1########################################################################
2# Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
3#
4# Copyright (c) 2013, Intel Corporation
5#
6# Authors:
7# Erdinc Ozturk <erdinc.ozturk@intel.com>
8# Vinodh Gopal <vinodh.gopal@intel.com>
9# James Guilford <james.guilford@intel.com>
10# Tim Chen <tim.c.chen@linux.intel.com>
11#
12# This software is available to you under a choice of one of two
13# licenses. You may choose to be licensed under the terms of the GNU
14# General Public License (GPL) Version 2, available from the file
15# COPYING in the main directory of this source tree, or the
16# OpenIB.org BSD license below:
17#
18# Redistribution and use in source and binary forms, with or without
19# modification, are permitted provided that the following conditions are
20# met:
21#
22# * Redistributions of source code must retain the above copyright
23# notice, this list of conditions and the following disclaimer.
24#
25# * Redistributions in binary form must reproduce the above copyright
26# notice, this list of conditions and the following disclaimer in the
27# documentation and/or other materials provided with the
28# distribution.
29#
30# * Neither the name of the Intel Corporation nor the names of its
31# contributors may be used to endorse or promote products derived from
32# this software without specific prior written permission.
33#
34#
35# THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
36# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
39# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
40# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
41# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
42# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
43# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
44# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
45# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
46#
47# Reference paper titled "Fast CRC Computation for Generic
48# Polynomials Using PCLMULQDQ Instruction"
49# URL: http://www.intel.com/content/dam/www/public/us/en/documents
50# /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
51#
52
53#include <linux/linkage.h>
54
55.text
56
57#define init_crc %edi
58#define buf %rsi
59#define len %rdx
60
61#define FOLD_CONSTS %xmm10
62#define BSWAP_MASK %xmm11
63
64# Fold reg1, reg2 into the next 32 data bytes, storing the result back into
65# reg1, reg2.
66.macro fold_32_bytes offset, reg1, reg2
67 movdqu \offset(buf), %xmm9
68 movdqu \offset+16(buf), %xmm12
69 pshufb BSWAP_MASK, %xmm9
70 pshufb BSWAP_MASK, %xmm12
71 movdqa \reg1, %xmm8
72 movdqa \reg2, %xmm13
73 pclmulqdq $0x00, FOLD_CONSTS, \reg1
74 pclmulqdq $0x11, FOLD_CONSTS, %xmm8
75 pclmulqdq $0x00, FOLD_CONSTS, \reg2
76 pclmulqdq $0x11, FOLD_CONSTS, %xmm13
77 pxor %xmm9 , \reg1
78 xorps %xmm8 , \reg1
79 pxor %xmm12, \reg2
80 xorps %xmm13, \reg2
81.endm
82
83# Fold src_reg into dst_reg.
84.macro fold_16_bytes src_reg, dst_reg
85 movdqa \src_reg, %xmm8
86 pclmulqdq $0x11, FOLD_CONSTS, \src_reg
87 pclmulqdq $0x00, FOLD_CONSTS, %xmm8
88 pxor %xmm8, \dst_reg
89 xorps \src_reg, \dst_reg
90.endm
91
92#
93# u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len);
94#
95# Assumes len >= 16.
96#
97SYM_FUNC_START(crc_t10dif_pcl)
98
99 movdqa .Lbswap_mask(%rip), BSWAP_MASK
100
101 # For sizes less than 256 bytes, we can't fold 128 bytes at a time.
102 cmp $256, len
103 jl .Lless_than_256_bytes
104
105 # Load the first 128 data bytes. Byte swapping is necessary to make the
106 # bit order match the polynomial coefficient order.
107 movdqu 16*0(buf), %xmm0
108 movdqu 16*1(buf), %xmm1
109 movdqu 16*2(buf), %xmm2
110 movdqu 16*3(buf), %xmm3
111 movdqu 16*4(buf), %xmm4
112 movdqu 16*5(buf), %xmm5
113 movdqu 16*6(buf), %xmm6
114 movdqu 16*7(buf), %xmm7
115 add $128, buf
116 pshufb BSWAP_MASK, %xmm0
117 pshufb BSWAP_MASK, %xmm1
118 pshufb BSWAP_MASK, %xmm2
119 pshufb BSWAP_MASK, %xmm3
120 pshufb BSWAP_MASK, %xmm4
121 pshufb BSWAP_MASK, %xmm5
122 pshufb BSWAP_MASK, %xmm6
123 pshufb BSWAP_MASK, %xmm7
124
125 # XOR the first 16 data *bits* with the initial CRC value.
126 pxor %xmm8, %xmm8
127 pinsrw $7, init_crc, %xmm8
128 pxor %xmm8, %xmm0
129
130 movdqa .Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS
131
132 # Subtract 128 for the 128 data bytes just consumed. Subtract another
133 # 128 to simplify the termination condition of the following loop.
134 sub $256, len
135
136 # While >= 128 data bytes remain (not counting xmm0-7), fold the 128
137 # bytes xmm0-7 into them, storing the result back into xmm0-7.
138.Lfold_128_bytes_loop:
139 fold_32_bytes 0, %xmm0, %xmm1
140 fold_32_bytes 32, %xmm2, %xmm3
141 fold_32_bytes 64, %xmm4, %xmm5
142 fold_32_bytes 96, %xmm6, %xmm7
143 add $128, buf
144 sub $128, len
145 jge .Lfold_128_bytes_loop
146
147 # Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7.
148
149 # Fold across 64 bytes.
150 movdqa .Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS
151 fold_16_bytes %xmm0, %xmm4
152 fold_16_bytes %xmm1, %xmm5
153 fold_16_bytes %xmm2, %xmm6
154 fold_16_bytes %xmm3, %xmm7
155 # Fold across 32 bytes.
156 movdqa .Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS
157 fold_16_bytes %xmm4, %xmm6
158 fold_16_bytes %xmm5, %xmm7
159 # Fold across 16 bytes.
160 movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
161 fold_16_bytes %xmm6, %xmm7
162
163 # Add 128 to get the correct number of data bytes remaining in 0...127
164 # (not counting xmm7), following the previous extra subtraction by 128.
165 # Then subtract 16 to simplify the termination condition of the
166 # following loop.
167 add $128-16, len
168
169 # While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes
170 # xmm7 into them, storing the result back into xmm7.
171 jl .Lfold_16_bytes_loop_done
172.Lfold_16_bytes_loop:
173 movdqa %xmm7, %xmm8
174 pclmulqdq $0x11, FOLD_CONSTS, %xmm7
175 pclmulqdq $0x00, FOLD_CONSTS, %xmm8
176 pxor %xmm8, %xmm7
177 movdqu (buf), %xmm0
178 pshufb BSWAP_MASK, %xmm0
179 pxor %xmm0 , %xmm7
180 add $16, buf
181 sub $16, len
182 jge .Lfold_16_bytes_loop
183
184.Lfold_16_bytes_loop_done:
185 # Add 16 to get the correct number of data bytes remaining in 0...15
186 # (not counting xmm7), following the previous extra subtraction by 16.
187 add $16, len
188 je .Lreduce_final_16_bytes
189
190.Lhandle_partial_segment:
191 # Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16
192 # bytes are in xmm7 and the rest are the remaining data in 'buf'. To do
193 # this without needing a fold constant for each possible 'len', redivide
194 # the bytes into a first chunk of 'len' bytes and a second chunk of 16
195 # bytes, then fold the first chunk into the second.
196
197 movdqa %xmm7, %xmm2
198
199 # xmm1 = last 16 original data bytes
200 movdqu -16(buf, len), %xmm1
201 pshufb BSWAP_MASK, %xmm1
202
203 # xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes.
204 lea .Lbyteshift_table+16(%rip), %rax
205 sub len, %rax
206 movdqu (%rax), %xmm0
207 pshufb %xmm0, %xmm2
208
209 # xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes.
210 pxor .Lmask1(%rip), %xmm0
211 pshufb %xmm0, %xmm7
212
213 # xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes),
214 # then '16-len' bytes from xmm2 (high-order bytes).
215 pblendvb %xmm2, %xmm1 #xmm0 is implicit
216
217 # Fold the first chunk into the second chunk, storing the result in xmm7.
218 movdqa %xmm7, %xmm8
219 pclmulqdq $0x11, FOLD_CONSTS, %xmm7
220 pclmulqdq $0x00, FOLD_CONSTS, %xmm8
221 pxor %xmm8, %xmm7
222 pxor %xmm1, %xmm7
223
224.Lreduce_final_16_bytes:
225 # Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC
226
227 # Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
228 movdqa .Lfinal_fold_consts(%rip), FOLD_CONSTS
229
230 # Fold the high 64 bits into the low 64 bits, while also multiplying by
231 # x^64. This produces a 128-bit value congruent to x^64 * M(x) and
232 # whose low 48 bits are 0.
233 movdqa %xmm7, %xmm0
234 pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x))
235 pslldq $8, %xmm0
236 pxor %xmm0, %xmm7 # + low bits * x^64
237
238 # Fold the high 32 bits into the low 96 bits. This produces a 96-bit
239 # value congruent to x^64 * M(x) and whose low 48 bits are 0.
240 movdqa %xmm7, %xmm0
241 pand .Lmask2(%rip), %xmm0 # zero high 32 bits
242 psrldq $12, %xmm7 # extract high 32 bits
243 pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x))
244 pxor %xmm0, %xmm7 # + low bits
245
246 # Load G(x) and floor(x^48 / G(x)).
247 movdqa .Lbarrett_reduction_consts(%rip), FOLD_CONSTS
248
249 # Use Barrett reduction to compute the final CRC value.
250 movdqa %xmm7, %xmm0
251 pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x))
252 psrlq $32, %xmm7 # /= x^32
253 pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # *= G(x)
254 psrlq $48, %xmm0
255 pxor %xmm7, %xmm0 # + low 16 nonzero bits
256 # Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0.
257
258 pextrw $0, %xmm0, %eax
259 RET
260
261.align 16
262.Lless_than_256_bytes:
263 # Checksumming a buffer of length 16...255 bytes
264
265 # Load the first 16 data bytes.
266 movdqu (buf), %xmm7
267 pshufb BSWAP_MASK, %xmm7
268 add $16, buf
269
270 # XOR the first 16 data *bits* with the initial CRC value.
271 pxor %xmm0, %xmm0
272 pinsrw $7, init_crc, %xmm0
273 pxor %xmm0, %xmm7
274
275 movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
276 cmp $16, len
277 je .Lreduce_final_16_bytes # len == 16
278 sub $32, len
279 jge .Lfold_16_bytes_loop # 32 <= len <= 255
280 add $16, len
281 jmp .Lhandle_partial_segment # 17 <= len <= 31
282SYM_FUNC_END(crc_t10dif_pcl)
283
284.section .rodata, "a", @progbits
285.align 16
286
287# Fold constants precomputed from the polynomial 0x18bb7
288# G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
289.Lfold_across_128_bytes_consts:
290 .quad 0x0000000000006123 # x^(8*128) mod G(x)
291 .quad 0x0000000000002295 # x^(8*128+64) mod G(x)
292.Lfold_across_64_bytes_consts:
293 .quad 0x0000000000001069 # x^(4*128) mod G(x)
294 .quad 0x000000000000dd31 # x^(4*128+64) mod G(x)
295.Lfold_across_32_bytes_consts:
296 .quad 0x000000000000857d # x^(2*128) mod G(x)
297 .quad 0x0000000000007acc # x^(2*128+64) mod G(x)
298.Lfold_across_16_bytes_consts:
299 .quad 0x000000000000a010 # x^(1*128) mod G(x)
300 .quad 0x0000000000001faa # x^(1*128+64) mod G(x)
301.Lfinal_fold_consts:
302 .quad 0x1368000000000000 # x^48 * (x^48 mod G(x))
303 .quad 0x2d56000000000000 # x^48 * (x^80 mod G(x))
304.Lbarrett_reduction_consts:
305 .quad 0x0000000000018bb7 # G(x)
306 .quad 0x00000001f65a57f8 # floor(x^48 / G(x))
307
308.section .rodata.cst16.mask1, "aM", @progbits, 16
309.align 16
310.Lmask1:
311 .octa 0x80808080808080808080808080808080
312
313.section .rodata.cst16.mask2, "aM", @progbits, 16
314.align 16
315.Lmask2:
316 .octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF
317
318.section .rodata.cst16.bswap_mask, "aM", @progbits, 16
319.align 16
320.Lbswap_mask:
321 .octa 0x000102030405060708090A0B0C0D0E0F
322
323.section .rodata.cst32.byteshift_table, "aM", @progbits, 32
324.align 16
325# For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len]
326# is the index vector to shift left by 'len' bytes, and is also {0x80, ...,
327# 0x80} XOR the index vector to shift right by '16 - len' bytes.
328.Lbyteshift_table:
329 .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
330 .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
331 .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
332 .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0
333

source code of linux/arch/x86/crypto/crct10dif-pcl-asm_64.S