1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * This is a SIMD SHA-1 implementation. It requires the Intel(R) Supplemental
4 * SSE3 instruction set extensions introduced in Intel Core Microarchitecture
5 * processors. CPUs supporting Intel(R) AVX extensions will get an additional
6 * boost.
7 *
8 * This work was inspired by the vectorized implementation of Dean Gaudet.
9 * Additional information on it can be found at:
10 * http://www.arctic.org/~dean/crypto/sha1.html
11 *
12 * It was improved upon with more efficient vectorization of the message
13 * scheduling. This implementation has also been optimized for all current and
14 * several future generations of Intel CPUs.
15 *
16 * See this article for more information about the implementation details:
17 * http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
18 *
19 * Copyright (C) 2010, Intel Corp.
20 * Authors: Maxim Locktyukhin <maxim.locktyukhin@intel.com>
21 * Ronen Zohar <ronen.zohar@intel.com>
22 *
23 * Converted to AT&T syntax and adapted for inclusion in the Linux kernel:
24 * Author: Mathias Krause <minipli@googlemail.com>
25 */
26
27#include <linux/linkage.h>
28#include <linux/cfi_types.h>
29
30#define CTX %rdi // arg1
31#define BUF %rsi // arg2
32#define CNT %rdx // arg3
33
34#define REG_A %ecx
35#define REG_B %esi
36#define REG_C %edi
37#define REG_D %r12d
38#define REG_E %edx
39
40#define REG_T1 %eax
41#define REG_T2 %ebx
42
43#define K_BASE %r8
44#define HASH_PTR %r9
45#define BUFFER_PTR %r10
46#define BUFFER_END %r11
47
48#define W_TMP1 %xmm0
49#define W_TMP2 %xmm9
50
51#define W0 %xmm1
52#define W4 %xmm2
53#define W8 %xmm3
54#define W12 %xmm4
55#define W16 %xmm5
56#define W20 %xmm6
57#define W24 %xmm7
58#define W28 %xmm8
59
60#define XMM_SHUFB_BSWAP %xmm10
61
62/* we keep window of 64 w[i]+K pre-calculated values in a circular buffer */
63#define WK(t) (((t) & 15) * 4)(%rsp)
64#define W_PRECALC_AHEAD 16
65
66/*
67 * This macro implements the SHA-1 function's body for single 64-byte block
68 * param: function's name
69 */
70.macro SHA1_VECTOR_ASM name
71 SYM_TYPED_FUNC_START(\name)
72
73 push %rbx
74 push %r12
75 push %rbp
76 mov %rsp, %rbp
77
78 sub $64, %rsp # allocate workspace
79 and $~15, %rsp # align stack
80
81 mov CTX, HASH_PTR
82 mov BUF, BUFFER_PTR
83
84 shl $6, CNT # multiply by 64
85 add BUF, CNT
86 mov CNT, BUFFER_END
87
88 lea K_XMM_AR(%rip), K_BASE
89 xmm_mov BSWAP_SHUFB_CTL(%rip), XMM_SHUFB_BSWAP
90
91 SHA1_PIPELINED_MAIN_BODY
92
93 # cleanup workspace
94 mov $8, %ecx
95 mov %rsp, %rdi
96 xor %eax, %eax
97 rep stosq
98
99 mov %rbp, %rsp # deallocate workspace
100 pop %rbp
101 pop %r12
102 pop %rbx
103 RET
104
105 SYM_FUNC_END(\name)
106.endm
107
108/*
109 * This macro implements 80 rounds of SHA-1 for one 64-byte block
110 */
111.macro SHA1_PIPELINED_MAIN_BODY
112 INIT_REGALLOC
113
114 mov (HASH_PTR), A
115 mov 4(HASH_PTR), B
116 mov 8(HASH_PTR), C
117 mov 12(HASH_PTR), D
118 mov 16(HASH_PTR), E
119
120 .set i, 0
121 .rept W_PRECALC_AHEAD
122 W_PRECALC i
123 .set i, (i+1)
124 .endr
125
126.align 4
1271:
128 RR F1,A,B,C,D,E,0
129 RR F1,D,E,A,B,C,2
130 RR F1,B,C,D,E,A,4
131 RR F1,E,A,B,C,D,6
132 RR F1,C,D,E,A,B,8
133
134 RR F1,A,B,C,D,E,10
135 RR F1,D,E,A,B,C,12
136 RR F1,B,C,D,E,A,14
137 RR F1,E,A,B,C,D,16
138 RR F1,C,D,E,A,B,18
139
140 RR F2,A,B,C,D,E,20
141 RR F2,D,E,A,B,C,22
142 RR F2,B,C,D,E,A,24
143 RR F2,E,A,B,C,D,26
144 RR F2,C,D,E,A,B,28
145
146 RR F2,A,B,C,D,E,30
147 RR F2,D,E,A,B,C,32
148 RR F2,B,C,D,E,A,34
149 RR F2,E,A,B,C,D,36
150 RR F2,C,D,E,A,B,38
151
152 RR F3,A,B,C,D,E,40
153 RR F3,D,E,A,B,C,42
154 RR F3,B,C,D,E,A,44
155 RR F3,E,A,B,C,D,46
156 RR F3,C,D,E,A,B,48
157
158 RR F3,A,B,C,D,E,50
159 RR F3,D,E,A,B,C,52
160 RR F3,B,C,D,E,A,54
161 RR F3,E,A,B,C,D,56
162 RR F3,C,D,E,A,B,58
163
164 add $64, BUFFER_PTR # move to the next 64-byte block
165 cmp BUFFER_END, BUFFER_PTR # if the current is the last one use
166 cmovae K_BASE, BUFFER_PTR # dummy source to avoid buffer overrun
167
168 RR F4,A,B,C,D,E,60
169 RR F4,D,E,A,B,C,62
170 RR F4,B,C,D,E,A,64
171 RR F4,E,A,B,C,D,66
172 RR F4,C,D,E,A,B,68
173
174 RR F4,A,B,C,D,E,70
175 RR F4,D,E,A,B,C,72
176 RR F4,B,C,D,E,A,74
177 RR F4,E,A,B,C,D,76
178 RR F4,C,D,E,A,B,78
179
180 UPDATE_HASH (HASH_PTR), A
181 UPDATE_HASH 4(HASH_PTR), B
182 UPDATE_HASH 8(HASH_PTR), C
183 UPDATE_HASH 12(HASH_PTR), D
184 UPDATE_HASH 16(HASH_PTR), E
185
186 RESTORE_RENAMED_REGS
187 cmp K_BASE, BUFFER_PTR # K_BASE means, we reached the end
188 jne 1b
189.endm
190
191.macro INIT_REGALLOC
192 .set A, REG_A
193 .set B, REG_B
194 .set C, REG_C
195 .set D, REG_D
196 .set E, REG_E
197 .set T1, REG_T1
198 .set T2, REG_T2
199.endm
200
201.macro RESTORE_RENAMED_REGS
202 # order is important (REG_C is where it should be)
203 mov B, REG_B
204 mov D, REG_D
205 mov A, REG_A
206 mov E, REG_E
207.endm
208
209.macro SWAP_REG_NAMES a, b
210 .set _T, \a
211 .set \a, \b
212 .set \b, _T
213.endm
214
215.macro F1 b, c, d
216 mov \c, T1
217 SWAP_REG_NAMES \c, T1
218 xor \d, T1
219 and \b, T1
220 xor \d, T1
221.endm
222
223.macro F2 b, c, d
224 mov \d, T1
225 SWAP_REG_NAMES \d, T1
226 xor \c, T1
227 xor \b, T1
228.endm
229
230.macro F3 b, c ,d
231 mov \c, T1
232 SWAP_REG_NAMES \c, T1
233 mov \b, T2
234 or \b, T1
235 and \c, T2
236 and \d, T1
237 or T2, T1
238.endm
239
240.macro F4 b, c, d
241 F2 \b, \c, \d
242.endm
243
244.macro UPDATE_HASH hash, val
245 add \hash, \val
246 mov \val, \hash
247.endm
248
249/*
250 * RR does two rounds of SHA-1 back to back with W[] pre-calc
251 * t1 = F(b, c, d); e += w(i)
252 * e += t1; b <<= 30; d += w(i+1);
253 * t1 = F(a, b, c);
254 * d += t1; a <<= 5;
255 * e += a;
256 * t1 = e; a >>= 7;
257 * t1 <<= 5;
258 * d += t1;
259 */
260.macro RR F, a, b, c, d, e, round
261 add WK(\round), \e
262 \F \b, \c, \d # t1 = F(b, c, d);
263 W_PRECALC (\round + W_PRECALC_AHEAD)
264 rol $30, \b
265 add T1, \e
266 add WK(\round + 1), \d
267
268 \F \a, \b, \c
269 W_PRECALC (\round + W_PRECALC_AHEAD + 1)
270 rol $5, \a
271 add \a, \e
272 add T1, \d
273 ror $7, \a # (a <<r 5) >>r 7) => a <<r 30)
274
275 mov \e, T1
276 SWAP_REG_NAMES \e, T1
277
278 rol $5, T1
279 add T1, \d
280
281 # write: \a, \b
282 # rotate: \a<=\d, \b<=\e, \c<=\a, \d<=\b, \e<=\c
283.endm
284
285.macro W_PRECALC r
286 .set i, \r
287
288 .if (i < 20)
289 .set K_XMM, 0
290 .elseif (i < 40)
291 .set K_XMM, 16
292 .elseif (i < 60)
293 .set K_XMM, 32
294 .elseif (i < 80)
295 .set K_XMM, 48
296 .endif
297
298 .if ((i < 16) || ((i >= 80) && (i < (80 + W_PRECALC_AHEAD))))
299 .set i, ((\r) % 80) # pre-compute for the next iteration
300 .if (i == 0)
301 W_PRECALC_RESET
302 .endif
303 W_PRECALC_00_15
304 .elseif (i<32)
305 W_PRECALC_16_31
306 .elseif (i < 80) // rounds 32-79
307 W_PRECALC_32_79
308 .endif
309.endm
310
311.macro W_PRECALC_RESET
312 .set W, W0
313 .set W_minus_04, W4
314 .set W_minus_08, W8
315 .set W_minus_12, W12
316 .set W_minus_16, W16
317 .set W_minus_20, W20
318 .set W_minus_24, W24
319 .set W_minus_28, W28
320 .set W_minus_32, W
321.endm
322
323.macro W_PRECALC_ROTATE
324 .set W_minus_32, W_minus_28
325 .set W_minus_28, W_minus_24
326 .set W_minus_24, W_minus_20
327 .set W_minus_20, W_minus_16
328 .set W_minus_16, W_minus_12
329 .set W_minus_12, W_minus_08
330 .set W_minus_08, W_minus_04
331 .set W_minus_04, W
332 .set W, W_minus_32
333.endm
334
335.macro W_PRECALC_SSSE3
336
337.macro W_PRECALC_00_15
338 W_PRECALC_00_15_SSSE3
339.endm
340.macro W_PRECALC_16_31
341 W_PRECALC_16_31_SSSE3
342.endm
343.macro W_PRECALC_32_79
344 W_PRECALC_32_79_SSSE3
345.endm
346
347/* message scheduling pre-compute for rounds 0-15 */
348.macro W_PRECALC_00_15_SSSE3
349 .if ((i & 3) == 0)
350 movdqu (i*4)(BUFFER_PTR), W_TMP1
351 .elseif ((i & 3) == 1)
352 pshufb XMM_SHUFB_BSWAP, W_TMP1
353 movdqa W_TMP1, W
354 .elseif ((i & 3) == 2)
355 paddd (K_BASE), W_TMP1
356 .elseif ((i & 3) == 3)
357 movdqa W_TMP1, WK(i&~3)
358 W_PRECALC_ROTATE
359 .endif
360.endm
361
362/* message scheduling pre-compute for rounds 16-31
363 *
364 * - calculating last 32 w[i] values in 8 XMM registers
365 * - pre-calculate K+w[i] values and store to mem, for later load by ALU add
366 * instruction
367 *
368 * some "heavy-lifting" vectorization for rounds 16-31 due to w[i]->w[i-3]
369 * dependency, but improves for 32-79
370 */
371.macro W_PRECALC_16_31_SSSE3
372 # blended scheduling of vector and scalar instruction streams, one 4-wide
373 # vector iteration / 4 scalar rounds
374 .if ((i & 3) == 0)
375 movdqa W_minus_12, W
376 palignr $8, W_minus_16, W # w[i-14]
377 movdqa W_minus_04, W_TMP1
378 psrldq $4, W_TMP1 # w[i-3]
379 pxor W_minus_08, W
380 .elseif ((i & 3) == 1)
381 pxor W_minus_16, W_TMP1
382 pxor W_TMP1, W
383 movdqa W, W_TMP2
384 movdqa W, W_TMP1
385 pslldq $12, W_TMP2
386 .elseif ((i & 3) == 2)
387 psrld $31, W
388 pslld $1, W_TMP1
389 por W, W_TMP1
390 movdqa W_TMP2, W
391 psrld $30, W_TMP2
392 pslld $2, W
393 .elseif ((i & 3) == 3)
394 pxor W, W_TMP1
395 pxor W_TMP2, W_TMP1
396 movdqa W_TMP1, W
397 paddd K_XMM(K_BASE), W_TMP1
398 movdqa W_TMP1, WK(i&~3)
399 W_PRECALC_ROTATE
400 .endif
401.endm
402
403/* message scheduling pre-compute for rounds 32-79
404 *
405 * in SHA-1 specification: w[i] = (w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16]) rol 1
406 * instead we do equal: w[i] = (w[i-6] ^ w[i-16] ^ w[i-28] ^ w[i-32]) rol 2
407 * allows more efficient vectorization since w[i]=>w[i-3] dependency is broken
408 */
409.macro W_PRECALC_32_79_SSSE3
410 .if ((i & 3) == 0)
411 movdqa W_minus_04, W_TMP1
412 pxor W_minus_28, W # W is W_minus_32 before xor
413 palignr $8, W_minus_08, W_TMP1
414 .elseif ((i & 3) == 1)
415 pxor W_minus_16, W
416 pxor W_TMP1, W
417 movdqa W, W_TMP1
418 .elseif ((i & 3) == 2)
419 psrld $30, W
420 pslld $2, W_TMP1
421 por W, W_TMP1
422 .elseif ((i & 3) == 3)
423 movdqa W_TMP1, W
424 paddd K_XMM(K_BASE), W_TMP1
425 movdqa W_TMP1, WK(i&~3)
426 W_PRECALC_ROTATE
427 .endif
428.endm
429
430.endm // W_PRECALC_SSSE3
431
432
433#define K1 0x5a827999
434#define K2 0x6ed9eba1
435#define K3 0x8f1bbcdc
436#define K4 0xca62c1d6
437
438.section .rodata
439.align 16
440
441K_XMM_AR:
442 .long K1, K1, K1, K1
443 .long K2, K2, K2, K2
444 .long K3, K3, K3, K3
445 .long K4, K4, K4, K4
446
447BSWAP_SHUFB_CTL:
448 .long 0x00010203
449 .long 0x04050607
450 .long 0x08090a0b
451 .long 0x0c0d0e0f
452
453
454.section .text
455
456W_PRECALC_SSSE3
457.macro xmm_mov a, b
458 movdqu \a,\b
459.endm
460
461/*
462 * SSSE3 optimized implementation:
463 *
464 * extern "C" void sha1_transform_ssse3(struct sha1_state *state,
465 * const u8 *data, int blocks);
466 *
467 * Note that struct sha1_state is assumed to begin with u32 state[5].
468 */
469SHA1_VECTOR_ASM sha1_transform_ssse3
470
471.macro W_PRECALC_AVX
472
473.purgem W_PRECALC_00_15
474.macro W_PRECALC_00_15
475 W_PRECALC_00_15_AVX
476.endm
477.purgem W_PRECALC_16_31
478.macro W_PRECALC_16_31
479 W_PRECALC_16_31_AVX
480.endm
481.purgem W_PRECALC_32_79
482.macro W_PRECALC_32_79
483 W_PRECALC_32_79_AVX
484.endm
485
486.macro W_PRECALC_00_15_AVX
487 .if ((i & 3) == 0)
488 vmovdqu (i*4)(BUFFER_PTR), W_TMP1
489 .elseif ((i & 3) == 1)
490 vpshufb XMM_SHUFB_BSWAP, W_TMP1, W
491 .elseif ((i & 3) == 2)
492 vpaddd (K_BASE), W, W_TMP1
493 .elseif ((i & 3) == 3)
494 vmovdqa W_TMP1, WK(i&~3)
495 W_PRECALC_ROTATE
496 .endif
497.endm
498
499.macro W_PRECALC_16_31_AVX
500 .if ((i & 3) == 0)
501 vpalignr $8, W_minus_16, W_minus_12, W # w[i-14]
502 vpsrldq $4, W_minus_04, W_TMP1 # w[i-3]
503 vpxor W_minus_08, W, W
504 vpxor W_minus_16, W_TMP1, W_TMP1
505 .elseif ((i & 3) == 1)
506 vpxor W_TMP1, W, W
507 vpslldq $12, W, W_TMP2
508 vpslld $1, W, W_TMP1
509 .elseif ((i & 3) == 2)
510 vpsrld $31, W, W
511 vpor W, W_TMP1, W_TMP1
512 vpslld $2, W_TMP2, W
513 vpsrld $30, W_TMP2, W_TMP2
514 .elseif ((i & 3) == 3)
515 vpxor W, W_TMP1, W_TMP1
516 vpxor W_TMP2, W_TMP1, W
517 vpaddd K_XMM(K_BASE), W, W_TMP1
518 vmovdqu W_TMP1, WK(i&~3)
519 W_PRECALC_ROTATE
520 .endif
521.endm
522
523.macro W_PRECALC_32_79_AVX
524 .if ((i & 3) == 0)
525 vpalignr $8, W_minus_08, W_minus_04, W_TMP1
526 vpxor W_minus_28, W, W # W is W_minus_32 before xor
527 .elseif ((i & 3) == 1)
528 vpxor W_minus_16, W_TMP1, W_TMP1
529 vpxor W_TMP1, W, W
530 .elseif ((i & 3) == 2)
531 vpslld $2, W, W_TMP1
532 vpsrld $30, W, W
533 vpor W, W_TMP1, W
534 .elseif ((i & 3) == 3)
535 vpaddd K_XMM(K_BASE), W, W_TMP1
536 vmovdqu W_TMP1, WK(i&~3)
537 W_PRECALC_ROTATE
538 .endif
539.endm
540
541.endm // W_PRECALC_AVX
542
543W_PRECALC_AVX
544.purgem xmm_mov
545.macro xmm_mov a, b
546 vmovdqu \a,\b
547.endm
548
549
550/* AVX optimized implementation:
551 * extern "C" void sha1_transform_avx(struct sha1_state *state,
552 * const u8 *data, int blocks);
553 */
554SHA1_VECTOR_ASM sha1_transform_avx
555

source code of linux/arch/x86/crypto/sha1_ssse3_asm.S