1########################################################################
2# Implement fast SHA-512 with AVX2 instructions. (x86_64)
3#
4# Copyright (C) 2013 Intel Corporation.
5#
6# Authors:
7# James Guilford <james.guilford@intel.com>
8# Kirk Yap <kirk.s.yap@intel.com>
9# David Cote <david.m.cote@intel.com>
10# Tim Chen <tim.c.chen@linux.intel.com>
11#
12# This software is available to you under a choice of one of two
13# licenses. You may choose to be licensed under the terms of the GNU
14# General Public License (GPL) Version 2, available from the file
15# COPYING in the main directory of this source tree, or the
16# OpenIB.org BSD license below:
17#
18# Redistribution and use in source and binary forms, with or
19# without modification, are permitted provided that the following
20# conditions are met:
21#
22# - Redistributions of source code must retain the above
23# copyright notice, this list of conditions and the following
24# disclaimer.
25#
26# - Redistributions in binary form must reproduce the above
27# copyright notice, this list of conditions and the following
28# disclaimer in the documentation and/or other materials
29# provided with the distribution.
30#
31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38# SOFTWARE.
39#
40########################################################################
41#
42# This code is described in an Intel White-Paper:
43# "Fast SHA-512 Implementations on Intel Architecture Processors"
44#
45# To find it, surf to http://www.intel.com/p/en_US/embedded
46# and search for that title.
47#
48########################################################################
49# This code schedules 1 blocks at a time, with 4 lanes per block
50########################################################################
51
52#include <linux/linkage.h>
53#include <linux/cfi_types.h>
54
55.text
56
57# Virtual Registers
58Y_0 = %ymm4
59Y_1 = %ymm5
60Y_2 = %ymm6
61Y_3 = %ymm7
62
63YTMP0 = %ymm0
64YTMP1 = %ymm1
65YTMP2 = %ymm2
66YTMP3 = %ymm3
67YTMP4 = %ymm8
68XFER = YTMP0
69
70BYTE_FLIP_MASK = %ymm9
71
72# 1st arg is %rdi, which is saved to the stack and accessed later via %r12
73CTX1 = %rdi
74CTX2 = %r12
75# 2nd arg
76INP = %rsi
77# 3rd arg
78NUM_BLKS = %rdx
79
80c = %rcx
81d = %r8
82e = %rdx
83y3 = %rsi
84
85TBL = %rdi # clobbers CTX1
86
87a = %rax
88b = %rbx
89
90f = %r9
91g = %r10
92h = %r11
93old_h = %r11
94
95T1 = %r12 # clobbers CTX2
96y0 = %r13
97y1 = %r14
98y2 = %r15
99
100# Local variables (stack frame)
101XFER_SIZE = 4*8
102SRND_SIZE = 1*8
103INP_SIZE = 1*8
104INPEND_SIZE = 1*8
105CTX_SIZE = 1*8
106
107frame_XFER = 0
108frame_SRND = frame_XFER + XFER_SIZE
109frame_INP = frame_SRND + SRND_SIZE
110frame_INPEND = frame_INP + INP_SIZE
111frame_CTX = frame_INPEND + INPEND_SIZE
112frame_size = frame_CTX + CTX_SIZE
113
114## assume buffers not aligned
115#define VMOVDQ vmovdqu
116
117# addm [mem], reg
118# Add reg to mem using reg-mem add and store
119.macro addm p1 p2
120 add \p1, \p2
121 mov \p2, \p1
122.endm
123
124
125# COPY_YMM_AND_BSWAP ymm, [mem], byte_flip_mask
126# Load ymm with mem and byte swap each dword
127.macro COPY_YMM_AND_BSWAP p1 p2 p3
128 VMOVDQ \p2, \p1
129 vpshufb \p3, \p1, \p1
130.endm
131# rotate_Ys
132# Rotate values of symbols Y0...Y3
133.macro rotate_Ys
134 Y_ = Y_0
135 Y_0 = Y_1
136 Y_1 = Y_2
137 Y_2 = Y_3
138 Y_3 = Y_
139.endm
140
141# RotateState
142.macro RotateState
143 # Rotate symbols a..h right
144 old_h = h
145 TMP_ = h
146 h = g
147 g = f
148 f = e
149 e = d
150 d = c
151 c = b
152 b = a
153 a = TMP_
154.endm
155
156# macro MY_VPALIGNR YDST, YSRC1, YSRC2, RVAL
157# YDST = {YSRC1, YSRC2} >> RVAL*8
158.macro MY_VPALIGNR YDST YSRC1 YSRC2 RVAL
159 vperm2f128 $0x3, \YSRC2, \YSRC1, \YDST # YDST = {YS1_LO, YS2_HI}
160 vpalignr $\RVAL, \YSRC2, \YDST, \YDST # YDST = {YDS1, YS2} >> RVAL*8
161.endm
162
163.macro FOUR_ROUNDS_AND_SCHED
164################################### RND N + 0 #########################################
165
166 # Extract w[t-7]
167 MY_VPALIGNR YTMP0, Y_3, Y_2, 8 # YTMP0 = W[-7]
168 # Calculate w[t-16] + w[t-7]
169 vpaddq Y_0, YTMP0, YTMP0 # YTMP0 = W[-7] + W[-16]
170 # Extract w[t-15]
171 MY_VPALIGNR YTMP1, Y_1, Y_0, 8 # YTMP1 = W[-15]
172
173 # Calculate sigma0
174
175 # Calculate w[t-15] ror 1
176 vpsrlq $1, YTMP1, YTMP2
177 vpsllq $(64-1), YTMP1, YTMP3
178 vpor YTMP2, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1
179 # Calculate w[t-15] shr 7
180 vpsrlq $7, YTMP1, YTMP4 # YTMP4 = W[-15] >> 7
181
182 mov a, y3 # y3 = a # MAJA
183 rorx $41, e, y0 # y0 = e >> 41 # S1A
184 rorx $18, e, y1 # y1 = e >> 18 # S1B
185 add frame_XFER(%rsp),h # h = k + w + h # --
186 or c, y3 # y3 = a|c # MAJA
187 mov f, y2 # y2 = f # CH
188 rorx $34, a, T1 # T1 = a >> 34 # S0B
189
190 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
191 xor g, y2 # y2 = f^g # CH
192 rorx $14, e, y1 # y1 = (e >> 14) # S1
193
194 and e, y2 # y2 = (f^g)&e # CH
195 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
196 rorx $39, a, y1 # y1 = a >> 39 # S0A
197 add h, d # d = k + w + h + d # --
198
199 and b, y3 # y3 = (a|c)&b # MAJA
200 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
201 rorx $28, a, T1 # T1 = (a >> 28) # S0
202
203 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
204 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
205 mov a, T1 # T1 = a # MAJB
206 and c, T1 # T1 = a&c # MAJB
207
208 add y0, y2 # y2 = S1 + CH # --
209 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
210 add y1, h # h = k + w + h + S0 # --
211
212 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
213
214 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
215 add y3, h # h = t1 + S0 + MAJ # --
216
217 RotateState
218
219################################### RND N + 1 #########################################
220
221 # Calculate w[t-15] ror 8
222 vpsrlq $8, YTMP1, YTMP2
223 vpsllq $(64-8), YTMP1, YTMP1
224 vpor YTMP2, YTMP1, YTMP1 # YTMP1 = W[-15] ror 8
225 # XOR the three components
226 vpxor YTMP4, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1 ^ W[-15] >> 7
227 vpxor YTMP1, YTMP3, YTMP1 # YTMP1 = s0
228
229
230 # Add three components, w[t-16], w[t-7] and sigma0
231 vpaddq YTMP1, YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0
232 # Move to appropriate lanes for calculating w[16] and w[17]
233 vperm2f128 $0x0, YTMP0, YTMP0, Y_0 # Y_0 = W[-16] + W[-7] + s0 {BABA}
234 # Move to appropriate lanes for calculating w[18] and w[19]
235 vpand MASK_YMM_LO(%rip), YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0 {DC00}
236
237 # Calculate w[16] and w[17] in both 128 bit lanes
238
239 # Calculate sigma1 for w[16] and w[17] on both 128 bit lanes
240 vperm2f128 $0x11, Y_3, Y_3, YTMP2 # YTMP2 = W[-2] {BABA}
241 vpsrlq $6, YTMP2, YTMP4 # YTMP4 = W[-2] >> 6 {BABA}
242
243
244 mov a, y3 # y3 = a # MAJA
245 rorx $41, e, y0 # y0 = e >> 41 # S1A
246 rorx $18, e, y1 # y1 = e >> 18 # S1B
247 add 1*8+frame_XFER(%rsp), h # h = k + w + h # --
248 or c, y3 # y3 = a|c # MAJA
249
250
251 mov f, y2 # y2 = f # CH
252 rorx $34, a, T1 # T1 = a >> 34 # S0B
253 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
254 xor g, y2 # y2 = f^g # CH
255
256
257 rorx $14, e, y1 # y1 = (e >> 14) # S1
258 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
259 rorx $39, a, y1 # y1 = a >> 39 # S0A
260 and e, y2 # y2 = (f^g)&e # CH
261 add h, d # d = k + w + h + d # --
262
263 and b, y3 # y3 = (a|c)&b # MAJA
264 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
265
266 rorx $28, a, T1 # T1 = (a >> 28) # S0
267 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
268
269 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
270 mov a, T1 # T1 = a # MAJB
271 and c, T1 # T1 = a&c # MAJB
272 add y0, y2 # y2 = S1 + CH # --
273
274 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
275 add y1, h # h = k + w + h + S0 # --
276
277 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
278 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
279 add y3, h # h = t1 + S0 + MAJ # --
280
281 RotateState
282
283
284################################### RND N + 2 #########################################
285
286 vpsrlq $19, YTMP2, YTMP3 # YTMP3 = W[-2] >> 19 {BABA}
287 vpsllq $(64-19), YTMP2, YTMP1 # YTMP1 = W[-2] << 19 {BABA}
288 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {BABA}
289 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {BABA}
290 vpsrlq $61, YTMP2, YTMP3 # YTMP3 = W[-2] >> 61 {BABA}
291 vpsllq $(64-61), YTMP2, YTMP1 # YTMP1 = W[-2] << 61 {BABA}
292 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {BABA}
293 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
294 # (W[-2] ror 61) ^ (W[-2] >> 6) {BABA}
295
296 # Add sigma1 to the other compunents to get w[16] and w[17]
297 vpaddq YTMP4, Y_0, Y_0 # Y_0 = {W[1], W[0], W[1], W[0]}
298
299 # Calculate sigma1 for w[18] and w[19] for upper 128 bit lane
300 vpsrlq $6, Y_0, YTMP4 # YTMP4 = W[-2] >> 6 {DC--}
301
302 mov a, y3 # y3 = a # MAJA
303 rorx $41, e, y0 # y0 = e >> 41 # S1A
304 add 2*8+frame_XFER(%rsp), h # h = k + w + h # --
305
306 rorx $18, e, y1 # y1 = e >> 18 # S1B
307 or c, y3 # y3 = a|c # MAJA
308 mov f, y2 # y2 = f # CH
309 xor g, y2 # y2 = f^g # CH
310
311 rorx $34, a, T1 # T1 = a >> 34 # S0B
312 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
313 and e, y2 # y2 = (f^g)&e # CH
314
315 rorx $14, e, y1 # y1 = (e >> 14) # S1
316 add h, d # d = k + w + h + d # --
317 and b, y3 # y3 = (a|c)&b # MAJA
318
319 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
320 rorx $39, a, y1 # y1 = a >> 39 # S0A
321 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
322
323 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
324 rorx $28, a, T1 # T1 = (a >> 28) # S0
325
326 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
327 mov a, T1 # T1 = a # MAJB
328 and c, T1 # T1 = a&c # MAJB
329 add y0, y2 # y2 = S1 + CH # --
330
331 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
332 add y1, h # h = k + w + h + S0 # --
333 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
334 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
335
336 add y3, h # h = t1 + S0 + MAJ # --
337
338 RotateState
339
340################################### RND N + 3 #########################################
341
342 vpsrlq $19, Y_0, YTMP3 # YTMP3 = W[-2] >> 19 {DC--}
343 vpsllq $(64-19), Y_0, YTMP1 # YTMP1 = W[-2] << 19 {DC--}
344 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {DC--}
345 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {DC--}
346 vpsrlq $61, Y_0, YTMP3 # YTMP3 = W[-2] >> 61 {DC--}
347 vpsllq $(64-61), Y_0, YTMP1 # YTMP1 = W[-2] << 61 {DC--}
348 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {DC--}
349 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
350 # (W[-2] ror 61) ^ (W[-2] >> 6) {DC--}
351
352 # Add the sigma0 + w[t-7] + w[t-16] for w[18] and w[19]
353 # to newly calculated sigma1 to get w[18] and w[19]
354 vpaddq YTMP4, YTMP0, YTMP2 # YTMP2 = {W[3], W[2], --, --}
355
356 # Form w[19, w[18], w17], w[16]
357 vpblendd $0xF0, YTMP2, Y_0, Y_0 # Y_0 = {W[3], W[2], W[1], W[0]}
358
359 mov a, y3 # y3 = a # MAJA
360 rorx $41, e, y0 # y0 = e >> 41 # S1A
361 rorx $18, e, y1 # y1 = e >> 18 # S1B
362 add 3*8+frame_XFER(%rsp), h # h = k + w + h # --
363 or c, y3 # y3 = a|c # MAJA
364
365
366 mov f, y2 # y2 = f # CH
367 rorx $34, a, T1 # T1 = a >> 34 # S0B
368 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
369 xor g, y2 # y2 = f^g # CH
370
371
372 rorx $14, e, y1 # y1 = (e >> 14) # S1
373 and e, y2 # y2 = (f^g)&e # CH
374 add h, d # d = k + w + h + d # --
375 and b, y3 # y3 = (a|c)&b # MAJA
376
377 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
378 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
379
380 rorx $39, a, y1 # y1 = a >> 39 # S0A
381 add y0, y2 # y2 = S1 + CH # --
382
383 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
384 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
385
386 rorx $28, a, T1 # T1 = (a >> 28) # S0
387
388 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
389 mov a, T1 # T1 = a # MAJB
390 and c, T1 # T1 = a&c # MAJB
391 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
392
393 add y1, h # h = k + w + h + S0 # --
394 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
395 add y3, h # h = t1 + S0 + MAJ # --
396
397 RotateState
398
399 rotate_Ys
400.endm
401
402.macro DO_4ROUNDS
403
404################################### RND N + 0 #########################################
405
406 mov f, y2 # y2 = f # CH
407 rorx $41, e, y0 # y0 = e >> 41 # S1A
408 rorx $18, e, y1 # y1 = e >> 18 # S1B
409 xor g, y2 # y2 = f^g # CH
410
411 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
412 rorx $14, e, y1 # y1 = (e >> 14) # S1
413 and e, y2 # y2 = (f^g)&e # CH
414
415 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
416 rorx $34, a, T1 # T1 = a >> 34 # S0B
417 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
418 rorx $39, a, y1 # y1 = a >> 39 # S0A
419 mov a, y3 # y3 = a # MAJA
420
421 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
422 rorx $28, a, T1 # T1 = (a >> 28) # S0
423 add frame_XFER(%rsp), h # h = k + w + h # --
424 or c, y3 # y3 = a|c # MAJA
425
426 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
427 mov a, T1 # T1 = a # MAJB
428 and b, y3 # y3 = (a|c)&b # MAJA
429 and c, T1 # T1 = a&c # MAJB
430 add y0, y2 # y2 = S1 + CH # --
431
432 add h, d # d = k + w + h + d # --
433 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
434 add y1, h # h = k + w + h + S0 # --
435
436 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
437
438 RotateState
439
440################################### RND N + 1 #########################################
441
442 add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
443 mov f, y2 # y2 = f # CH
444 rorx $41, e, y0 # y0 = e >> 41 # S1A
445 rorx $18, e, y1 # y1 = e >> 18 # S1B
446 xor g, y2 # y2 = f^g # CH
447
448 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
449 rorx $14, e, y1 # y1 = (e >> 14) # S1
450 and e, y2 # y2 = (f^g)&e # CH
451 add y3, old_h # h = t1 + S0 + MAJ # --
452
453 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
454 rorx $34, a, T1 # T1 = a >> 34 # S0B
455 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
456 rorx $39, a, y1 # y1 = a >> 39 # S0A
457 mov a, y3 # y3 = a # MAJA
458
459 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
460 rorx $28, a, T1 # T1 = (a >> 28) # S0
461 add 8*1+frame_XFER(%rsp), h # h = k + w + h # --
462 or c, y3 # y3 = a|c # MAJA
463
464 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
465 mov a, T1 # T1 = a # MAJB
466 and b, y3 # y3 = (a|c)&b # MAJA
467 and c, T1 # T1 = a&c # MAJB
468 add y0, y2 # y2 = S1 + CH # --
469
470 add h, d # d = k + w + h + d # --
471 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
472 add y1, h # h = k + w + h + S0 # --
473
474 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
475
476 RotateState
477
478################################### RND N + 2 #########################################
479
480 add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
481 mov f, y2 # y2 = f # CH
482 rorx $41, e, y0 # y0 = e >> 41 # S1A
483 rorx $18, e, y1 # y1 = e >> 18 # S1B
484 xor g, y2 # y2 = f^g # CH
485
486 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
487 rorx $14, e, y1 # y1 = (e >> 14) # S1
488 and e, y2 # y2 = (f^g)&e # CH
489 add y3, old_h # h = t1 + S0 + MAJ # --
490
491 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
492 rorx $34, a, T1 # T1 = a >> 34 # S0B
493 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
494 rorx $39, a, y1 # y1 = a >> 39 # S0A
495 mov a, y3 # y3 = a # MAJA
496
497 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
498 rorx $28, a, T1 # T1 = (a >> 28) # S0
499 add 8*2+frame_XFER(%rsp), h # h = k + w + h # --
500 or c, y3 # y3 = a|c # MAJA
501
502 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
503 mov a, T1 # T1 = a # MAJB
504 and b, y3 # y3 = (a|c)&b # MAJA
505 and c, T1 # T1 = a&c # MAJB
506 add y0, y2 # y2 = S1 + CH # --
507
508 add h, d # d = k + w + h + d # --
509 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
510 add y1, h # h = k + w + h + S0 # --
511
512 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
513
514 RotateState
515
516################################### RND N + 3 #########################################
517
518 add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
519 mov f, y2 # y2 = f # CH
520 rorx $41, e, y0 # y0 = e >> 41 # S1A
521 rorx $18, e, y1 # y1 = e >> 18 # S1B
522 xor g, y2 # y2 = f^g # CH
523
524 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
525 rorx $14, e, y1 # y1 = (e >> 14) # S1
526 and e, y2 # y2 = (f^g)&e # CH
527 add y3, old_h # h = t1 + S0 + MAJ # --
528
529 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
530 rorx $34, a, T1 # T1 = a >> 34 # S0B
531 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
532 rorx $39, a, y1 # y1 = a >> 39 # S0A
533 mov a, y3 # y3 = a # MAJA
534
535 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
536 rorx $28, a, T1 # T1 = (a >> 28) # S0
537 add 8*3+frame_XFER(%rsp), h # h = k + w + h # --
538 or c, y3 # y3 = a|c # MAJA
539
540 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
541 mov a, T1 # T1 = a # MAJB
542 and b, y3 # y3 = (a|c)&b # MAJA
543 and c, T1 # T1 = a&c # MAJB
544 add y0, y2 # y2 = S1 + CH # --
545
546
547 add h, d # d = k + w + h + d # --
548 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
549 add y1, h # h = k + w + h + S0 # --
550
551 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
552
553 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
554
555 add y3, h # h = t1 + S0 + MAJ # --
556
557 RotateState
558
559.endm
560
561########################################################################
562# void sha512_transform_rorx(sha512_state *state, const u8 *data, int blocks)
563# Purpose: Updates the SHA512 digest stored at "state" with the message
564# stored in "data".
565# The size of the message pointed to by "data" must be an integer multiple
566# of SHA512 message blocks.
567# "blocks" is the message length in SHA512 blocks
568########################################################################
569SYM_TYPED_FUNC_START(sha512_transform_rorx)
570 # Save GPRs
571 push %rbx
572 push %r12
573 push %r13
574 push %r14
575 push %r15
576
577 # Allocate Stack Space
578 push %rbp
579 mov %rsp, %rbp
580 sub $frame_size, %rsp
581 and $~(0x20 - 1), %rsp
582
583 shl $7, NUM_BLKS # convert to bytes
584 jz .Ldone_hash
585 add INP, NUM_BLKS # pointer to end of data
586 mov NUM_BLKS, frame_INPEND(%rsp)
587
588 ## load initial digest
589 mov 8*0(CTX1), a
590 mov 8*1(CTX1), b
591 mov 8*2(CTX1), c
592 mov 8*3(CTX1), d
593 mov 8*4(CTX1), e
594 mov 8*5(CTX1), f
595 mov 8*6(CTX1), g
596 mov 8*7(CTX1), h
597
598 # save %rdi (CTX) before it gets clobbered
599 mov %rdi, frame_CTX(%rsp)
600
601 vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
602
603.Lloop0:
604 lea K512(%rip), TBL
605
606 ## byte swap first 16 dwords
607 COPY_YMM_AND_BSWAP Y_0, (INP), BYTE_FLIP_MASK
608 COPY_YMM_AND_BSWAP Y_1, 1*32(INP), BYTE_FLIP_MASK
609 COPY_YMM_AND_BSWAP Y_2, 2*32(INP), BYTE_FLIP_MASK
610 COPY_YMM_AND_BSWAP Y_3, 3*32(INP), BYTE_FLIP_MASK
611
612 mov INP, frame_INP(%rsp)
613
614 ## schedule 64 input dwords, by doing 12 rounds of 4 each
615 movq $4, frame_SRND(%rsp)
616
617.align 16
618.Lloop1:
619 vpaddq (TBL), Y_0, XFER
620 vmovdqa XFER, frame_XFER(%rsp)
621 FOUR_ROUNDS_AND_SCHED
622
623 vpaddq 1*32(TBL), Y_0, XFER
624 vmovdqa XFER, frame_XFER(%rsp)
625 FOUR_ROUNDS_AND_SCHED
626
627 vpaddq 2*32(TBL), Y_0, XFER
628 vmovdqa XFER, frame_XFER(%rsp)
629 FOUR_ROUNDS_AND_SCHED
630
631 vpaddq 3*32(TBL), Y_0, XFER
632 vmovdqa XFER, frame_XFER(%rsp)
633 add $(4*32), TBL
634 FOUR_ROUNDS_AND_SCHED
635
636 subq $1, frame_SRND(%rsp)
637 jne .Lloop1
638
639 movq $2, frame_SRND(%rsp)
640.Lloop2:
641 vpaddq (TBL), Y_0, XFER
642 vmovdqa XFER, frame_XFER(%rsp)
643 DO_4ROUNDS
644 vpaddq 1*32(TBL), Y_1, XFER
645 vmovdqa XFER, frame_XFER(%rsp)
646 add $(2*32), TBL
647 DO_4ROUNDS
648
649 vmovdqa Y_2, Y_0
650 vmovdqa Y_3, Y_1
651
652 subq $1, frame_SRND(%rsp)
653 jne .Lloop2
654
655 mov frame_CTX(%rsp), CTX2
656 addm 8*0(CTX2), a
657 addm 8*1(CTX2), b
658 addm 8*2(CTX2), c
659 addm 8*3(CTX2), d
660 addm 8*4(CTX2), e
661 addm 8*5(CTX2), f
662 addm 8*6(CTX2), g
663 addm 8*7(CTX2), h
664
665 mov frame_INP(%rsp), INP
666 add $128, INP
667 cmp frame_INPEND(%rsp), INP
668 jne .Lloop0
669
670.Ldone_hash:
671
672 # Restore Stack Pointer
673 mov %rbp, %rsp
674 pop %rbp
675
676 # Restore GPRs
677 pop %r15
678 pop %r14
679 pop %r13
680 pop %r12
681 pop %rbx
682
683 RET
684SYM_FUNC_END(sha512_transform_rorx)
685
686########################################################################
687### Binary Data
688
689
690# Mergeable 640-byte rodata section. This allows linker to merge the table
691# with other, exactly the same 640-byte fragment of another rodata section
692# (if such section exists).
693.section .rodata.cst640.K512, "aM", @progbits, 640
694.align 64
695# K[t] used in SHA512 hashing
696K512:
697 .quad 0x428a2f98d728ae22,0x7137449123ef65cd
698 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
699 .quad 0x3956c25bf348b538,0x59f111f1b605d019
700 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
701 .quad 0xd807aa98a3030242,0x12835b0145706fbe
702 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
703 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
704 .quad 0x9bdc06a725c71235,0xc19bf174cf692694
705 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
706 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
707 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
708 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
709 .quad 0x983e5152ee66dfab,0xa831c66d2db43210
710 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
711 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
712 .quad 0x06ca6351e003826f,0x142929670a0e6e70
713 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
714 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
715 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
716 .quad 0x81c2c92e47edaee6,0x92722c851482353b
717 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
718 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
719 .quad 0xd192e819d6ef5218,0xd69906245565a910
720 .quad 0xf40e35855771202a,0x106aa07032bbd1b8
721 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
722 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
723 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
724 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
725 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
726 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
727 .quad 0x90befffa23631e28,0xa4506cebde82bde9
728 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
729 .quad 0xca273eceea26619c,0xd186b8c721c0c207
730 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
731 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
732 .quad 0x113f9804bef90dae,0x1b710b35131c471b
733 .quad 0x28db77f523047d84,0x32caab7b40c72493
734 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
735 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
736 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
737
738.section .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32
739.align 32
740# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
741PSHUFFLE_BYTE_FLIP_MASK:
742 .octa 0x08090a0b0c0d0e0f0001020304050607
743 .octa 0x18191a1b1c1d1e1f1011121314151617
744
745.section .rodata.cst32.MASK_YMM_LO, "aM", @progbits, 32
746.align 32
747MASK_YMM_LO:
748 .octa 0x00000000000000000000000000000000
749 .octa 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
750

source code of linux/arch/x86/crypto/sha512-avx2-asm.S