1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * SM4 Cipher Algorithm, AES-NI/AVX2 optimized.
4 * as specified in
5 * https://tools.ietf.org/id/draft-ribose-cfrg-sm4-10.html
6 *
7 * Copyright (C) 2018 Markku-Juhani O. Saarinen <mjos@iki.fi>
8 * Copyright (C) 2020 Jussi Kivilinna <jussi.kivilinna@iki.fi>
9 * Copyright (c) 2021 Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
10 */
11
12/* Based on SM4 AES-NI work by libgcrypt and Markku-Juhani O. Saarinen at:
13 * https://github.com/mjosaarinen/sm4ni
14 */
15
16#include <linux/linkage.h>
17#include <linux/cfi_types.h>
18#include <asm/frame.h>
19
20#define rRIP (%rip)
21
22/* vector registers */
23#define RX0 %ymm0
24#define RX1 %ymm1
25#define MASK_4BIT %ymm2
26#define RTMP0 %ymm3
27#define RTMP1 %ymm4
28#define RTMP2 %ymm5
29#define RTMP3 %ymm6
30#define RTMP4 %ymm7
31
32#define RA0 %ymm8
33#define RA1 %ymm9
34#define RA2 %ymm10
35#define RA3 %ymm11
36
37#define RB0 %ymm12
38#define RB1 %ymm13
39#define RB2 %ymm14
40#define RB3 %ymm15
41
42#define RNOT %ymm0
43#define RBSWAP %ymm1
44
45#define RX0x %xmm0
46#define RX1x %xmm1
47#define MASK_4BITx %xmm2
48
49#define RNOTx %xmm0
50#define RBSWAPx %xmm1
51
52#define RTMP0x %xmm3
53#define RTMP1x %xmm4
54#define RTMP2x %xmm5
55#define RTMP3x %xmm6
56#define RTMP4x %xmm7
57
58
59/* helper macros */
60
61/* Transpose four 32-bit words between 128-bit vector lanes. */
62#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
63 vpunpckhdq x1, x0, t2; \
64 vpunpckldq x1, x0, x0; \
65 \
66 vpunpckldq x3, x2, t1; \
67 vpunpckhdq x3, x2, x2; \
68 \
69 vpunpckhqdq t1, x0, x1; \
70 vpunpcklqdq t1, x0, x0; \
71 \
72 vpunpckhqdq x2, t2, x3; \
73 vpunpcklqdq x2, t2, x2;
74
75/* post-SubByte transform. */
76#define transform_pre(x, lo_t, hi_t, mask4bit, tmp0) \
77 vpand x, mask4bit, tmp0; \
78 vpandn x, mask4bit, x; \
79 vpsrld $4, x, x; \
80 \
81 vpshufb tmp0, lo_t, tmp0; \
82 vpshufb x, hi_t, x; \
83 vpxor tmp0, x, x;
84
85/* post-SubByte transform. Note: x has been XOR'ed with mask4bit by
86 * 'vaeslastenc' instruction. */
87#define transform_post(x, lo_t, hi_t, mask4bit, tmp0) \
88 vpandn mask4bit, x, tmp0; \
89 vpsrld $4, x, x; \
90 vpand x, mask4bit, x; \
91 \
92 vpshufb tmp0, lo_t, tmp0; \
93 vpshufb x, hi_t, x; \
94 vpxor tmp0, x, x;
95
96
97.section .rodata.cst16, "aM", @progbits, 16
98.align 16
99
100/*
101 * Following four affine transform look-up tables are from work by
102 * Markku-Juhani O. Saarinen, at https://github.com/mjosaarinen/sm4ni
103 *
104 * These allow exposing SM4 S-Box from AES SubByte.
105 */
106
107/* pre-SubByte affine transform, from SM4 field to AES field. */
108.Lpre_tf_lo_s:
109 .quad 0x9197E2E474720701, 0xC7C1B4B222245157
110.Lpre_tf_hi_s:
111 .quad 0xE240AB09EB49A200, 0xF052B91BF95BB012
112
113/* post-SubByte affine transform, from AES field to SM4 field. */
114.Lpost_tf_lo_s:
115 .quad 0x5B67F2CEA19D0834, 0xEDD14478172BBE82
116.Lpost_tf_hi_s:
117 .quad 0xAE7201DD73AFDC00, 0x11CDBE62CC1063BF
118
119/* For isolating SubBytes from AESENCLAST, inverse shift row */
120.Linv_shift_row:
121 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
122 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
123
124/* Inverse shift row + Rotate left by 8 bits on 32-bit words with vpshufb */
125.Linv_shift_row_rol_8:
126 .byte 0x07, 0x00, 0x0d, 0x0a, 0x0b, 0x04, 0x01, 0x0e
127 .byte 0x0f, 0x08, 0x05, 0x02, 0x03, 0x0c, 0x09, 0x06
128
129/* Inverse shift row + Rotate left by 16 bits on 32-bit words with vpshufb */
130.Linv_shift_row_rol_16:
131 .byte 0x0a, 0x07, 0x00, 0x0d, 0x0e, 0x0b, 0x04, 0x01
132 .byte 0x02, 0x0f, 0x08, 0x05, 0x06, 0x03, 0x0c, 0x09
133
134/* Inverse shift row + Rotate left by 24 bits on 32-bit words with vpshufb */
135.Linv_shift_row_rol_24:
136 .byte 0x0d, 0x0a, 0x07, 0x00, 0x01, 0x0e, 0x0b, 0x04
137 .byte 0x05, 0x02, 0x0f, 0x08, 0x09, 0x06, 0x03, 0x0c
138
139/* For CTR-mode IV byteswap */
140.Lbswap128_mask:
141 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
142
143/* For input word byte-swap */
144.Lbswap32_mask:
145 .byte 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12
146
147.align 4
148/* 4-bit mask */
149.L0f0f0f0f:
150 .long 0x0f0f0f0f
151
152/* 12 bytes, only for padding */
153.Lpadding_deadbeef:
154 .long 0xdeadbeef, 0xdeadbeef, 0xdeadbeef
155
156.text
157SYM_FUNC_START_LOCAL(__sm4_crypt_blk16)
158 /* input:
159 * %rdi: round key array, CTX
160 * RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: sixteen parallel
161 * plaintext blocks
162 * output:
163 * RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: sixteen parallel
164 * ciphertext blocks
165 */
166 FRAME_BEGIN
167
168 vbroadcasti128 .Lbswap32_mask rRIP, RTMP2;
169 vpshufb RTMP2, RA0, RA0;
170 vpshufb RTMP2, RA1, RA1;
171 vpshufb RTMP2, RA2, RA2;
172 vpshufb RTMP2, RA3, RA3;
173 vpshufb RTMP2, RB0, RB0;
174 vpshufb RTMP2, RB1, RB1;
175 vpshufb RTMP2, RB2, RB2;
176 vpshufb RTMP2, RB3, RB3;
177
178 vpbroadcastd .L0f0f0f0f rRIP, MASK_4BIT;
179 transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
180 transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1);
181
182#define ROUND(round, s0, s1, s2, s3, r0, r1, r2, r3) \
183 vpbroadcastd (4*(round))(%rdi), RX0; \
184 vbroadcasti128 .Lpre_tf_lo_s rRIP, RTMP4; \
185 vbroadcasti128 .Lpre_tf_hi_s rRIP, RTMP1; \
186 vmovdqa RX0, RX1; \
187 vpxor s1, RX0, RX0; \
188 vpxor s2, RX0, RX0; \
189 vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \
190 vbroadcasti128 .Lpost_tf_lo_s rRIP, RTMP2; \
191 vbroadcasti128 .Lpost_tf_hi_s rRIP, RTMP3; \
192 vpxor r1, RX1, RX1; \
193 vpxor r2, RX1, RX1; \
194 vpxor r3, RX1, RX1; /* r1 ^ r2 ^ r3 ^ rk */ \
195 \
196 /* sbox, non-linear part */ \
197 transform_pre(RX0, RTMP4, RTMP1, MASK_4BIT, RTMP0); \
198 transform_pre(RX1, RTMP4, RTMP1, MASK_4BIT, RTMP0); \
199 vextracti128 $1, RX0, RTMP4x; \
200 vextracti128 $1, RX1, RTMP0x; \
201 vaesenclast MASK_4BITx, RX0x, RX0x; \
202 vaesenclast MASK_4BITx, RTMP4x, RTMP4x; \
203 vaesenclast MASK_4BITx, RX1x, RX1x; \
204 vaesenclast MASK_4BITx, RTMP0x, RTMP0x; \
205 vinserti128 $1, RTMP4x, RX0, RX0; \
206 vbroadcasti128 .Linv_shift_row rRIP, RTMP4; \
207 vinserti128 $1, RTMP0x, RX1, RX1; \
208 transform_post(RX0, RTMP2, RTMP3, MASK_4BIT, RTMP0); \
209 transform_post(RX1, RTMP2, RTMP3, MASK_4BIT, RTMP0); \
210 \
211 /* linear part */ \
212 vpshufb RTMP4, RX0, RTMP0; \
213 vpxor RTMP0, s0, s0; /* s0 ^ x */ \
214 vpshufb RTMP4, RX1, RTMP2; \
215 vbroadcasti128 .Linv_shift_row_rol_8 rRIP, RTMP4; \
216 vpxor RTMP2, r0, r0; /* r0 ^ x */ \
217 vpshufb RTMP4, RX0, RTMP1; \
218 vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) */ \
219 vpshufb RTMP4, RX1, RTMP3; \
220 vbroadcasti128 .Linv_shift_row_rol_16 rRIP, RTMP4; \
221 vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) */ \
222 vpshufb RTMP4, RX0, RTMP1; \
223 vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) ^ rol(x,16) */ \
224 vpshufb RTMP4, RX1, RTMP3; \
225 vbroadcasti128 .Linv_shift_row_rol_24 rRIP, RTMP4; \
226 vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) ^ rol(x,16) */ \
227 vpshufb RTMP4, RX0, RTMP1; \
228 vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,24) */ \
229 vpslld $2, RTMP0, RTMP1; \
230 vpsrld $30, RTMP0, RTMP0; \
231 vpxor RTMP0, s0, s0; \
232 /* s0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \
233 vpxor RTMP1, s0, s0; \
234 vpshufb RTMP4, RX1, RTMP3; \
235 vpxor RTMP3, r0, r0; /* r0 ^ x ^ rol(x,24) */ \
236 vpslld $2, RTMP2, RTMP3; \
237 vpsrld $30, RTMP2, RTMP2; \
238 vpxor RTMP2, r0, r0; \
239 /* r0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \
240 vpxor RTMP3, r0, r0;
241
242 leaq (32*4)(%rdi), %rax;
243.align 16
244.Lroundloop_blk8:
245 ROUND(0, RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3);
246 ROUND(1, RA1, RA2, RA3, RA0, RB1, RB2, RB3, RB0);
247 ROUND(2, RA2, RA3, RA0, RA1, RB2, RB3, RB0, RB1);
248 ROUND(3, RA3, RA0, RA1, RA2, RB3, RB0, RB1, RB2);
249 leaq (4*4)(%rdi), %rdi;
250 cmpq %rax, %rdi;
251 jne .Lroundloop_blk8;
252
253#undef ROUND
254
255 vbroadcasti128 .Lbswap128_mask rRIP, RTMP2;
256
257 transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
258 transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1);
259 vpshufb RTMP2, RA0, RA0;
260 vpshufb RTMP2, RA1, RA1;
261 vpshufb RTMP2, RA2, RA2;
262 vpshufb RTMP2, RA3, RA3;
263 vpshufb RTMP2, RB0, RB0;
264 vpshufb RTMP2, RB1, RB1;
265 vpshufb RTMP2, RB2, RB2;
266 vpshufb RTMP2, RB3, RB3;
267
268 FRAME_END
269 RET;
270SYM_FUNC_END(__sm4_crypt_blk16)
271
272#define inc_le128(x, minus_one, tmp) \
273 vpcmpeqq minus_one, x, tmp; \
274 vpsubq minus_one, x, x; \
275 vpslldq $8, tmp, tmp; \
276 vpsubq tmp, x, x;
277
278/*
279 * void sm4_aesni_avx2_ctr_enc_blk16(const u32 *rk, u8 *dst,
280 * const u8 *src, u8 *iv)
281 */
282SYM_TYPED_FUNC_START(sm4_aesni_avx2_ctr_enc_blk16)
283 /* input:
284 * %rdi: round key array, CTX
285 * %rsi: dst (16 blocks)
286 * %rdx: src (16 blocks)
287 * %rcx: iv (big endian, 128bit)
288 */
289 FRAME_BEGIN
290
291 movq 8(%rcx), %rax;
292 bswapq %rax;
293
294 vzeroupper;
295
296 vbroadcasti128 .Lbswap128_mask rRIP, RTMP3;
297 vpcmpeqd RNOT, RNOT, RNOT;
298 vpsrldq $8, RNOT, RNOT; /* ab: -1:0 ; cd: -1:0 */
299 vpaddq RNOT, RNOT, RTMP2; /* ab: -2:0 ; cd: -2:0 */
300
301 /* load IV and byteswap */
302 vmovdqu (%rcx), RTMP4x;
303 vpshufb RTMP3x, RTMP4x, RTMP4x;
304 vmovdqa RTMP4x, RTMP0x;
305 inc_le128(RTMP4x, RNOTx, RTMP1x);
306 vinserti128 $1, RTMP4x, RTMP0, RTMP0;
307 vpshufb RTMP3, RTMP0, RA0; /* +1 ; +0 */
308
309 /* check need for handling 64-bit overflow and carry */
310 cmpq $(0xffffffffffffffff - 16), %rax;
311 ja .Lhandle_ctr_carry;
312
313 /* construct IVs */
314 vpsubq RTMP2, RTMP0, RTMP0; /* +3 ; +2 */
315 vpshufb RTMP3, RTMP0, RA1;
316 vpsubq RTMP2, RTMP0, RTMP0; /* +5 ; +4 */
317 vpshufb RTMP3, RTMP0, RA2;
318 vpsubq RTMP2, RTMP0, RTMP0; /* +7 ; +6 */
319 vpshufb RTMP3, RTMP0, RA3;
320 vpsubq RTMP2, RTMP0, RTMP0; /* +9 ; +8 */
321 vpshufb RTMP3, RTMP0, RB0;
322 vpsubq RTMP2, RTMP0, RTMP0; /* +11 ; +10 */
323 vpshufb RTMP3, RTMP0, RB1;
324 vpsubq RTMP2, RTMP0, RTMP0; /* +13 ; +12 */
325 vpshufb RTMP3, RTMP0, RB2;
326 vpsubq RTMP2, RTMP0, RTMP0; /* +15 ; +14 */
327 vpshufb RTMP3, RTMP0, RB3;
328 vpsubq RTMP2, RTMP0, RTMP0; /* +16 */
329 vpshufb RTMP3x, RTMP0x, RTMP0x;
330
331 jmp .Lctr_carry_done;
332
333.Lhandle_ctr_carry:
334 /* construct IVs */
335 inc_le128(RTMP0, RNOT, RTMP1);
336 inc_le128(RTMP0, RNOT, RTMP1);
337 vpshufb RTMP3, RTMP0, RA1; /* +3 ; +2 */
338 inc_le128(RTMP0, RNOT, RTMP1);
339 inc_le128(RTMP0, RNOT, RTMP1);
340 vpshufb RTMP3, RTMP0, RA2; /* +5 ; +4 */
341 inc_le128(RTMP0, RNOT, RTMP1);
342 inc_le128(RTMP0, RNOT, RTMP1);
343 vpshufb RTMP3, RTMP0, RA3; /* +7 ; +6 */
344 inc_le128(RTMP0, RNOT, RTMP1);
345 inc_le128(RTMP0, RNOT, RTMP1);
346 vpshufb RTMP3, RTMP0, RB0; /* +9 ; +8 */
347 inc_le128(RTMP0, RNOT, RTMP1);
348 inc_le128(RTMP0, RNOT, RTMP1);
349 vpshufb RTMP3, RTMP0, RB1; /* +11 ; +10 */
350 inc_le128(RTMP0, RNOT, RTMP1);
351 inc_le128(RTMP0, RNOT, RTMP1);
352 vpshufb RTMP3, RTMP0, RB2; /* +13 ; +12 */
353 inc_le128(RTMP0, RNOT, RTMP1);
354 inc_le128(RTMP0, RNOT, RTMP1);
355 vpshufb RTMP3, RTMP0, RB3; /* +15 ; +14 */
356 inc_le128(RTMP0, RNOT, RTMP1);
357 vextracti128 $1, RTMP0, RTMP0x;
358 vpshufb RTMP3x, RTMP0x, RTMP0x; /* +16 */
359
360.align 4
361.Lctr_carry_done:
362 /* store new IV */
363 vmovdqu RTMP0x, (%rcx);
364
365 call __sm4_crypt_blk16;
366
367 vpxor (0 * 32)(%rdx), RA0, RA0;
368 vpxor (1 * 32)(%rdx), RA1, RA1;
369 vpxor (2 * 32)(%rdx), RA2, RA2;
370 vpxor (3 * 32)(%rdx), RA3, RA3;
371 vpxor (4 * 32)(%rdx), RB0, RB0;
372 vpxor (5 * 32)(%rdx), RB1, RB1;
373 vpxor (6 * 32)(%rdx), RB2, RB2;
374 vpxor (7 * 32)(%rdx), RB3, RB3;
375
376 vmovdqu RA0, (0 * 32)(%rsi);
377 vmovdqu RA1, (1 * 32)(%rsi);
378 vmovdqu RA2, (2 * 32)(%rsi);
379 vmovdqu RA3, (3 * 32)(%rsi);
380 vmovdqu RB0, (4 * 32)(%rsi);
381 vmovdqu RB1, (5 * 32)(%rsi);
382 vmovdqu RB2, (6 * 32)(%rsi);
383 vmovdqu RB3, (7 * 32)(%rsi);
384
385 vzeroall;
386 FRAME_END
387 RET;
388SYM_FUNC_END(sm4_aesni_avx2_ctr_enc_blk16)
389
390/*
391 * void sm4_aesni_avx2_cbc_dec_blk16(const u32 *rk, u8 *dst,
392 * const u8 *src, u8 *iv)
393 */
394SYM_TYPED_FUNC_START(sm4_aesni_avx2_cbc_dec_blk16)
395 /* input:
396 * %rdi: round key array, CTX
397 * %rsi: dst (16 blocks)
398 * %rdx: src (16 blocks)
399 * %rcx: iv
400 */
401 FRAME_BEGIN
402
403 vzeroupper;
404
405 vmovdqu (0 * 32)(%rdx), RA0;
406 vmovdqu (1 * 32)(%rdx), RA1;
407 vmovdqu (2 * 32)(%rdx), RA2;
408 vmovdqu (3 * 32)(%rdx), RA3;
409 vmovdqu (4 * 32)(%rdx), RB0;
410 vmovdqu (5 * 32)(%rdx), RB1;
411 vmovdqu (6 * 32)(%rdx), RB2;
412 vmovdqu (7 * 32)(%rdx), RB3;
413
414 call __sm4_crypt_blk16;
415
416 vmovdqu (%rcx), RNOTx;
417 vinserti128 $1, (%rdx), RNOT, RNOT;
418 vpxor RNOT, RA0, RA0;
419 vpxor (0 * 32 + 16)(%rdx), RA1, RA1;
420 vpxor (1 * 32 + 16)(%rdx), RA2, RA2;
421 vpxor (2 * 32 + 16)(%rdx), RA3, RA3;
422 vpxor (3 * 32 + 16)(%rdx), RB0, RB0;
423 vpxor (4 * 32 + 16)(%rdx), RB1, RB1;
424 vpxor (5 * 32 + 16)(%rdx), RB2, RB2;
425 vpxor (6 * 32 + 16)(%rdx), RB3, RB3;
426 vmovdqu (7 * 32 + 16)(%rdx), RNOTx;
427 vmovdqu RNOTx, (%rcx); /* store new IV */
428
429 vmovdqu RA0, (0 * 32)(%rsi);
430 vmovdqu RA1, (1 * 32)(%rsi);
431 vmovdqu RA2, (2 * 32)(%rsi);
432 vmovdqu RA3, (3 * 32)(%rsi);
433 vmovdqu RB0, (4 * 32)(%rsi);
434 vmovdqu RB1, (5 * 32)(%rsi);
435 vmovdqu RB2, (6 * 32)(%rsi);
436 vmovdqu RB3, (7 * 32)(%rsi);
437
438 vzeroall;
439 FRAME_END
440 RET;
441SYM_FUNC_END(sm4_aesni_avx2_cbc_dec_blk16)
442
443/*
444 * void sm4_aesni_avx2_cfb_dec_blk16(const u32 *rk, u8 *dst,
445 * const u8 *src, u8 *iv)
446 */
447SYM_TYPED_FUNC_START(sm4_aesni_avx2_cfb_dec_blk16)
448 /* input:
449 * %rdi: round key array, CTX
450 * %rsi: dst (16 blocks)
451 * %rdx: src (16 blocks)
452 * %rcx: iv
453 */
454 FRAME_BEGIN
455
456 vzeroupper;
457
458 /* Load input */
459 vmovdqu (%rcx), RNOTx;
460 vinserti128 $1, (%rdx), RNOT, RA0;
461 vmovdqu (0 * 32 + 16)(%rdx), RA1;
462 vmovdqu (1 * 32 + 16)(%rdx), RA2;
463 vmovdqu (2 * 32 + 16)(%rdx), RA3;
464 vmovdqu (3 * 32 + 16)(%rdx), RB0;
465 vmovdqu (4 * 32 + 16)(%rdx), RB1;
466 vmovdqu (5 * 32 + 16)(%rdx), RB2;
467 vmovdqu (6 * 32 + 16)(%rdx), RB3;
468
469 /* Update IV */
470 vmovdqu (7 * 32 + 16)(%rdx), RNOTx;
471 vmovdqu RNOTx, (%rcx);
472
473 call __sm4_crypt_blk16;
474
475 vpxor (0 * 32)(%rdx), RA0, RA0;
476 vpxor (1 * 32)(%rdx), RA1, RA1;
477 vpxor (2 * 32)(%rdx), RA2, RA2;
478 vpxor (3 * 32)(%rdx), RA3, RA3;
479 vpxor (4 * 32)(%rdx), RB0, RB0;
480 vpxor (5 * 32)(%rdx), RB1, RB1;
481 vpxor (6 * 32)(%rdx), RB2, RB2;
482 vpxor (7 * 32)(%rdx), RB3, RB3;
483
484 vmovdqu RA0, (0 * 32)(%rsi);
485 vmovdqu RA1, (1 * 32)(%rsi);
486 vmovdqu RA2, (2 * 32)(%rsi);
487 vmovdqu RA3, (3 * 32)(%rsi);
488 vmovdqu RB0, (4 * 32)(%rsi);
489 vmovdqu RB1, (5 * 32)(%rsi);
490 vmovdqu RB2, (6 * 32)(%rsi);
491 vmovdqu RB3, (7 * 32)(%rsi);
492
493 vzeroall;
494 FRAME_END
495 RET;
496SYM_FUNC_END(sm4_aesni_avx2_cfb_dec_blk16)
497

source code of linux/arch/x86/crypto/sm4-aesni-avx2-asm_64.S