| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef ASM_KVM_CACHE_REGS_H |
| 3 | #define ASM_KVM_CACHE_REGS_H |
| 4 | |
| 5 | #include <linux/kvm_host.h> |
| 6 | |
| 7 | #define KVM_POSSIBLE_CR0_GUEST_BITS (X86_CR0_TS | X86_CR0_WP) |
| 8 | #define KVM_POSSIBLE_CR4_GUEST_BITS \ |
| 9 | (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ |
| 10 | | X86_CR4_OSXMMEXCPT | X86_CR4_PGE | X86_CR4_TSD | X86_CR4_FSGSBASE) |
| 11 | |
| 12 | #define X86_CR0_PDPTR_BITS (X86_CR0_CD | X86_CR0_NW | X86_CR0_PG) |
| 13 | #define X86_CR4_TLBFLUSH_BITS (X86_CR4_PGE | X86_CR4_PCIDE | X86_CR4_PAE | X86_CR4_SMEP) |
| 14 | #define X86_CR4_PDPTR_BITS (X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_SMEP) |
| 15 | |
| 16 | static_assert(!(KVM_POSSIBLE_CR0_GUEST_BITS & X86_CR0_PDPTR_BITS)); |
| 17 | |
| 18 | #define BUILD_KVM_GPR_ACCESSORS(lname, uname) \ |
| 19 | static __always_inline unsigned long kvm_##lname##_read(struct kvm_vcpu *vcpu)\ |
| 20 | { \ |
| 21 | return vcpu->arch.regs[VCPU_REGS_##uname]; \ |
| 22 | } \ |
| 23 | static __always_inline void kvm_##lname##_write(struct kvm_vcpu *vcpu, \ |
| 24 | unsigned long val) \ |
| 25 | { \ |
| 26 | vcpu->arch.regs[VCPU_REGS_##uname] = val; \ |
| 27 | } |
| 28 | BUILD_KVM_GPR_ACCESSORS(rax, RAX) |
| 29 | BUILD_KVM_GPR_ACCESSORS(rbx, RBX) |
| 30 | BUILD_KVM_GPR_ACCESSORS(rcx, RCX) |
| 31 | BUILD_KVM_GPR_ACCESSORS(rdx, RDX) |
| 32 | BUILD_KVM_GPR_ACCESSORS(rbp, RBP) |
| 33 | BUILD_KVM_GPR_ACCESSORS(rsi, RSI) |
| 34 | BUILD_KVM_GPR_ACCESSORS(rdi, RDI) |
| 35 | #ifdef CONFIG_X86_64 |
| 36 | BUILD_KVM_GPR_ACCESSORS(r8, R8) |
| 37 | BUILD_KVM_GPR_ACCESSORS(r9, R9) |
| 38 | BUILD_KVM_GPR_ACCESSORS(r10, R10) |
| 39 | BUILD_KVM_GPR_ACCESSORS(r11, R11) |
| 40 | BUILD_KVM_GPR_ACCESSORS(r12, R12) |
| 41 | BUILD_KVM_GPR_ACCESSORS(r13, R13) |
| 42 | BUILD_KVM_GPR_ACCESSORS(r14, R14) |
| 43 | BUILD_KVM_GPR_ACCESSORS(r15, R15) |
| 44 | #endif |
| 45 | |
| 46 | /* |
| 47 | * Using the register cache from interrupt context is generally not allowed, as |
| 48 | * caching a register and marking it available/dirty can't be done atomically, |
| 49 | * i.e. accesses from interrupt context may clobber state or read stale data if |
| 50 | * the vCPU task is in the process of updating the cache. The exception is if |
| 51 | * KVM is handling a PMI IRQ/NMI VM-Exit, as that bound code sequence doesn't |
| 52 | * touch the cache, it runs after the cache is reset (post VM-Exit), and PMIs |
| 53 | * need to access several registers that are cacheable. |
| 54 | */ |
| 55 | #define kvm_assert_register_caching_allowed(vcpu) \ |
| 56 | lockdep_assert_once(in_task() || kvm_arch_pmi_in_guest(vcpu)) |
| 57 | |
| 58 | /* |
| 59 | * avail dirty |
| 60 | * 0 0 register in VMCS/VMCB |
| 61 | * 0 1 *INVALID* |
| 62 | * 1 0 register in vcpu->arch |
| 63 | * 1 1 register in vcpu->arch, needs to be stored back |
| 64 | */ |
| 65 | static inline bool kvm_register_is_available(struct kvm_vcpu *vcpu, |
| 66 | enum kvm_reg reg) |
| 67 | { |
| 68 | kvm_assert_register_caching_allowed(vcpu); |
| 69 | return test_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); |
| 70 | } |
| 71 | |
| 72 | static inline bool kvm_register_is_dirty(struct kvm_vcpu *vcpu, |
| 73 | enum kvm_reg reg) |
| 74 | { |
| 75 | kvm_assert_register_caching_allowed(vcpu); |
| 76 | return test_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty); |
| 77 | } |
| 78 | |
| 79 | static inline void kvm_register_mark_available(struct kvm_vcpu *vcpu, |
| 80 | enum kvm_reg reg) |
| 81 | { |
| 82 | kvm_assert_register_caching_allowed(vcpu); |
| 83 | __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); |
| 84 | } |
| 85 | |
| 86 | static inline void kvm_register_mark_dirty(struct kvm_vcpu *vcpu, |
| 87 | enum kvm_reg reg) |
| 88 | { |
| 89 | kvm_assert_register_caching_allowed(vcpu); |
| 90 | __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); |
| 91 | __set_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty); |
| 92 | } |
| 93 | |
| 94 | /* |
| 95 | * kvm_register_test_and_mark_available() is a special snowflake that uses an |
| 96 | * arch bitop directly to avoid the explicit instrumentation that comes with |
| 97 | * the generic bitops. This allows code that cannot be instrumented (noinstr |
| 98 | * functions), e.g. the low level VM-Enter/VM-Exit paths, to cache registers. |
| 99 | */ |
| 100 | static __always_inline bool kvm_register_test_and_mark_available(struct kvm_vcpu *vcpu, |
| 101 | enum kvm_reg reg) |
| 102 | { |
| 103 | kvm_assert_register_caching_allowed(vcpu); |
| 104 | return arch___test_and_set_bit(nr: reg, addr: (unsigned long *)&vcpu->arch.regs_avail); |
| 105 | } |
| 106 | |
| 107 | /* |
| 108 | * The "raw" register helpers are only for cases where the full 64 bits of a |
| 109 | * register are read/written irrespective of current vCPU mode. In other words, |
| 110 | * odds are good you shouldn't be using the raw variants. |
| 111 | */ |
| 112 | static inline unsigned long kvm_register_read_raw(struct kvm_vcpu *vcpu, int reg) |
| 113 | { |
| 114 | if (WARN_ON_ONCE((unsigned int)reg >= NR_VCPU_REGS)) |
| 115 | return 0; |
| 116 | |
| 117 | if (!kvm_register_is_available(vcpu, reg)) |
| 118 | kvm_x86_call(cache_reg)(vcpu, reg); |
| 119 | |
| 120 | return vcpu->arch.regs[reg]; |
| 121 | } |
| 122 | |
| 123 | static inline void kvm_register_write_raw(struct kvm_vcpu *vcpu, int reg, |
| 124 | unsigned long val) |
| 125 | { |
| 126 | if (WARN_ON_ONCE((unsigned int)reg >= NR_VCPU_REGS)) |
| 127 | return; |
| 128 | |
| 129 | vcpu->arch.regs[reg] = val; |
| 130 | kvm_register_mark_dirty(vcpu, reg); |
| 131 | } |
| 132 | |
| 133 | static inline unsigned long kvm_rip_read(struct kvm_vcpu *vcpu) |
| 134 | { |
| 135 | return kvm_register_read_raw(vcpu, reg: VCPU_REGS_RIP); |
| 136 | } |
| 137 | |
| 138 | static inline void kvm_rip_write(struct kvm_vcpu *vcpu, unsigned long val) |
| 139 | { |
| 140 | kvm_register_write_raw(vcpu, reg: VCPU_REGS_RIP, val); |
| 141 | } |
| 142 | |
| 143 | static inline unsigned long kvm_rsp_read(struct kvm_vcpu *vcpu) |
| 144 | { |
| 145 | return kvm_register_read_raw(vcpu, reg: VCPU_REGS_RSP); |
| 146 | } |
| 147 | |
| 148 | static inline void kvm_rsp_write(struct kvm_vcpu *vcpu, unsigned long val) |
| 149 | { |
| 150 | kvm_register_write_raw(vcpu, reg: VCPU_REGS_RSP, val); |
| 151 | } |
| 152 | |
| 153 | static inline u64 kvm_pdptr_read(struct kvm_vcpu *vcpu, int index) |
| 154 | { |
| 155 | might_sleep(); /* on svm */ |
| 156 | |
| 157 | if (!kvm_register_is_available(vcpu, reg: VCPU_EXREG_PDPTR)) |
| 158 | kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_PDPTR); |
| 159 | |
| 160 | return vcpu->arch.walk_mmu->pdptrs[index]; |
| 161 | } |
| 162 | |
| 163 | static inline void kvm_pdptr_write(struct kvm_vcpu *vcpu, int index, u64 value) |
| 164 | { |
| 165 | vcpu->arch.walk_mmu->pdptrs[index] = value; |
| 166 | } |
| 167 | |
| 168 | static inline ulong kvm_read_cr0_bits(struct kvm_vcpu *vcpu, ulong mask) |
| 169 | { |
| 170 | ulong tmask = mask & KVM_POSSIBLE_CR0_GUEST_BITS; |
| 171 | if ((tmask & vcpu->arch.cr0_guest_owned_bits) && |
| 172 | !kvm_register_is_available(vcpu, reg: VCPU_EXREG_CR0)) |
| 173 | kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR0); |
| 174 | return vcpu->arch.cr0 & mask; |
| 175 | } |
| 176 | |
| 177 | static __always_inline bool kvm_is_cr0_bit_set(struct kvm_vcpu *vcpu, |
| 178 | unsigned long cr0_bit) |
| 179 | { |
| 180 | BUILD_BUG_ON(!is_power_of_2(cr0_bit)); |
| 181 | |
| 182 | return !!kvm_read_cr0_bits(vcpu, mask: cr0_bit); |
| 183 | } |
| 184 | |
| 185 | static inline ulong kvm_read_cr0(struct kvm_vcpu *vcpu) |
| 186 | { |
| 187 | return kvm_read_cr0_bits(vcpu, mask: ~0UL); |
| 188 | } |
| 189 | |
| 190 | static inline ulong kvm_read_cr4_bits(struct kvm_vcpu *vcpu, ulong mask) |
| 191 | { |
| 192 | ulong tmask = mask & KVM_POSSIBLE_CR4_GUEST_BITS; |
| 193 | if ((tmask & vcpu->arch.cr4_guest_owned_bits) && |
| 194 | !kvm_register_is_available(vcpu, reg: VCPU_EXREG_CR4)) |
| 195 | kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR4); |
| 196 | return vcpu->arch.cr4 & mask; |
| 197 | } |
| 198 | |
| 199 | static __always_inline bool kvm_is_cr4_bit_set(struct kvm_vcpu *vcpu, |
| 200 | unsigned long cr4_bit) |
| 201 | { |
| 202 | BUILD_BUG_ON(!is_power_of_2(cr4_bit)); |
| 203 | |
| 204 | return !!kvm_read_cr4_bits(vcpu, mask: cr4_bit); |
| 205 | } |
| 206 | |
| 207 | static inline ulong kvm_read_cr3(struct kvm_vcpu *vcpu) |
| 208 | { |
| 209 | if (!kvm_register_is_available(vcpu, reg: VCPU_EXREG_CR3)) |
| 210 | kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR3); |
| 211 | return vcpu->arch.cr3; |
| 212 | } |
| 213 | |
| 214 | static inline ulong kvm_read_cr4(struct kvm_vcpu *vcpu) |
| 215 | { |
| 216 | return kvm_read_cr4_bits(vcpu, mask: ~0UL); |
| 217 | } |
| 218 | |
| 219 | static inline u64 kvm_read_edx_eax(struct kvm_vcpu *vcpu) |
| 220 | { |
| 221 | return (kvm_rax_read(vcpu) & -1u) |
| 222 | | ((u64)(kvm_rdx_read(vcpu) & -1u) << 32); |
| 223 | } |
| 224 | |
| 225 | static inline void enter_guest_mode(struct kvm_vcpu *vcpu) |
| 226 | { |
| 227 | vcpu->arch.hflags |= HF_GUEST_MASK; |
| 228 | vcpu->stat.guest_mode = 1; |
| 229 | } |
| 230 | |
| 231 | static inline void leave_guest_mode(struct kvm_vcpu *vcpu) |
| 232 | { |
| 233 | vcpu->arch.hflags &= ~HF_GUEST_MASK; |
| 234 | |
| 235 | if (vcpu->arch.load_eoi_exitmap_pending) { |
| 236 | vcpu->arch.load_eoi_exitmap_pending = false; |
| 237 | kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); |
| 238 | } |
| 239 | |
| 240 | vcpu->stat.guest_mode = 0; |
| 241 | } |
| 242 | |
| 243 | static inline bool is_guest_mode(struct kvm_vcpu *vcpu) |
| 244 | { |
| 245 | return vcpu->arch.hflags & HF_GUEST_MASK; |
| 246 | } |
| 247 | |
| 248 | #endif |
| 249 | |