4943 FN(perf_prog_read_value), \
4944 FN(getsockopt), \
4945 FN(override_return), \
4946 FN(sock_ops_cb_flags_set), \
4947 FN(msg_redirect_map), \
4948 FN(msg_apply_bytes), \
4949 FN(msg_cork_bytes), \
4950 FN(msg_pull_data), \
4951 FN(bind), \
4952 FN(xdp_adjust_tail), \
4953 FN(skb_get_xfrm_state), \
4954 FN(get_stack), \
4955 FN(skb_load_bytes_relative), \
4956 FN(fib_lookup), \
4957 FN(sock_hash_update), \
4958 FN(msg_redirect_hash), \
4959 FN(sk_redirect_hash), \
4960 FN(lwt_push_encap), \
4961 FN(lwt_seg6_store_bytes), \
4962 FN(lwt_seg6_adjust_srh), \
4963 FN(lwt_seg6_action), \
4964 FN(rc_repeat), \
4965 FN(rc_keydown), \
4966 FN(skb_cgroup_id), \
4967 FN(get_current_cgroup_id), \
4968 FN(get_local_storage), \
4969 FN(sk_select_reuseport), \
4970 FN(skb_ancestor_cgroup_id), \
4971 FN(sk_lookup_tcp), \
4972 FN(sk_lookup_udp), \
4973 FN(sk_release), \
4974 FN(map_push_elem), \
4975 FN(map_pop_elem), \
4976 FN(map_peek_elem), \
4977 FN(msg_push_data), \
4978 FN(msg_pop_data), \
4979 FN(rc_pointer_rel), \
4980 FN(spin_lock), \
4981 FN(spin_unlock), \
4982 FN(sk_fullsock), \
4983 FN(tcp_sock), \
4984 FN(skb_ecn_set_ce), \
4985 FN(get_listener_sock), \
4986 FN(skc_lookup_tcp), \
4987 FN(tcp_check_syncookie), \
4988 FN(sysctl_get_name), \
4989 FN(sysctl_get_current_value), \
4990 FN(sysctl_get_new_value), \
4991 FN(sysctl_set_new_value), \
4992 FN(strtol), \
4993 FN(strtoul), \
4994 FN(sk_storage_get), \
4995 FN(sk_storage_delete), \
4996 FN(send_signal), \
4997 FN(tcp_gen_syncookie), \
4998 FN(skb_output), \
4999 FN(probe_read_user), \
5000 FN(probe_read_kernel), \
5001 FN(probe_read_user_str), \
5002 FN(probe_read_kernel_str), \
5003 FN(tcp_send_ack), \
5004 FN(send_signal_thread), \
5005 FN(jiffies64), \
5006 FN(read_branch_records), \
5007 FN(get_ns_current_pid_tgid), \
5008 FN(xdp_output), \
5009 FN(get_netns_cookie), \
5010 FN(get_current_ancestor_cgroup_id), \
5011 FN(sk_assign), \
5012 FN(ktime_get_boot_ns), \
5013 FN(seq_printf), \
5014 FN(seq_write), \
5015 FN(sk_cgroup_id), \
5016 FN(sk_ancestor_cgroup_id), \
5017 FN(ringbuf_output), \
5018 FN(ringbuf_reserve), \
5019 FN(ringbuf_submit), \
5020 FN(ringbuf_discard), \
5021 FN(ringbuf_query), \
5022 FN(csum_level), \
5023 FN(skc_to_tcp6_sock), \
5024 FN(skc_to_tcp_sock), \
5025 FN(skc_to_tcp_timewait_sock), \
5026 FN(skc_to_tcp_request_sock), \
5027 FN(skc_to_udp6_sock), \
5028 FN(get_task_stack), \
5029 FN(load_hdr_opt), \
5030 FN(store_hdr_opt), \
5031 FN(reserve_hdr_opt), \
5032 FN(inode_storage_get), \
5033 FN(inode_storage_delete), \
5034 FN(d_path), \
5035 FN(copy_from_user), \
5036 FN(snprintf_btf), \
5037 FN(seq_printf_btf), \
5038 FN(skb_cgroup_classid), \
5039 FN(redirect_neigh), \
5040 FN(per_cpu_ptr), \
5041 FN(this_cpu_ptr), \
5042 FN(redirect_peer), \
5043 FN(task_storage_get), \
5044 FN(task_storage_delete), \
5045 FN(get_current_task_btf), \
5046 FN(bprm_opts_set), \
5047 FN(ktime_get_coarse_ns), \
5048 FN(ima_inode_hash), \
5049 FN(sock_from_file), \
5050 FN(check_mtu), \
5051 FN(for_each_map_elem), \
5052 FN(snprintf), \
5053 FN(sys_bpf), \
5054 FN(btf_find_by_name_kind), \
5055 FN(sys_close), \
5056 FN(timer_init), \
5057 FN(timer_set_callback), \
5058 FN(timer_start), \
5059 FN(timer_cancel), \
5060 FN(get_func_ip), \
5061 FN(get_attach_cookie), \
5062 FN(task_pt_regs), \
5063 /* */
5064
5065/* integer value in 'imm' field of BPF_CALL instruction selects which helper
5066 * function eBPF program intends to call
5067 */
5068#define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
5069enum bpf_func_id {
5070 __BPF_FUNC_MAPPER(__BPF_ENUM_FN)
5071 __BPF_FUNC_MAX_ID,
5072};
5073#undef __BPF_ENUM_FN
5074
5075/* All flags used by eBPF helper functions, placed here. */
5076
5077/* BPF_FUNC_skb_store_bytes flags. */
5078enum {
5079 BPF_F_RECOMPUTE_CSUM = (1ULL << 0),
5080 BPF_F_INVALIDATE_HASH = (1ULL << 1),
5081};
5082
5083/* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
5084 * First 4 bits are for passing the header field size.
5085 */
5086enum {
5087 BPF_F_HDR_FIELD_MASK = 0xfULL,
5088};
5089
5090/* BPF_FUNC_l4_csum_replace flags. */
5091enum {
5092 BPF_F_PSEUDO_HDR = (1ULL << 4),
5093 BPF_F_MARK_MANGLED_0 = (1ULL << 5),
5094 BPF_F_MARK_ENFORCE = (1ULL << 6),
5095};
5096
5097/* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
5098enum {
5099 BPF_F_INGRESS = (1ULL << 0),
5100};
5101
5102/* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
5103enum {
5104 BPF_F_TUNINFO_IPV6 = (1ULL << 0),
5105};
5106
5107/* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
5108enum {
5109 BPF_F_SKIP_FIELD_MASK = 0xffULL,
5110 BPF_F_USER_STACK = (1ULL << 8),
5111/* flags used by BPF_FUNC_get_stackid only. */
5112 BPF_F_FAST_STACK_CMP = (1ULL << 9),
5113 BPF_F_REUSE_STACKID = (1ULL << 10),
5114/* flags used by BPF_FUNC_get_stack only. */
5115 BPF_F_USER_BUILD_ID = (1ULL << 11),
5116};
5117
5118/* BPF_FUNC_skb_set_tunnel_key flags. */
5119enum {
5120 BPF_F_ZERO_CSUM_TX = (1ULL << 1),
5121 BPF_F_DONT_FRAGMENT = (1ULL << 2),
5122 BPF_F_SEQ_NUMBER = (1ULL << 3),
5123};
5124
5125/* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
5126 * BPF_FUNC_perf_event_read_value flags.
5127 */
5128enum {
5129 BPF_F_INDEX_MASK = 0xffffffffULL,
5130 BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK,
5131/* BPF_FUNC_perf_event_output for sk_buff input context. */
5132 BPF_F_CTXLEN_MASK = (0xfffffULL << 32),
5133};
5134
5135/* Current network namespace */
5136enum {
5137 BPF_F_CURRENT_NETNS = (-1L),
5138};
5139
5140/* BPF_FUNC_csum_level level values. */
5141enum {
5142 BPF_CSUM_LEVEL_QUERY,
5143 BPF_CSUM_LEVEL_INC,
5144 BPF_CSUM_LEVEL_DEC,
5145 BPF_CSUM_LEVEL_RESET,
5146};
5147
5148/* BPF_FUNC_skb_adjust_room flags. */
5149enum {
5150 BPF_F_ADJ_ROOM_FIXED_GSO = (1ULL << 0),
5151 BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 = (1ULL << 1),
5152 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 = (1ULL << 2),
5153 BPF_F_ADJ_ROOM_ENCAP_L4_GRE = (1ULL << 3),
5154 BPF_F_ADJ_ROOM_ENCAP_L4_UDP = (1ULL << 4),
5155 BPF_F_ADJ_ROOM_NO_CSUM_RESET = (1ULL << 5),
5156 BPF_F_ADJ_ROOM_ENCAP_L2_ETH = (1ULL << 6),
5157};
5158
5159enum {
5160 BPF_ADJ_ROOM_ENCAP_L2_MASK = 0xff,
5161 BPF_ADJ_ROOM_ENCAP_L2_SHIFT = 56,
5162};
5163
5164#define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \
5165 BPF_ADJ_ROOM_ENCAP_L2_MASK) \
5166 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
5167
5168/* BPF_FUNC_sysctl_get_name flags. */
5169enum {
5170 BPF_F_SYSCTL_BASE_NAME = (1ULL << 0),
5171};
5172
5173/* BPF_FUNC_<kernel_obj>_storage_get flags */
5174enum {
5175 BPF_LOCAL_STORAGE_GET_F_CREATE = (1ULL << 0),
5176 /* BPF_SK_STORAGE_GET_F_CREATE is only kept for backward compatibility
5177 * and BPF_LOCAL_STORAGE_GET_F_CREATE must be used instead.
5178 */
5179 BPF_SK_STORAGE_GET_F_CREATE = BPF_LOCAL_STORAGE_GET_F_CREATE,
5180};
5181
5182/* BPF_FUNC_read_branch_records flags. */
5183enum {
5184 BPF_F_GET_BRANCH_RECORDS_SIZE = (1ULL << 0),
5185};
5186
5187/* BPF_FUNC_bpf_ringbuf_commit, BPF_FUNC_bpf_ringbuf_discard, and
5188 * BPF_FUNC_bpf_ringbuf_output flags.
5189 */
5190enum {
5191 BPF_RB_NO_WAKEUP = (1ULL << 0),
5192 BPF_RB_FORCE_WAKEUP = (1ULL << 1),
5193};
5194
5195/* BPF_FUNC_bpf_ringbuf_query flags */
5196enum {
5197 BPF_RB_AVAIL_DATA = 0,
5198 BPF_RB_RING_SIZE = 1,
5199 BPF_RB_CONS_POS = 2,
5200 BPF_RB_PROD_POS = 3,
5201};
5202
5203/* BPF ring buffer constants */
5204enum {
5205 BPF_RINGBUF_BUSY_BIT = (1U << 31),
5206 BPF_RINGBUF_DISCARD_BIT = (1U << 30),
5207 BPF_RINGBUF_HDR_SZ = 8,
5208};
5209
5210/* BPF_FUNC_sk_assign flags in bpf_sk_lookup context. */
5211enum {
5212 BPF_SK_LOOKUP_F_REPLACE = (1ULL << 0),
5213 BPF_SK_LOOKUP_F_NO_REUSEPORT = (1ULL << 1),
5214};
5215
5216/* Mode for BPF_FUNC_skb_adjust_room helper. */
5217enum bpf_adj_room_mode {
5218 BPF_ADJ_ROOM_NET,
5219 BPF_ADJ_ROOM_MAC,
5220};
5221
5222/* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
5223enum bpf_hdr_start_off {
5224 BPF_HDR_START_MAC,
5225 BPF_HDR_START_NET,
5226};
5227
5228/* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
5229enum bpf_lwt_encap_mode {
5230 BPF_LWT_ENCAP_SEG6,
5231 BPF_LWT_ENCAP_SEG6_INLINE,
5232 BPF_LWT_ENCAP_IP,
5233};
5234
5235/* Flags for bpf_bprm_opts_set helper */
5236enum {
5237 BPF_F_BPRM_SECUREEXEC = (1ULL << 0),
5238};
5239
5240/* Flags for bpf_redirect_map helper */
5241enum {
5242 BPF_F_BROADCAST = (1ULL << 3),
5243 BPF_F_EXCLUDE_INGRESS = (1ULL << 4),
5244};
5245
5246#define __bpf_md_ptr(type, name) \
5247union { \
5248 type name; \
5249 __u64 :64; \
5250} __attribute__((aligned(8)))
5251
5252/* user accessible mirror of in-kernel sk_buff.
5253 * new fields can only be added to the end of this structure
5254 */
5255struct __sk_buff {
5256 __u32 len;
5257 __u32 pkt_type;
5258 __u32 mark;
5259 __u32 queue_mapping;
5260 __u32 protocol;
5261 __u32 vlan_present;
5262 __u32 vlan_tci;
5263 __u32 vlan_proto;
5264 __u32 priority;
5265 __u32 ingress_ifindex;
5266 __u32 ifindex;
5267 __u32 tc_index;
5268 __u32 cb[5];
5269 __u32 hash;
5270 __u32 tc_classid;
5271 __u32 data;
5272 __u32 data_end;
5273 __u32 napi_id;
5274
5275 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
5276 __u32 family;
5277 __u32 remote_ip4; /* Stored in network byte order */
5278 __u32 local_ip4; /* Stored in network byte order */
5279 __u32 remote_ip6[4]; /* Stored in network byte order */
5280 __u32 local_ip6[4]; /* Stored in network byte order */
5281 __u32 remote_port; /* Stored in network byte order */
5282 __u32 local_port; /* stored in host byte order */
5283 /* ... here. */
5284
5285 __u32 data_meta;
5286 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
5287 __u64 tstamp;
5288 __u32 wire_len;
5289 __u32 gso_segs;
5290 __bpf_md_ptr(struct bpf_sock *, sk);
5291 __u32 gso_size;
5292};
5293
5294struct bpf_tunnel_key {
5295 __u32 tunnel_id;
5296 union {
5297 __u32 remote_ipv4;
5298 __u32 remote_ipv6[4];
5299 };
5300 __u8 tunnel_tos;
5301 __u8 tunnel_ttl;
5302 __u16 tunnel_ext; /* Padding, future use. */
5303 __u32 tunnel_label;
5304};
5305
5306/* user accessible mirror of in-kernel xfrm_state.
5307 * new fields can only be added to the end of this structure
5308 */
5309struct bpf_xfrm_state {
5310 __u32 reqid;
5311 __u32 spi; /* Stored in network byte order */
5312 __u16 family;
5313 __u16 ext; /* Padding, future use. */
5314 union {
5315 __u32 remote_ipv4; /* Stored in network byte order */
5316 __u32 remote_ipv6[4]; /* Stored in network byte order */
5317 };
5318};
5319
5320/* Generic BPF return codes which all BPF program types may support.
5321 * The values are binary compatible with their TC_ACT_* counter-part to
5322 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
5323 * programs.
5324 *
5325 * XDP is handled seprately, see XDP_*.
5326 */
5327enum bpf_ret_code {
5328 BPF_OK = 0,
5329 /* 1 reserved */
5330 BPF_DROP = 2,
5331 /* 3-6 reserved */
5332 BPF_REDIRECT = 7,
5333 /* >127 are reserved for prog type specific return codes.
5334 *
5335 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
5336 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
5337 * changed and should be routed based on its new L3 header.
5338 * (This is an L3 redirect, as opposed to L2 redirect
5339 * represented by BPF_REDIRECT above).
5340 */
5341 BPF_LWT_REROUTE = 128,
5342};
5343
5344struct bpf_sock {
5345 __u32 bound_dev_if;
5346 __u32 family;
5347 __u32 type;
5348 __u32 protocol;
5349 __u32 mark;
5350 __u32 priority;
5351 /* IP address also allows 1 and 2 bytes access */
5352 __u32 src_ip4;
5353 __u32 src_ip6[4];
5354 __u32 src_port; /* host byte order */
5355 __be16 dst_port; /* network byte order */
5356 __u16 :16; /* zero padding */
5357 __u32 dst_ip4;
5358 __u32 dst_ip6[4];
5359 __u32 state;
5360 __s32 rx_queue_mapping;
5361};
5362
5363struct bpf_tcp_sock {
5364 __u32 snd_cwnd; /* Sending congestion window */
5365 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */
5366 __u32 rtt_min;
5367 __u32 snd_ssthresh; /* Slow start size threshold */
5368 __u32 rcv_nxt; /* What we want to receive next */
5369 __u32 snd_nxt; /* Next sequence we send */
5370 __u32 snd_una; /* First byte we want an ack for */
5371 __u32 mss_cache; /* Cached effective mss, not including SACKS */
5372 __u32 ecn_flags; /* ECN status bits. */
5373 __u32 rate_delivered; /* saved rate sample: packets delivered */
5374 __u32 rate_interval_us; /* saved rate sample: time elapsed */
5375 __u32 packets_out; /* Packets which are "in flight" */
5376 __u32 retrans_out; /* Retransmitted packets out */
5377 __u32 total_retrans; /* Total retransmits for entire connection */
5378 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn
5379 * total number of segments in.
5380 */
5381 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn
5382 * total number of data segments in.
5383 */
5384 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut
5385 * The total number of segments sent.
5386 */
5387 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut
5388 * total number of data segments sent.
5389 */
5390 __u32 lost_out; /* Lost packets */
5391 __u32 sacked_out; /* SACK'd packets */
5392 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived
5393 * sum(delta(rcv_nxt)), or how many bytes
5394 * were acked.
5395 */
5396 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked
5397 * sum(delta(snd_una)), or how many bytes
5398 * were acked.
5399 */
5400 __u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups
5401 * total number of DSACK blocks received
5402 */
5403 __u32 delivered; /* Total data packets delivered incl. rexmits */
5404 __u32 delivered_ce; /* Like the above but only ECE marked packets */
5405 __u32 icsk_retransmits; /* Number of unrecovered [RTO] timeouts */
5406};
5407
5408struct bpf_sock_tuple {
5409 union {
5410 struct {
5411 __be32 saddr;
5412 __be32 daddr;
5413 __be16 sport;
5414 __be16 dport;
5415 } ipv4;
5416 struct {
5417 __be32 saddr[4];
5418 __be32 daddr[4];
5419 __be16 sport;
5420 __be16 dport;
5421 } ipv6;
5422 };
5423};
5424
5425struct bpf_xdp_sock {
5426 __u32 queue_id;
5427};
5428
5429#define XDP_PACKET_HEADROOM 256
5430
5431/* User return codes for XDP prog type.
5432 * A valid XDP program must return one of these defined values. All other
5433 * return codes are reserved for future use. Unknown return codes will
5434 * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
5435 */
5436enum xdp_action {
5437 XDP_ABORTED = 0,
5438 XDP_DROP,
5439 XDP_PASS,
5440 XDP_TX,
5441 XDP_REDIRECT,
5442};
5443
5444/* user accessible metadata for XDP packet hook
5445 * new fields must be added to the end of this structure
5446 */
5447struct xdp_md {
5448 __u32 data;
5449 __u32 data_end;
5450 __u32 data_meta;
5451 /* Below access go through struct xdp_rxq_info */
5452 __u32 ingress_ifindex; /* rxq->dev->ifindex */
5453 __u32 rx_queue_index; /* rxq->queue_index */
5454
5455 __u32 egress_ifindex; /* txq->dev->ifindex */
5456};
5457
5458/* DEVMAP map-value layout
5459 *
5460 * The struct data-layout of map-value is a configuration interface.
5461 * New members can only be added to the end of this structure.
5462 */
5463struct bpf_devmap_val {
5464 __u32 ifindex; /* device index */
5465 union {
5466 int fd; /* prog fd on map write */
5467 __u32 id; /* prog id on map read */
5468 } bpf_prog;
5469};
5470
5471/* CPUMAP map-value layout
5472 *
5473 * The struct data-layout of map-value is a configuration interface.
5474 * New members can only be added to the end of this structure.
5475 */
5476struct bpf_cpumap_val {
5477 __u32 qsize; /* queue size to remote target CPU */
5478 union {
5479 int fd; /* prog fd on map write */
5480 __u32 id; /* prog id on map read */
5481 } bpf_prog;
5482};
5483
5484enum sk_action {
5485 SK_DROP = 0,
5486 SK_PASS,
5487};
5488
5489/* user accessible metadata for SK_MSG packet hook, new fields must
5490 * be added to the end of this structure
5491 */
5492struct sk_msg_md {
5493 __bpf_md_ptr(void *, data);
5494 __bpf_md_ptr(void *, data_end);
5495
5496 __u32 family;
5497 __u32 remote_ip4; /* Stored in network byte order */
5498 __u32 local_ip4; /* Stored in network byte order */
5499 __u32 remote_ip6[4]; /* Stored in network byte order */
5500 __u32 local_ip6[4]; /* Stored in network byte order */
5501 __u32 remote_port; /* Stored in network byte order */
5502 __u32 local_port; /* stored in host byte order */
5503 __u32 size; /* Total size of sk_msg */
5504
5505 __bpf_md_ptr(struct bpf_sock *, sk); /* current socket */
5506};
5507
5508struct sk_reuseport_md {
5509 /*
5510 * Start of directly accessible data. It begins from
5511 * the tcp/udp header.
5512 */
5513 __bpf_md_ptr(void *, data);
5514 /* End of directly accessible data */
5515 __bpf_md_ptr(void *, data_end);
5516 /*
5517 * Total length of packet (starting from the tcp/udp header).
5518 * Note that the directly accessible bytes (data_end - data)
5519 * could be less than this "len". Those bytes could be
5520 * indirectly read by a helper "bpf_skb_load_bytes()".
5521 */
5522 __u32 len;
5523 /*
5524 * Eth protocol in the mac header (network byte order). e.g.
5525 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
5526 */
5527 __u32 eth_protocol;
5528 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
5529 __u32 bind_inany; /* Is sock bound to an INANY address? */
5530 __u32 hash; /* A hash of the packet 4 tuples */
5531 /* When reuse->migrating_sk is NULL, it is selecting a sk for the
5532 * new incoming connection request (e.g. selecting a listen sk for
5533 * the received SYN in the TCP case). reuse->sk is one of the sk
5534 * in the reuseport group. The bpf prog can use reuse->sk to learn
5535 * the local listening ip/port without looking into the skb.
5536 *
5537 * When reuse->migrating_sk is not NULL, reuse->sk is closed and
5538 * reuse->migrating_sk is the socket that needs to be migrated
5539 * to another listening socket. migrating_sk could be a fullsock
5540 * sk that is fully established or a reqsk that is in-the-middle
5541 * of 3-way handshake.
5542 */
5543 __bpf_md_ptr(struct bpf_sock *, sk);
5544 __bpf_md_ptr(struct bpf_sock *, migrating_sk);
5545};
5546
5547#define BPF_TAG_SIZE 8
5548
5549struct bpf_prog_info {
5550 __u32 type;
5551 __u32 id;
5552 __u8 tag[BPF_TAG_SIZE];
5553 __u32 jited_prog_len;
5554 __u32 xlated_prog_len;
5555 __aligned_u64 jited_prog_insns;
5556 __aligned_u64 xlated_prog_insns;
5557 __u64 load_time; /* ns since boottime */
5558 __u32 created_by_uid;
5559 __u32 nr_map_ids;
5560 __aligned_u64 map_ids;
5561 char name[BPF_OBJ_NAME_LEN];
5562 __u32 ifindex;
5563 __u32 gpl_compatible:1;
5564 __u32 :31; /* alignment pad */
5565 __u64 netns_dev;
5566 __u64 netns_ino;
5567 __u32 nr_jited_ksyms;
5568 __u32 nr_jited_func_lens;
5569 __aligned_u64 jited_ksyms;
5570 __aligned_u64 jited_func_lens;
5571 __u32 btf_id;
5572 __u32 func_info_rec_size;
5573 __aligned_u64 func_info;
5574 __u32 nr_func_info;
5575 __u32 nr_line_info;
5576 __aligned_u64 line_info;
5577 __aligned_u64 jited_line_info;
5578 __u32 nr_jited_line_info;
5579 __u32 line_info_rec_size;
5580 __u32 jited_line_info_rec_size;
5581 __u32 nr_prog_tags;
5582 __aligned_u64 prog_tags;
5583 __u64 run_time_ns;
5584 __u64 run_cnt;
5585 __u64 recursion_misses;
5586} __attribute__((aligned(8)));
5587
5588struct bpf_map_info {
5589 __u32 type;
5590 __u32 id;
5591 __u32 key_size;
5592 __u32 value_size;
5593 __u32 max_entries;
5594 __u32 map_flags;
5595 char name[BPF_OBJ_NAME_LEN];
5596 __u32 ifindex;
5597 __u32 btf_vmlinux_value_type_id;
5598 __u64 netns_dev;
5599 __u64 netns_ino;
5600 __u32 btf_id;
5601 __u32 btf_key_type_id;
5602 __u32 btf_value_type_id;
5603} __attribute__((aligned(8)));
5604
5605struct bpf_btf_info {
5606 __aligned_u64 btf;
5607 __u32 btf_size;
5608 __u32 id;
5609 __aligned_u64 name;
5610 __u32 name_len;
5611 __u32 kernel_btf;
5612} __attribute__((aligned(8)));
5613
5614struct bpf_link_info {
5615 __u32 type;
5616 __u32 id;
5617 __u32 prog_id;
5618 union {
5619 struct {
5620 __aligned_u64 tp_name; /* in/out: tp_name buffer ptr */
5621 __u32 tp_name_len; /* in/out: tp_name buffer len */
5622 } raw_tracepoint;
5623 struct {
5624 __u32 attach_type;
5625 __u32 target_obj_id; /* prog_id for PROG_EXT, otherwise btf object id */
5626 __u32 target_btf_id; /* BTF type id inside the object */
5627 } tracing;
5628 struct {
5629 __u64 cgroup_id;
5630 __u32 attach_type;
5631 } cgroup;
5632 struct {
5633 __aligned_u64 target_name; /* in/out: target_name buffer ptr */
5634 __u32 target_name_len; /* in/out: target_name buffer len */
5635 union {
5636 struct {
5637 __u32 map_id;
5638 } map;
5639 };
5640 } iter;
5641 struct {
5642 __u32 netns_ino;
5643 __u32 attach_type;
5644 } netns;
5645 struct {
5646 __u32 ifindex;
5647 } xdp;
5648 };
5649} __attribute__((aligned(8)));
5650
5651/* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
5652 * by user and intended to be used by socket (e.g. to bind to, depends on
5653 * attach type).
5654 */
5655struct bpf_sock_addr {
5656 __u32 user_family; /* Allows 4-byte read, but no write. */
5657 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write.
5658 * Stored in network byte order.
5659 */
5660 __u32 user_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
5661 * Stored in network byte order.
5662 */
5663 __u32 user_port; /* Allows 1,2,4-byte read and 4-byte write.
5664 * Stored in network byte order
5665 */
5666 __u32 family; /* Allows 4-byte read, but no write */
5667 __u32 type; /* Allows 4-byte read, but no write */
5668 __u32 protocol; /* Allows 4-byte read, but no write */
5669 __u32 msg_src_ip4; /* Allows 1,2,4-byte read and 4-byte write.
5670 * Stored in network byte order.
5671 */
5672 __u32 msg_src_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
5673 * Stored in network byte order.
5674 */
5675 __bpf_md_ptr(struct bpf_sock *, sk);
5676};
5677
5678/* User bpf_sock_ops struct to access socket values and specify request ops
5679 * and their replies.
5680 * Some of this fields are in network (bigendian) byte order and may need
5681 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
5682 * New fields can only be added at the end of this structure
5683 */
5684struct bpf_sock_ops {
5685 __u32 op;
5686 union {
5687 __u32 args[4]; /* Optionally passed to bpf program */
5688 __u32 reply; /* Returned by bpf program */
5689 __u32 replylong[4]; /* Optionally returned by bpf prog */
5690 };
5691 __u32 family;
5692 __u32 remote_ip4; /* Stored in network byte order */
5693 __u32 local_ip4; /* Stored in network byte order */
5694 __u32 remote_ip6[4]; /* Stored in network byte order */
5695 __u32 local_ip6[4]; /* Stored in network byte order */
5696 __u32 remote_port; /* Stored in network byte order */
5697 __u32 local_port; /* stored in host byte order */
5698 __u32 is_fullsock; /* Some TCP fields are only valid if
5699 * there is a full socket. If not, the
5700 * fields read as zero.
5701 */
5702 __u32 snd_cwnd;
5703 __u32 srtt_us; /* Averaged RTT << 3 in usecs */
5704 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
5705 __u32 state;
5706 __u32 rtt_min;
5707 __u32 snd_ssthresh;
5708 __u32 rcv_nxt;
5709 __u32 snd_nxt;
5710 __u32 snd_una;
5711 __u32 mss_cache;
5712 __u32 ecn_flags;
5713 __u32 rate_delivered;
5714 __u32 rate_interval_us;
5715 __u32 packets_out;
5716 __u32 retrans_out;
5717 __u32 total_retrans;
5718 __u32 segs_in;
5719 __u32 data_segs_in;
5720 __u32 segs_out;
5721 __u32 data_segs_out;
5722 __u32 lost_out;
5723 __u32 sacked_out;
5724 __u32 sk_txhash;
5725 __u64 bytes_received;
5726 __u64 bytes_acked;
5727 __bpf_md_ptr(struct bpf_sock *, sk);
5728 /* [skb_data, skb_data_end) covers the whole TCP header.
5729 *
5730 * BPF_SOCK_OPS_PARSE_HDR_OPT_CB: The packet received
5731 * BPF_SOCK_OPS_HDR_OPT_LEN_CB: Not useful because the
5732 * header has not been written.
5733 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB: The header and options have
5734 * been written so far.
5735 * BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB: The SYNACK that concludes
5736 * the 3WHS.
5737 * BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB: The ACK that concludes
5738 * the 3WHS.
5739 *
5740 * bpf_load_hdr_opt() can also be used to read a particular option.
5741 */
5742 __bpf_md_ptr(void *, skb_data);
5743 __bpf_md_ptr(void *, skb_data_end);
5744 __u32 skb_len; /* The total length of a packet.
5745 * It includes the header, options,
5746 * and payload.
5747 */
5748 __u32 skb_tcp_flags; /* tcp_flags of the header. It provides
5749 * an easy way to check for tcp_flags
5750 * without parsing skb_data.
5751 *
5752 * In particular, the skb_tcp_flags
5753 * will still be available in
5754 * BPF_SOCK_OPS_HDR_OPT_LEN even though
5755 * the outgoing header has not
5756 * been written yet.
5757 */
5758};
5759
5760/* Definitions for bpf_sock_ops_cb_flags */
5761enum {
5762 BPF_SOCK_OPS_RTO_CB_FLAG = (1<<0),
5763 BPF_SOCK_OPS_RETRANS_CB_FLAG = (1<<1),
5764 BPF_SOCK_OPS_STATE_CB_FLAG = (1<<2),
5765 BPF_SOCK_OPS_RTT_CB_FLAG = (1<<3),
5766 /* Call bpf for all received TCP headers. The bpf prog will be
5767 * called under sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB
5768 *
5769 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
5770 * for the header option related helpers that will be useful
5771 * to the bpf programs.
5772 *
5773 * It could be used at the client/active side (i.e. connect() side)
5774 * when the server told it that the server was in syncookie
5775 * mode and required the active side to resend the bpf-written
5776 * options. The active side can keep writing the bpf-options until
5777 * it received a valid packet from the server side to confirm
5778 * the earlier packet (and options) has been received. The later
5779 * example patch is using it like this at the active side when the
5780 * server is in syncookie mode.
5781 *
5782 * The bpf prog will usually turn this off in the common cases.
5783 */
5784 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG = (1<<4),
5785 /* Call bpf when kernel has received a header option that
5786 * the kernel cannot handle. The bpf prog will be called under
5787 * sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB.
5788 *
5789 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
5790 * for the header option related helpers that will be useful
5791 * to the bpf programs.
5792 */
5793 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG = (1<<5),
5794 /* Call bpf when the kernel is writing header options for the
5795 * outgoing packet. The bpf prog will first be called
5796 * to reserve space in a skb under
5797 * sock_ops->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB. Then
5798 * the bpf prog will be called to write the header option(s)
5799 * under sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
5800 *
5801 * Please refer to the comment in BPF_SOCK_OPS_HDR_OPT_LEN_CB
5802 * and BPF_SOCK_OPS_WRITE_HDR_OPT_CB for the header option
5803 * related helpers that will be useful to the bpf programs.
5804 *
5805 * The kernel gets its chance to reserve space and write
5806 * options first before the BPF program does.
5807 */
5808 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG = (1<<6),
5809/* Mask of all currently supported cb flags */
5810 BPF_SOCK_OPS_ALL_CB_FLAGS = 0x7F,
5811};
5812
5813/* List of known BPF sock_ops operators.
5814 * New entries can only be added at the end
5815 */
5816enum {
5817 BPF_SOCK_OPS_VOID,
5818 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or
5819 * -1 if default value should be used
5820 */
5821 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized
5822 * window (in packets) or -1 if default
5823 * value should be used
5824 */
5825 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an
5826 * active connection is initialized
5827 */
5828 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an
5829 * active connection is
5830 * established
5831 */
5832 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a
5833 * passive connection is
5834 * established
5835 */
5836 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control
5837 * needs ECN
5838 */
5839 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is
5840 * based on the path and may be
5841 * dependent on the congestion control
5842 * algorithm. In general it indicates
5843 * a congestion threshold. RTTs above
5844 * this indicate congestion
5845 */
5846 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered.
5847 * Arg1: value of icsk_retransmits
5848 * Arg2: value of icsk_rto
5849 * Arg3: whether RTO has expired
5850 */
5851 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted.
5852 * Arg1: sequence number of 1st byte
5853 * Arg2: # segments
5854 * Arg3: return value of
5855 * tcp_transmit_skb (0 => success)
5856 */
5857 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state.
5858 * Arg1: old_state
5859 * Arg2: new_state
5860 */
5861 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after
5862 * socket transition to LISTEN state.
5863 */
5864 BPF_SOCK_OPS_RTT_CB, /* Called on every RTT.
5865 */
5866 BPF_SOCK_OPS_PARSE_HDR_OPT_CB, /* Parse the header option.
5867 * It will be called to handle
5868 * the packets received at
5869 * an already established
5870 * connection.
5871 *
5872 * sock_ops->skb_data:
5873 * Referring to the received skb.
5874 * It covers the TCP header only.
5875 *
5876 * bpf_load_hdr_opt() can also
5877 * be used to search for a
5878 * particular option.
5879 */
5880 BPF_SOCK_OPS_HDR_OPT_LEN_CB, /* Reserve space for writing the
5881 * header option later in
5882 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
5883 * Arg1: bool want_cookie. (in
5884 * writing SYNACK only)
5885 *
5886 * sock_ops->skb_data:
5887 * Not available because no header has
5888 * been written yet.
5889 *
5890 * sock_ops->skb_tcp_flags:
5891 * The tcp_flags of the
5892 * outgoing skb. (e.g. SYN, ACK, FIN).
5893 *
5894 * bpf_reserve_hdr_opt() should
5895 * be used to reserve space.
5896 */
5897 BPF_SOCK_OPS_WRITE_HDR_OPT_CB, /* Write the header options
5898 * Arg1: bool want_cookie. (in
5899 * writing SYNACK only)
5900 *
5901 * sock_ops->skb_data:
5902 * Referring to the outgoing skb.
5903 * It covers the TCP header
5904 * that has already been written
5905 * by the kernel and the
5906 * earlier bpf-progs.
5907 *
5908 * sock_ops->skb_tcp_flags:
5909 * The tcp_flags of the outgoing
5910 * skb. (e.g. SYN, ACK, FIN).
5911 *
5912 * bpf_store_hdr_opt() should
5913 * be used to write the
5914 * option.
5915 *
5916 * bpf_load_hdr_opt() can also
5917 * be used to search for a
5918 * particular option that
5919 * has already been written
5920 * by the kernel or the
5921 * earlier bpf-progs.
5922 */
5923};
5924
5925/* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
5926 * changes between the TCP and BPF versions. Ideally this should never happen.
5927 * If it does, we need to add code to convert them before calling
5928 * the BPF sock_ops function.
5929 */
5930enum {
5931 BPF_TCP_ESTABLISHED = 1,
5932 BPF_TCP_SYN_SENT,
5933 BPF_TCP_SYN_RECV,
5934 BPF_TCP_FIN_WAIT1,
5935 BPF_TCP_FIN_WAIT2,
5936 BPF_TCP_TIME_WAIT,
5937 BPF_TCP_CLOSE,
5938 BPF_TCP_CLOSE_WAIT,
5939 BPF_TCP_LAST_ACK,
5940 BPF_TCP_LISTEN,
5941 BPF_TCP_CLOSING, /* Now a valid state */
5942 BPF_TCP_NEW_SYN_RECV,
5943
5944 BPF_TCP_MAX_STATES /* Leave at the end! */
5945};
5946
5947enum {
5948 TCP_BPF_IW = 1001, /* Set TCP initial congestion window */
5949 TCP_BPF_SNDCWND_CLAMP = 1002, /* Set sndcwnd_clamp */
5950 TCP_BPF_DELACK_MAX = 1003, /* Max delay ack in usecs */
5951 TCP_BPF_RTO_MIN = 1004, /* Min delay ack in usecs */
5952 /* Copy the SYN pkt to optval
5953 *
5954 * BPF_PROG_TYPE_SOCK_OPS only. It is similar to the
5955 * bpf_getsockopt(TCP_SAVED_SYN) but it does not limit
5956 * to only getting from the saved_syn. It can either get the
5957 * syn packet from:
5958 *
5959 * 1. the just-received SYN packet (only available when writing the
5960 * SYNACK). It will be useful when it is not necessary to
5961 * save the SYN packet for latter use. It is also the only way
5962 * to get the SYN during syncookie mode because the syn
5963 * packet cannot be saved during syncookie.
5964 *
5965 * OR
5966 *
5967 * 2. the earlier saved syn which was done by
5968 * bpf_setsockopt(TCP_SAVE_SYN).
5969 *
5970 * The bpf_getsockopt(TCP_BPF_SYN*) option will hide where the
5971 * SYN packet is obtained.
5972 *
5973 * If the bpf-prog does not need the IP[46] header, the
5974 * bpf-prog can avoid parsing the IP header by using
5975 * TCP_BPF_SYN. Otherwise, the bpf-prog can get both
5976 * IP[46] and TCP header by using TCP_BPF_SYN_IP.
5977 *
5978 * >0: Total number of bytes copied
5979 * -ENOSPC: Not enough space in optval. Only optlen number of
5980 * bytes is copied.
5981 * -ENOENT: The SYN skb is not available now and the earlier SYN pkt
5982 * is not saved by setsockopt(TCP_SAVE_SYN).
5983 */
5984 TCP_BPF_SYN = 1005, /* Copy the TCP header */
5985 TCP_BPF_SYN_IP = 1006, /* Copy the IP[46] and TCP header */
5986 TCP_BPF_SYN_MAC = 1007, /* Copy the MAC, IP[46], and TCP header */
5987};
5988
5989enum {
5990 BPF_LOAD_HDR_OPT_TCP_SYN = (1ULL << 0),
5991};
5992
5993/* args[0] value during BPF_SOCK_OPS_HDR_OPT_LEN_CB and
5994 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
5995 */
5996enum {
5997 BPF_WRITE_HDR_TCP_CURRENT_MSS = 1, /* Kernel is finding the
5998 * total option spaces
5999 * required for an established
6000 * sk in order to calculate the
6001 * MSS. No skb is actually
6002 * sent.
6003 */
6004 BPF_WRITE_HDR_TCP_SYNACK_COOKIE = 2, /* Kernel is in syncookie mode
6005 * when sending a SYN.
6006 */
6007};
6008
6009struct bpf_perf_event_value {
6010 __u64 counter;
6011 __u64 enabled;
6012 __u64 running;
6013};
6014
6015enum {
6016 BPF_DEVCG_ACC_MKNOD = (1ULL << 0),
6017 BPF_DEVCG_ACC_READ = (1ULL << 1),
6018 BPF_DEVCG_ACC_WRITE = (1ULL << 2),
6019};
6020
6021enum {
6022 BPF_DEVCG_DEV_BLOCK = (1ULL << 0),
6023 BPF_DEVCG_DEV_CHAR = (1ULL << 1),
6024};
6025
6026struct bpf_cgroup_dev_ctx {
6027 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
6028 __u32 access_type;
6029 __u32 major;
6030 __u32 minor;
6031};
6032
6033struct bpf_raw_tracepoint_args {
6034 __u64 args[0];
6035};
6036
6037/* DIRECT: Skip the FIB rules and go to FIB table associated with device
6038 * OUTPUT: Do lookup from egress perspective; default is ingress
6039 */
6040enum {
6041 BPF_FIB_LOOKUP_DIRECT = (1U << 0),
6042 BPF_FIB_LOOKUP_OUTPUT = (1U << 1),
6043};
6044
6045enum {
6046 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */
6047 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */
6048 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */
6049 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */
6050 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */
6051 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
6052 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */
6053 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */
6054 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */
6055};
6056
6057struct bpf_fib_lookup {
6058 /* input: network family for lookup (AF_INET, AF_INET6)
6059 * output: network family of egress nexthop
6060 */
6061 __u8 family;
6062
6063 /* set if lookup is to consider L4 data - e.g., FIB rules */
6064 __u8 l4_protocol;
6065 __be16 sport;
6066 __be16 dport;
6067
6068 union { /* used for MTU check */
6069 /* input to lookup */
6070 __u16 tot_len; /* L3 length from network hdr (iph->tot_len) */
6071
6072 /* output: MTU value */
6073 __u16 mtu_result;
6074 };
6075 /* input: L3 device index for lookup
6076 * output: device index from FIB lookup
6077 */
6078 __u32 ifindex;
6079
6080 union {
6081 /* inputs to lookup */
6082 __u8 tos; /* AF_INET */
6083 __be32 flowinfo; /* AF_INET6, flow_label + priority */
6084
6085 /* output: metric of fib result (IPv4/IPv6 only) */
6086 __u32 rt_metric;
6087 };
6088
6089 union {
6090 __be32 ipv4_src;
6091 __u32 ipv6_src[4]; /* in6_addr; network order */
6092 };
6093
6094 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
6095 * network header. output: bpf_fib_lookup sets to gateway address
6096 * if FIB lookup returns gateway route
6097 */
6098 union {
6099 __be32 ipv4_dst;
6100 __u32 ipv6_dst[4]; /* in6_addr; network order */
6101 };
6102
6103 /* output */
6104 __be16 h_vlan_proto;
6105 __be16 h_vlan_TCI;
6106 __u8 smac[6]; /* ETH_ALEN */
6107 __u8 dmac[6]; /* ETH_ALEN */
6108};
6109
6110struct bpf_redir_neigh {
6111 /* network family for lookup (AF_INET, AF_INET6) */
6112 __u32 nh_family;
6113 /* network address of nexthop; skips fib lookup to find gateway */
6114 union {
6115 __be32 ipv4_nh;
6116 __u32 ipv6_nh[4]; /* in6_addr; network order */
6117 };
6118};
6119
6120/* bpf_check_mtu flags*/
6121enum bpf_check_mtu_flags {
6122 BPF_MTU_CHK_SEGS = (1U << 0),
6123};
6124
6125enum bpf_check_mtu_ret {
6126 BPF_MTU_CHK_RET_SUCCESS, /* check and lookup successful */
6127 BPF_MTU_CHK_RET_FRAG_NEEDED, /* fragmentation required to fwd */
6128 BPF_MTU_CHK_RET_SEGS_TOOBIG, /* GSO re-segmentation needed to fwd */
6129};
6130
6131enum bpf_task_fd_type {
6132 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */
6133 BPF_FD_TYPE_TRACEPOINT, /* tp name */
6134 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */
6135 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */
6136 BPF_FD_TYPE_UPROBE, /* filename + offset */
6137 BPF_FD_TYPE_URETPROBE, /* filename + offset */
6138};
6139
6140enum {
6141 BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG = (1U << 0),
6142 BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL = (1U << 1),
6143 BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP = (1U << 2),
6144};
6145
6146struct bpf_flow_keys {
6147 __u16 nhoff;
6148 __u16 thoff;
6149 __u16 addr_proto; /* ETH_P_* of valid addrs */
6150 __u8 is_frag;
6151 __u8 is_first_frag;
6152 __u8 is_encap;
6153 __u8 ip_proto;
6154 __be16 n_proto;
6155 __be16 sport;
6156 __be16 dport;
6157 union {
6158 struct {
6159 __be32 ipv4_src;
6160 __be32 ipv4_dst;
6161 };
6162 struct {
6163 __u32 ipv6_src[4]; /* in6_addr; network order */
6164 __u32 ipv6_dst[4]; /* in6_addr; network order */
6165 };
6166 };
6167 __u32 flags;
6168 __be32 flow_label;
6169};
6170
6171struct bpf_func_info {
6172 __u32 insn_off;
6173 __u32 type_id;
6174};
6175
6176#define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10)
6177#define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff)
6178
6179struct bpf_line_info {
6180 __u32 insn_off;
6181 __u32 file_name_off;
6182 __u32 line_off;
6183 __u32 line_col;
6184};
6185
6186struct bpf_spin_lock {
6187 __u32 val;
6188};
6189
6190struct bpf_timer {
6191 __u64 :64;
6192 __u64 :64;
6193} __attribute__((aligned(8)));
6194
6195struct bpf_sysctl {
6196 __u32 write; /* Sysctl is being read (= 0) or written (= 1).
6197 * Allows 1,2,4-byte read, but no write.
6198 */
6199 __u32 file_pos; /* Sysctl file position to read from, write to.
6200 * Allows 1,2,4-byte read an 4-byte write.
6201 */
6202};
6203
6204struct bpf_sockopt {
6205 __bpf_md_ptr(struct bpf_sock *, sk);
6206 __bpf_md_ptr(void *, optval);
6207 __bpf_md_ptr(void *, optval_end);
6208
6209 __s32 level;
6210 __s32 optname;
6211 __s32 optlen;
6212 __s32 retval;
6213};
6214
6215struct bpf_pidns_info {
6216 __u32 pid;
6217 __u32 tgid;
6218};
6219
6220/* User accessible data for SK_LOOKUP programs. Add new fields at the end. */
6221struct bpf_sk_lookup {
6222 union {
6223 __bpf_md_ptr(struct bpf_sock *, sk); /* Selected socket */
6224 __u64 cookie; /* Non-zero if socket was selected in PROG_TEST_RUN */
6225 };
6226
6227 __u32 family; /* Protocol family (AF_INET, AF_INET6) */
6228 __u32 protocol; /* IP protocol (IPPROTO_TCP, IPPROTO_UDP) */
6229 __u32 remote_ip4; /* Network byte order */
6230 __u32 remote_ip6[4]; /* Network byte order */
6231 __be16 remote_port; /* Network byte order */
6232 __u16 :16; /* Zero padding */
6233 __u32 local_ip4; /* Network byte order */
6234 __u32 local_ip6[4]; /* Network byte order */
6235 __u32 local_port; /* Host byte order */
6236};
6237
6238/*
6239 * struct btf_ptr is used for typed pointer representation; the
6240 * type id is used to render the pointer data as the appropriate type
6241 * via the bpf_snprintf_btf() helper described above. A flags field -
6242 * potentially to specify additional details about the BTF pointer
6243 * (rather than its mode of display) - is included for future use.
6244 * Display flags - BTF_F_* - are passed to bpf_snprintf_btf separately.
6245 */
6246struct btf_ptr {
6247 void *ptr;
6248 __u32 type_id;
6249 __u32 flags; /* BTF ptr flags; unused at present. */
6250};
6251
6252/*
6253 * Flags to control bpf_snprintf_btf() behaviour.
6254 * - BTF_F_COMPACT: no formatting around type information
6255 * - BTF_F_NONAME: no struct/union member names/types
6256 * - BTF_F_PTR_RAW: show raw (unobfuscated) pointer values;
6257 * equivalent to %px.
6258 * - BTF_F_ZERO: show zero-valued struct/union members; they
6259 * are not displayed by default
6260 */
6261enum {
6262 BTF_F_COMPACT = (1ULL << 0),
6263 BTF_F_NONAME = (1ULL << 1),
6264 BTF_F_PTR_RAW = (1ULL << 2),
6265 BTF_F_ZERO = (1ULL << 3),
6266};
6267
6268#endif /* __LINUX_BPF_H__ */
6269

source code of include/linux/bpf.h