1########################################################################
2# Implement fast SHA-256 with AVX1 instructions. (x86_64)
3#
4# Copyright (C) 2013 Intel Corporation.
5#
6# Authors:
7# James Guilford <james.guilford@intel.com>
8# Kirk Yap <kirk.s.yap@intel.com>
9# Tim Chen <tim.c.chen@linux.intel.com>
10#
11# This software is available to you under a choice of one of two
12# licenses. You may choose to be licensed under the terms of the GNU
13# General Public License (GPL) Version 2, available from the file
14# COPYING in the main directory of this source tree, or the
15# OpenIB.org BSD license below:
16#
17# Redistribution and use in source and binary forms, with or
18# without modification, are permitted provided that the following
19# conditions are met:
20#
21# - Redistributions of source code must retain the above
22# copyright notice, this list of conditions and the following
23# disclaimer.
24#
25# - Redistributions in binary form must reproduce the above
26# copyright notice, this list of conditions and the following
27# disclaimer in the documentation and/or other materials
28# provided with the distribution.
29#
30# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
31# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
32# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
33# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
34# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
35# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
36# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
37# SOFTWARE.
38########################################################################
39#
40# This code is described in an Intel White-Paper:
41# "Fast SHA-256 Implementations on Intel Architecture Processors"
42#
43# To find it, surf to http://www.intel.com/p/en_US/embedded
44# and search for that title.
45#
46########################################################################
47# This code schedules 1 block at a time, with 4 lanes per block
48########################################################################
49
50#include <linux/linkage.h>
51#include <linux/cfi_types.h>
52
53## assume buffers not aligned
54#define VMOVDQ vmovdqu
55
56################################ Define Macros
57
58# addm [mem], reg
59# Add reg to mem using reg-mem add and store
60.macro addm p1 p2
61 add \p1, \p2
62 mov \p2, \p1
63.endm
64
65
66.macro MY_ROR p1 p2
67 shld $(32-(\p1)), \p2, \p2
68.endm
69
70################################
71
72# COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask
73# Load xmm with mem and byte swap each dword
74.macro COPY_XMM_AND_BSWAP p1 p2 p3
75 VMOVDQ \p2, \p1
76 vpshufb \p3, \p1, \p1
77.endm
78
79################################
80
81X0 = %xmm4
82X1 = %xmm5
83X2 = %xmm6
84X3 = %xmm7
85
86XTMP0 = %xmm0
87XTMP1 = %xmm1
88XTMP2 = %xmm2
89XTMP3 = %xmm3
90XTMP4 = %xmm8
91XFER = %xmm9
92XTMP5 = %xmm11
93
94SHUF_00BA = %xmm10 # shuffle xBxA -> 00BA
95SHUF_DC00 = %xmm12 # shuffle xDxC -> DC00
96BYTE_FLIP_MASK = %xmm13
97
98NUM_BLKS = %rdx # 3rd arg
99INP = %rsi # 2nd arg
100CTX = %rdi # 1st arg
101
102SRND = %rsi # clobbers INP
103c = %ecx
104d = %r8d
105e = %edx
106TBL = %r12
107a = %eax
108b = %ebx
109
110f = %r9d
111g = %r10d
112h = %r11d
113
114y0 = %r13d
115y1 = %r14d
116y2 = %r15d
117
118
119_INP_END_SIZE = 8
120_INP_SIZE = 8
121_XFER_SIZE = 16
122_XMM_SAVE_SIZE = 0
123
124_INP_END = 0
125_INP = _INP_END + _INP_END_SIZE
126_XFER = _INP + _INP_SIZE
127_XMM_SAVE = _XFER + _XFER_SIZE
128STACK_SIZE = _XMM_SAVE + _XMM_SAVE_SIZE
129
130# rotate_Xs
131# Rotate values of symbols X0...X3
132.macro rotate_Xs
133X_ = X0
134X0 = X1
135X1 = X2
136X2 = X3
137X3 = X_
138.endm
139
140# ROTATE_ARGS
141# Rotate values of symbols a...h
142.macro ROTATE_ARGS
143TMP_ = h
144h = g
145g = f
146f = e
147e = d
148d = c
149c = b
150b = a
151a = TMP_
152.endm
153
154.macro FOUR_ROUNDS_AND_SCHED
155 ## compute s0 four at a time and s1 two at a time
156 ## compute W[-16] + W[-7] 4 at a time
157
158 mov e, y0 # y0 = e
159 MY_ROR (25-11), y0 # y0 = e >> (25-11)
160 mov a, y1 # y1 = a
161 vpalignr $4, X2, X3, XTMP0 # XTMP0 = W[-7]
162 MY_ROR (22-13), y1 # y1 = a >> (22-13)
163 xor e, y0 # y0 = e ^ (e >> (25-11))
164 mov f, y2 # y2 = f
165 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
166 xor a, y1 # y1 = a ^ (a >> (22-13)
167 xor g, y2 # y2 = f^g
168 vpaddd X0, XTMP0, XTMP0 # XTMP0 = W[-7] + W[-16]
169 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
170 and e, y2 # y2 = (f^g)&e
171 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
172 ## compute s0
173 vpalignr $4, X0, X1, XTMP1 # XTMP1 = W[-15]
174 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
175 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
176 xor g, y2 # y2 = CH = ((f^g)&e)^g
177 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
178 add y0, y2 # y2 = S1 + CH
179 add _XFER(%rsp), y2 # y2 = k + w + S1 + CH
180 mov a, y0 # y0 = a
181 add y2, h # h = h + S1 + CH + k + w
182 mov a, y2 # y2 = a
183 vpsrld $7, XTMP1, XTMP2
184 or c, y0 # y0 = a|c
185 add h, d # d = d + h + S1 + CH + k + w
186 and c, y2 # y2 = a&c
187 vpslld $(32-7), XTMP1, XTMP3
188 and b, y0 # y0 = (a|c)&b
189 add y1, h # h = h + S1 + CH + k + w + S0
190 vpor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7
191 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
192 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
193 ROTATE_ARGS
194 mov e, y0 # y0 = e
195 mov a, y1 # y1 = a
196 MY_ROR (25-11), y0 # y0 = e >> (25-11)
197 xor e, y0 # y0 = e ^ (e >> (25-11))
198 mov f, y2 # y2 = f
199 MY_ROR (22-13), y1 # y1 = a >> (22-13)
200 vpsrld $18, XTMP1, XTMP2 #
201 xor a, y1 # y1 = a ^ (a >> (22-13)
202 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
203 xor g, y2 # y2 = f^g
204 vpsrld $3, XTMP1, XTMP4 # XTMP4 = W[-15] >> 3
205 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
206 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
207 and e, y2 # y2 = (f^g)&e
208 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
209 vpslld $(32-18), XTMP1, XTMP1
210 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
211 xor g, y2 # y2 = CH = ((f^g)&e)^g
212 vpxor XTMP1, XTMP3, XTMP3 #
213 add y0, y2 # y2 = S1 + CH
214 add (1*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
215 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
216 vpxor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR
217 mov a, y0 # y0 = a
218 add y2, h # h = h + S1 + CH + k + w
219 mov a, y2 # y2 = a
220 vpxor XTMP4, XTMP3, XTMP1 # XTMP1 = s0
221 or c, y0 # y0 = a|c
222 add h, d # d = d + h + S1 + CH + k + w
223 and c, y2 # y2 = a&c
224 ## compute low s1
225 vpshufd $0b11111010, X3, XTMP2 # XTMP2 = W[-2] {BBAA}
226 and b, y0 # y0 = (a|c)&b
227 add y1, h # h = h + S1 + CH + k + w + S0
228 vpaddd XTMP1, XTMP0, XTMP0 # XTMP0 = W[-16] + W[-7] + s0
229 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
230 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
231 ROTATE_ARGS
232 mov e, y0 # y0 = e
233 mov a, y1 # y1 = a
234 MY_ROR (25-11), y0 # y0 = e >> (25-11)
235 xor e, y0 # y0 = e ^ (e >> (25-11))
236 MY_ROR (22-13), y1 # y1 = a >> (22-13)
237 mov f, y2 # y2 = f
238 xor a, y1 # y1 = a ^ (a >> (22-13)
239 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
240 vpsrld $10, XTMP2, XTMP4 # XTMP4 = W[-2] >> 10 {BBAA}
241 xor g, y2 # y2 = f^g
242 vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xBxA}
243 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
244 and e, y2 # y2 = (f^g)&e
245 vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xBxA}
246 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
247 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
248 xor g, y2 # y2 = CH = ((f^g)&e)^g
249 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
250 vpxor XTMP3, XTMP2, XTMP2 #
251 add y0, y2 # y2 = S1 + CH
252 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
253 add (2*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
254 vpxor XTMP2, XTMP4, XTMP4 # XTMP4 = s1 {xBxA}
255 mov a, y0 # y0 = a
256 add y2, h # h = h + S1 + CH + k + w
257 mov a, y2 # y2 = a
258 vpshufb SHUF_00BA, XTMP4, XTMP4 # XTMP4 = s1 {00BA}
259 or c, y0 # y0 = a|c
260 add h, d # d = d + h + S1 + CH + k + w
261 and c, y2 # y2 = a&c
262 vpaddd XTMP4, XTMP0, XTMP0 # XTMP0 = {..., ..., W[1], W[0]}
263 and b, y0 # y0 = (a|c)&b
264 add y1, h # h = h + S1 + CH + k + w + S0
265 ## compute high s1
266 vpshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {DDCC}
267 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
268 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
269 ROTATE_ARGS
270 mov e, y0 # y0 = e
271 MY_ROR (25-11), y0 # y0 = e >> (25-11)
272 mov a, y1 # y1 = a
273 MY_ROR (22-13), y1 # y1 = a >> (22-13)
274 xor e, y0 # y0 = e ^ (e >> (25-11))
275 mov f, y2 # y2 = f
276 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
277 vpsrld $10, XTMP2, XTMP5 # XTMP5 = W[-2] >> 10 {DDCC}
278 xor a, y1 # y1 = a ^ (a >> (22-13)
279 xor g, y2 # y2 = f^g
280 vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xDxC}
281 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
282 and e, y2 # y2 = (f^g)&e
283 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
284 vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xDxC}
285 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
286 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
287 xor g, y2 # y2 = CH = ((f^g)&e)^g
288 vpxor XTMP3, XTMP2, XTMP2
289 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
290 add y0, y2 # y2 = S1 + CH
291 add (3*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
292 vpxor XTMP2, XTMP5, XTMP5 # XTMP5 = s1 {xDxC}
293 mov a, y0 # y0 = a
294 add y2, h # h = h + S1 + CH + k + w
295 mov a, y2 # y2 = a
296 vpshufb SHUF_DC00, XTMP5, XTMP5 # XTMP5 = s1 {DC00}
297 or c, y0 # y0 = a|c
298 add h, d # d = d + h + S1 + CH + k + w
299 and c, y2 # y2 = a&c
300 vpaddd XTMP0, XTMP5, X0 # X0 = {W[3], W[2], W[1], W[0]}
301 and b, y0 # y0 = (a|c)&b
302 add y1, h # h = h + S1 + CH + k + w + S0
303 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
304 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
305 ROTATE_ARGS
306 rotate_Xs
307.endm
308
309## input is [rsp + _XFER + %1 * 4]
310.macro DO_ROUND round
311 mov e, y0 # y0 = e
312 MY_ROR (25-11), y0 # y0 = e >> (25-11)
313 mov a, y1 # y1 = a
314 xor e, y0 # y0 = e ^ (e >> (25-11))
315 MY_ROR (22-13), y1 # y1 = a >> (22-13)
316 mov f, y2 # y2 = f
317 xor a, y1 # y1 = a ^ (a >> (22-13)
318 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
319 xor g, y2 # y2 = f^g
320 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
321 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
322 and e, y2 # y2 = (f^g)&e
323 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
324 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
325 xor g, y2 # y2 = CH = ((f^g)&e)^g
326 add y0, y2 # y2 = S1 + CH
327 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
328 offset = \round * 4 + _XFER #
329 add offset(%rsp), y2 # y2 = k + w + S1 + CH
330 mov a, y0 # y0 = a
331 add y2, h # h = h + S1 + CH + k + w
332 mov a, y2 # y2 = a
333 or c, y0 # y0 = a|c
334 add h, d # d = d + h + S1 + CH + k + w
335 and c, y2 # y2 = a&c
336 and b, y0 # y0 = (a|c)&b
337 add y1, h # h = h + S1 + CH + k + w + S0
338 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
339 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
340 ROTATE_ARGS
341.endm
342
343########################################################################
344## void sha256_transform_avx(state sha256_state *state, const u8 *data, int blocks)
345## arg 1 : pointer to state
346## arg 2 : pointer to input data
347## arg 3 : Num blocks
348########################################################################
349.text
350SYM_TYPED_FUNC_START(sha256_transform_avx)
351 pushq %rbx
352 pushq %r12
353 pushq %r13
354 pushq %r14
355 pushq %r15
356 pushq %rbp
357 movq %rsp, %rbp
358
359 subq $STACK_SIZE, %rsp # allocate stack space
360 and $~15, %rsp # align stack pointer
361
362 shl $6, NUM_BLKS # convert to bytes
363 jz .Ldone_hash
364 add INP, NUM_BLKS # pointer to end of data
365 mov NUM_BLKS, _INP_END(%rsp)
366
367 ## load initial digest
368 mov 4*0(CTX), a
369 mov 4*1(CTX), b
370 mov 4*2(CTX), c
371 mov 4*3(CTX), d
372 mov 4*4(CTX), e
373 mov 4*5(CTX), f
374 mov 4*6(CTX), g
375 mov 4*7(CTX), h
376
377 vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
378 vmovdqa _SHUF_00BA(%rip), SHUF_00BA
379 vmovdqa _SHUF_DC00(%rip), SHUF_DC00
380.Lloop0:
381 lea K256(%rip), TBL
382
383 ## byte swap first 16 dwords
384 COPY_XMM_AND_BSWAP X0, 0*16(INP), BYTE_FLIP_MASK
385 COPY_XMM_AND_BSWAP X1, 1*16(INP), BYTE_FLIP_MASK
386 COPY_XMM_AND_BSWAP X2, 2*16(INP), BYTE_FLIP_MASK
387 COPY_XMM_AND_BSWAP X3, 3*16(INP), BYTE_FLIP_MASK
388
389 mov INP, _INP(%rsp)
390
391 ## schedule 48 input dwords, by doing 3 rounds of 16 each
392 mov $3, SRND
393.align 16
394.Lloop1:
395 vpaddd (TBL), X0, XFER
396 vmovdqa XFER, _XFER(%rsp)
397 FOUR_ROUNDS_AND_SCHED
398
399 vpaddd 1*16(TBL), X0, XFER
400 vmovdqa XFER, _XFER(%rsp)
401 FOUR_ROUNDS_AND_SCHED
402
403 vpaddd 2*16(TBL), X0, XFER
404 vmovdqa XFER, _XFER(%rsp)
405 FOUR_ROUNDS_AND_SCHED
406
407 vpaddd 3*16(TBL), X0, XFER
408 vmovdqa XFER, _XFER(%rsp)
409 add $4*16, TBL
410 FOUR_ROUNDS_AND_SCHED
411
412 sub $1, SRND
413 jne .Lloop1
414
415 mov $2, SRND
416.Lloop2:
417 vpaddd (TBL), X0, XFER
418 vmovdqa XFER, _XFER(%rsp)
419 DO_ROUND 0
420 DO_ROUND 1
421 DO_ROUND 2
422 DO_ROUND 3
423
424 vpaddd 1*16(TBL), X1, XFER
425 vmovdqa XFER, _XFER(%rsp)
426 add $2*16, TBL
427 DO_ROUND 0
428 DO_ROUND 1
429 DO_ROUND 2
430 DO_ROUND 3
431
432 vmovdqa X2, X0
433 vmovdqa X3, X1
434
435 sub $1, SRND
436 jne .Lloop2
437
438 addm (4*0)(CTX),a
439 addm (4*1)(CTX),b
440 addm (4*2)(CTX),c
441 addm (4*3)(CTX),d
442 addm (4*4)(CTX),e
443 addm (4*5)(CTX),f
444 addm (4*6)(CTX),g
445 addm (4*7)(CTX),h
446
447 mov _INP(%rsp), INP
448 add $64, INP
449 cmp _INP_END(%rsp), INP
450 jne .Lloop0
451
452.Ldone_hash:
453
454 mov %rbp, %rsp
455 popq %rbp
456 popq %r15
457 popq %r14
458 popq %r13
459 popq %r12
460 popq %rbx
461 RET
462SYM_FUNC_END(sha256_transform_avx)
463
464.section .rodata.cst256.K256, "aM", @progbits, 256
465.align 64
466K256:
467 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
468 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
469 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
470 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
471 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
472 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
473 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
474 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
475 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
476 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
477 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
478 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
479 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
480 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
481 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
482 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
483
484.section .rodata.cst16.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 16
485.align 16
486PSHUFFLE_BYTE_FLIP_MASK:
487 .octa 0x0c0d0e0f08090a0b0405060700010203
488
489.section .rodata.cst16._SHUF_00BA, "aM", @progbits, 16
490.align 16
491# shuffle xBxA -> 00BA
492_SHUF_00BA:
493 .octa 0xFFFFFFFFFFFFFFFF0b0a090803020100
494
495.section .rodata.cst16._SHUF_DC00, "aM", @progbits, 16
496.align 16
497# shuffle xDxC -> DC00
498_SHUF_DC00:
499 .octa 0x0b0a090803020100FFFFFFFFFFFFFFFF
500

source code of linux/arch/x86/crypto/sha256-avx-asm.S