| 1 | /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| 2 | /* Copyright 2025 Google LLC */ |
| 3 | |
| 4 | /* |
| 5 | * This file is a "template" that generates a CRC function optimized using the |
| 6 | * RISC-V Zbc (scalar carryless multiplication) extension. The includer of this |
| 7 | * file must define the following parameters to specify the type of CRC: |
| 8 | * |
| 9 | * crc_t: the data type of the CRC, e.g. u32 for a 32-bit CRC |
| 10 | * LSB_CRC: 0 for a msb (most-significant-bit) first CRC, i.e. natural |
| 11 | * mapping between bits and polynomial coefficients |
| 12 | * 1 for a lsb (least-significant-bit) first CRC, i.e. reflected |
| 13 | * mapping between bits and polynomial coefficients |
| 14 | */ |
| 15 | |
| 16 | #include <asm/byteorder.h> |
| 17 | #include <linux/minmax.h> |
| 18 | |
| 19 | #define CRC_BITS (8 * sizeof(crc_t)) /* a.k.a. 'n' */ |
| 20 | |
| 21 | static inline unsigned long clmul(unsigned long a, unsigned long b) |
| 22 | { |
| 23 | unsigned long res; |
| 24 | |
| 25 | asm(".option push\n" |
| 26 | ".option arch,+zbc\n" |
| 27 | "clmul %0, %1, %2\n" |
| 28 | ".option pop\n" |
| 29 | : "=r" (res) : "r" (a), "r" (b)); |
| 30 | return res; |
| 31 | } |
| 32 | |
| 33 | static inline unsigned long clmulh(unsigned long a, unsigned long b) |
| 34 | { |
| 35 | unsigned long res; |
| 36 | |
| 37 | asm(".option push\n" |
| 38 | ".option arch,+zbc\n" |
| 39 | "clmulh %0, %1, %2\n" |
| 40 | ".option pop\n" |
| 41 | : "=r" (res) : "r" (a), "r" (b)); |
| 42 | return res; |
| 43 | } |
| 44 | |
| 45 | static inline unsigned long clmulr(unsigned long a, unsigned long b) |
| 46 | { |
| 47 | unsigned long res; |
| 48 | |
| 49 | asm(".option push\n" |
| 50 | ".option arch,+zbc\n" |
| 51 | "clmulr %0, %1, %2\n" |
| 52 | ".option pop\n" |
| 53 | : "=r" (res) : "r" (a), "r" (b)); |
| 54 | return res; |
| 55 | } |
| 56 | |
| 57 | /* |
| 58 | * crc_load_long() loads one "unsigned long" of aligned data bytes, producing a |
| 59 | * polynomial whose bit order matches the CRC's bit order. |
| 60 | */ |
| 61 | #ifdef CONFIG_64BIT |
| 62 | # if LSB_CRC |
| 63 | # define crc_load_long(x) le64_to_cpup(x) |
| 64 | # else |
| 65 | # define crc_load_long(x) be64_to_cpup(x) |
| 66 | # endif |
| 67 | #else |
| 68 | # if LSB_CRC |
| 69 | # define crc_load_long(x) le32_to_cpup(x) |
| 70 | # else |
| 71 | # define crc_load_long(x) be32_to_cpup(x) |
| 72 | # endif |
| 73 | #endif |
| 74 | |
| 75 | /* XOR @crc into the end of @msgpoly that represents the high-order terms. */ |
| 76 | static inline unsigned long |
| 77 | crc_clmul_prep(crc_t crc, unsigned long msgpoly) |
| 78 | { |
| 79 | #if LSB_CRC |
| 80 | return msgpoly ^ crc; |
| 81 | #else |
| 82 | return msgpoly ^ ((unsigned long)crc << (BITS_PER_LONG - CRC_BITS)); |
| 83 | #endif |
| 84 | } |
| 85 | |
| 86 | /* |
| 87 | * Multiply the long-sized @msgpoly by x^n (a.k.a. x^CRC_BITS) and reduce it |
| 88 | * modulo the generator polynomial G. This gives the CRC of @msgpoly. |
| 89 | */ |
| 90 | static inline crc_t |
| 91 | crc_clmul_long(unsigned long msgpoly, const struct crc_clmul_consts *consts) |
| 92 | { |
| 93 | unsigned long tmp; |
| 94 | |
| 95 | /* |
| 96 | * First step of Barrett reduction with integrated multiplication by |
| 97 | * x^n: calculate floor((msgpoly * x^n) / G). This is the value by |
| 98 | * which G needs to be multiplied to cancel out the x^n and higher terms |
| 99 | * of msgpoly * x^n. Do it using the following formula: |
| 100 | * |
| 101 | * msb-first: |
| 102 | * floor((msgpoly * floor(x^(BITS_PER_LONG-1+n) / G)) / x^(BITS_PER_LONG-1)) |
| 103 | * lsb-first: |
| 104 | * floor((msgpoly * floor(x^(BITS_PER_LONG-1+n) / G) * x) / x^BITS_PER_LONG) |
| 105 | * |
| 106 | * barrett_reduction_const_1 contains floor(x^(BITS_PER_LONG-1+n) / G), |
| 107 | * which fits a long exactly. Using any lower power of x there would |
| 108 | * not carry enough precision through the calculation, while using any |
| 109 | * higher power of x would require extra instructions to handle a wider |
| 110 | * multiplication. In the msb-first case, using this power of x results |
| 111 | * in needing a floored division by x^(BITS_PER_LONG-1), which matches |
| 112 | * what clmulr produces. In the lsb-first case, a factor of x gets |
| 113 | * implicitly introduced by each carryless multiplication (shown as |
| 114 | * '* x' above), and the floored division instead needs to be by |
| 115 | * x^BITS_PER_LONG which matches what clmul produces. |
| 116 | */ |
| 117 | #if LSB_CRC |
| 118 | tmp = clmul(msgpoly, consts->barrett_reduction_const_1); |
| 119 | #else |
| 120 | tmp = clmulr(a: msgpoly, b: consts->barrett_reduction_const_1); |
| 121 | #endif |
| 122 | |
| 123 | /* |
| 124 | * Second step of Barrett reduction: |
| 125 | * |
| 126 | * crc := (msgpoly * x^n) + (G * floor((msgpoly * x^n) / G)) |
| 127 | * |
| 128 | * This reduces (msgpoly * x^n) modulo G by adding the appropriate |
| 129 | * multiple of G to it. The result uses only the x^0..x^(n-1) terms. |
| 130 | * HOWEVER, since the unreduced value (msgpoly * x^n) is zero in those |
| 131 | * terms in the first place, it is more efficient to do the equivalent: |
| 132 | * |
| 133 | * crc := ((G - x^n) * floor((msgpoly * x^n) / G)) mod x^n |
| 134 | * |
| 135 | * In the lsb-first case further modify it to the following which avoids |
| 136 | * a shift, as the crc ends up in the physically low n bits from clmulr: |
| 137 | * |
| 138 | * product := ((G - x^n) * x^(BITS_PER_LONG - n)) * floor((msgpoly * x^n) / G) * x |
| 139 | * crc := floor(product / x^(BITS_PER_LONG + 1 - n)) mod x^n |
| 140 | * |
| 141 | * barrett_reduction_const_2 contains the constant multiplier (G - x^n) |
| 142 | * or (G - x^n) * x^(BITS_PER_LONG - n) from the formulas above. The |
| 143 | * cast of the result to crc_t is essential, as it applies the mod x^n! |
| 144 | */ |
| 145 | #if LSB_CRC |
| 146 | return clmulr(tmp, consts->barrett_reduction_const_2); |
| 147 | #else |
| 148 | return clmul(a: tmp, b: consts->barrett_reduction_const_2); |
| 149 | #endif |
| 150 | } |
| 151 | |
| 152 | /* Update @crc with the data from @msgpoly. */ |
| 153 | static inline crc_t |
| 154 | crc_clmul_update_long(crc_t crc, unsigned long msgpoly, |
| 155 | const struct crc_clmul_consts *consts) |
| 156 | { |
| 157 | return crc_clmul_long(msgpoly: crc_clmul_prep(crc, msgpoly), consts); |
| 158 | } |
| 159 | |
| 160 | /* Update @crc with 1 <= @len < sizeof(unsigned long) bytes of data. */ |
| 161 | static inline crc_t |
| 162 | crc_clmul_update_partial(crc_t crc, const u8 *p, size_t len, |
| 163 | const struct crc_clmul_consts *consts) |
| 164 | { |
| 165 | unsigned long msgpoly; |
| 166 | size_t i; |
| 167 | |
| 168 | #if LSB_CRC |
| 169 | msgpoly = (unsigned long)p[0] << (BITS_PER_LONG - 8); |
| 170 | for (i = 1; i < len; i++) |
| 171 | msgpoly = (msgpoly >> 8) ^ ((unsigned long)p[i] << (BITS_PER_LONG - 8)); |
| 172 | #else |
| 173 | msgpoly = p[0]; |
| 174 | for (i = 1; i < len; i++) |
| 175 | msgpoly = (msgpoly << 8) ^ p[i]; |
| 176 | #endif |
| 177 | |
| 178 | if (len >= sizeof(crc_t)) { |
| 179 | #if LSB_CRC |
| 180 | msgpoly ^= (unsigned long)crc << (BITS_PER_LONG - 8*len); |
| 181 | #else |
| 182 | msgpoly ^= (unsigned long)crc << (8*len - CRC_BITS); |
| 183 | #endif |
| 184 | return crc_clmul_long(msgpoly, consts); |
| 185 | } |
| 186 | #if LSB_CRC |
| 187 | msgpoly ^= (unsigned long)crc << (BITS_PER_LONG - 8*len); |
| 188 | return crc_clmul_long(msgpoly, consts) ^ (crc >> (8*len)); |
| 189 | #else |
| 190 | msgpoly ^= crc >> (CRC_BITS - 8*len); |
| 191 | return crc_clmul_long(msgpoly, consts) ^ (crc << (8*len)); |
| 192 | #endif |
| 193 | } |
| 194 | |
| 195 | static inline crc_t |
| 196 | crc_clmul(crc_t crc, const void *p, size_t len, |
| 197 | const struct crc_clmul_consts *consts) |
| 198 | { |
| 199 | size_t align; |
| 200 | |
| 201 | /* This implementation assumes that the CRC fits in an unsigned long. */ |
| 202 | BUILD_BUG_ON(sizeof(crc_t) > sizeof(unsigned long)); |
| 203 | |
| 204 | /* If the buffer is not long-aligned, align it. */ |
| 205 | align = (unsigned long)p % sizeof(unsigned long); |
| 206 | if (align && len) { |
| 207 | align = min(sizeof(unsigned long) - align, len); |
| 208 | crc = crc_clmul_update_partial(crc, p, len: align, consts); |
| 209 | p += align; |
| 210 | len -= align; |
| 211 | } |
| 212 | |
| 213 | if (len >= 4 * sizeof(unsigned long)) { |
| 214 | unsigned long m0, m1; |
| 215 | |
| 216 | m0 = crc_clmul_prep(crc, crc_load_long(p)); |
| 217 | m1 = crc_load_long(p + sizeof(unsigned long)); |
| 218 | p += 2 * sizeof(unsigned long); |
| 219 | len -= 2 * sizeof(unsigned long); |
| 220 | /* |
| 221 | * Main loop. Each iteration starts with a message polynomial |
| 222 | * (x^BITS_PER_LONG)*m0 + m1, then logically extends it by two |
| 223 | * more longs of data to form x^(3*BITS_PER_LONG)*m0 + |
| 224 | * x^(2*BITS_PER_LONG)*m1 + x^BITS_PER_LONG*m2 + m3, then |
| 225 | * "folds" that back into a congruent (modulo G) value that uses |
| 226 | * just m0 and m1 again. This is done by multiplying m0 by the |
| 227 | * precomputed constant (x^(3*BITS_PER_LONG) mod G) and m1 by |
| 228 | * the precomputed constant (x^(2*BITS_PER_LONG) mod G), then |
| 229 | * adding the results to m2 and m3 as appropriate. Each such |
| 230 | * multiplication produces a result twice the length of a long, |
| 231 | * which in RISC-V is two instructions clmul and clmulh. |
| 232 | * |
| 233 | * This could be changed to fold across more than 2 longs at a |
| 234 | * time if there is a CPU that can take advantage of it. |
| 235 | */ |
| 236 | do { |
| 237 | unsigned long p0, p1, p2, p3; |
| 238 | |
| 239 | p0 = clmulh(a: m0, b: consts->fold_across_2_longs_const_hi); |
| 240 | p1 = clmul(a: m0, b: consts->fold_across_2_longs_const_hi); |
| 241 | p2 = clmulh(a: m1, b: consts->fold_across_2_longs_const_lo); |
| 242 | p3 = clmul(a: m1, b: consts->fold_across_2_longs_const_lo); |
| 243 | m0 = (LSB_CRC ? p1 ^ p3 : p0 ^ p2) ^ crc_load_long(p); |
| 244 | m1 = (LSB_CRC ? p0 ^ p2 : p1 ^ p3) ^ |
| 245 | crc_load_long(p + sizeof(unsigned long)); |
| 246 | |
| 247 | p += 2 * sizeof(unsigned long); |
| 248 | len -= 2 * sizeof(unsigned long); |
| 249 | } while (len >= 2 * sizeof(unsigned long)); |
| 250 | |
| 251 | crc = crc_clmul_long(msgpoly: m0, consts); |
| 252 | crc = crc_clmul_update_long(crc, msgpoly: m1, consts); |
| 253 | } |
| 254 | |
| 255 | while (len >= sizeof(unsigned long)) { |
| 256 | crc = crc_clmul_update_long(crc, crc_load_long(p), consts); |
| 257 | p += sizeof(unsigned long); |
| 258 | len -= sizeof(unsigned long); |
| 259 | } |
| 260 | |
| 261 | if (len) |
| 262 | crc = crc_clmul_update_partial(crc, p, len, consts); |
| 263 | |
| 264 | return crc; |
| 265 | } |
| 266 | |