1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, range: r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register_is_set && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register_is_set && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, value: &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register_is_set && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg: reg + regmap_get_offset(map, index: i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267{
268 u8 *b = buf;
269
270 b[0] = val << shift;
271}
272
273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274{
275 put_unaligned_be16(val: val << shift, p: buf);
276}
277
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
280 put_unaligned_le16(val: val << shift, p: buf);
281}
282
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289}
290
291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292{
293 put_unaligned_be24(val: val << shift, p: buf);
294}
295
296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297{
298 put_unaligned_be32(val: val << shift, p: buf);
299}
300
301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302{
303 put_unaligned_le32(val: val << shift, p: buf);
304}
305
306static void regmap_format_32_native(void *buf, unsigned int val,
307 unsigned int shift)
308{
309 u32 v = val << shift;
310
311 memcpy(buf, &v, sizeof(v));
312}
313
314static void regmap_parse_inplace_noop(void *buf)
315{
316}
317
318static unsigned int regmap_parse_8(const void *buf)
319{
320 const u8 *b = buf;
321
322 return b[0];
323}
324
325static unsigned int regmap_parse_16_be(const void *buf)
326{
327 return get_unaligned_be16(p: buf);
328}
329
330static unsigned int regmap_parse_16_le(const void *buf)
331{
332 return get_unaligned_le16(p: buf);
333}
334
335static void regmap_parse_16_be_inplace(void *buf)
336{
337 u16 v = get_unaligned_be16(p: buf);
338
339 memcpy(buf, &v, sizeof(v));
340}
341
342static void regmap_parse_16_le_inplace(void *buf)
343{
344 u16 v = get_unaligned_le16(p: buf);
345
346 memcpy(buf, &v, sizeof(v));
347}
348
349static unsigned int regmap_parse_16_native(const void *buf)
350{
351 u16 v;
352
353 memcpy(&v, buf, sizeof(v));
354 return v;
355}
356
357static unsigned int regmap_parse_24_be(const void *buf)
358{
359 return get_unaligned_be24(p: buf);
360}
361
362static unsigned int regmap_parse_32_be(const void *buf)
363{
364 return get_unaligned_be32(p: buf);
365}
366
367static unsigned int regmap_parse_32_le(const void *buf)
368{
369 return get_unaligned_le32(p: buf);
370}
371
372static void regmap_parse_32_be_inplace(void *buf)
373{
374 u32 v = get_unaligned_be32(p: buf);
375
376 memcpy(buf, &v, sizeof(v));
377}
378
379static void regmap_parse_32_le_inplace(void *buf)
380{
381 u32 v = get_unaligned_le32(p: buf);
382
383 memcpy(buf, &v, sizeof(v));
384}
385
386static unsigned int regmap_parse_32_native(const void *buf)
387{
388 u32 v;
389
390 memcpy(&v, buf, sizeof(v));
391 return v;
392}
393
394static void regmap_lock_hwlock(void *__map)
395{
396 struct regmap *map = __map;
397
398 hwspin_lock_timeout(hwlock: map->hwlock, UINT_MAX);
399}
400
401static void regmap_lock_hwlock_irq(void *__map)
402{
403 struct regmap *map = __map;
404
405 hwspin_lock_timeout_irq(hwlock: map->hwlock, UINT_MAX);
406}
407
408static void regmap_lock_hwlock_irqsave(void *__map)
409{
410 struct regmap *map = __map;
411
412 hwspin_lock_timeout_irqsave(hwlock: map->hwlock, UINT_MAX,
413 flags: &map->spinlock_flags);
414}
415
416static void regmap_unlock_hwlock(void *__map)
417{
418 struct regmap *map = __map;
419
420 hwspin_unlock(hwlock: map->hwlock);
421}
422
423static void regmap_unlock_hwlock_irq(void *__map)
424{
425 struct regmap *map = __map;
426
427 hwspin_unlock_irq(hwlock: map->hwlock);
428}
429
430static void regmap_unlock_hwlock_irqrestore(void *__map)
431{
432 struct regmap *map = __map;
433
434 hwspin_unlock_irqrestore(hwlock: map->hwlock, flags: &map->spinlock_flags);
435}
436
437static void regmap_lock_unlock_none(void *__map)
438{
439
440}
441
442static void regmap_lock_mutex(void *__map)
443{
444 struct regmap *map = __map;
445 mutex_lock(&map->mutex);
446}
447
448static void regmap_unlock_mutex(void *__map)
449{
450 struct regmap *map = __map;
451 mutex_unlock(lock: &map->mutex);
452}
453
454static void regmap_lock_spinlock(void *__map)
455__acquires(&map->spinlock)
456{
457 struct regmap *map = __map;
458 unsigned long flags;
459
460 spin_lock_irqsave(&map->spinlock, flags);
461 map->spinlock_flags = flags;
462}
463
464static void regmap_unlock_spinlock(void *__map)
465__releases(&map->spinlock)
466{
467 struct regmap *map = __map;
468 spin_unlock_irqrestore(lock: &map->spinlock, flags: map->spinlock_flags);
469}
470
471static void regmap_lock_raw_spinlock(void *__map)
472__acquires(&map->raw_spinlock)
473{
474 struct regmap *map = __map;
475 unsigned long flags;
476
477 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 map->raw_spinlock_flags = flags;
479}
480
481static void regmap_unlock_raw_spinlock(void *__map)
482__releases(&map->raw_spinlock)
483{
484 struct regmap *map = __map;
485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486}
487
488static void dev_get_regmap_release(struct device *dev, void *res)
489{
490 /*
491 * We don't actually have anything to do here; the goal here
492 * is not to manage the regmap but to provide a simple way to
493 * get the regmap back given a struct device.
494 */
495}
496
497static bool _regmap_range_add(struct regmap *map,
498 struct regmap_range_node *data)
499{
500 struct rb_root *root = &map->range_tree;
501 struct rb_node **new = &(root->rb_node), *parent = NULL;
502
503 while (*new) {
504 struct regmap_range_node *this =
505 rb_entry(*new, struct regmap_range_node, node);
506
507 parent = *new;
508 if (data->range_max < this->range_min)
509 new = &((*new)->rb_left);
510 else if (data->range_min > this->range_max)
511 new = &((*new)->rb_right);
512 else
513 return false;
514 }
515
516 rb_link_node(node: &data->node, parent, rb_link: new);
517 rb_insert_color(&data->node, root);
518
519 return true;
520}
521
522static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 unsigned int reg)
524{
525 struct rb_node *node = map->range_tree.rb_node;
526
527 while (node) {
528 struct regmap_range_node *this =
529 rb_entry(node, struct regmap_range_node, node);
530
531 if (reg < this->range_min)
532 node = node->rb_left;
533 else if (reg > this->range_max)
534 node = node->rb_right;
535 else
536 return this;
537 }
538
539 return NULL;
540}
541
542static void regmap_range_exit(struct regmap *map)
543{
544 struct rb_node *next;
545 struct regmap_range_node *range_node;
546
547 next = rb_first(&map->range_tree);
548 while (next) {
549 range_node = rb_entry(next, struct regmap_range_node, node);
550 next = rb_next(&range_node->node);
551 rb_erase(&range_node->node, &map->range_tree);
552 kfree(objp: range_node);
553 }
554
555 kfree(objp: map->selector_work_buf);
556}
557
558static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559{
560 if (config->name) {
561 const char *name = kstrdup_const(s: config->name, GFP_KERNEL);
562
563 if (!name)
564 return -ENOMEM;
565
566 kfree_const(x: map->name);
567 map->name = name;
568 }
569
570 return 0;
571}
572
573int regmap_attach_dev(struct device *dev, struct regmap *map,
574 const struct regmap_config *config)
575{
576 struct regmap **m;
577 int ret;
578
579 map->dev = dev;
580
581 ret = regmap_set_name(map, config);
582 if (ret)
583 return ret;
584
585 regmap_debugfs_exit(map);
586 regmap_debugfs_init(map);
587
588 /* Add a devres resource for dev_get_regmap() */
589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 if (!m) {
591 regmap_debugfs_exit(map);
592 return -ENOMEM;
593 }
594 *m = map;
595 devres_add(dev, res: m);
596
597 return 0;
598}
599EXPORT_SYMBOL_GPL(regmap_attach_dev);
600
601static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
602 const struct regmap_config *config)
603{
604 enum regmap_endian endian;
605
606 /* Retrieve the endianness specification from the regmap config */
607 endian = config->reg_format_endian;
608
609 /* If the regmap config specified a non-default value, use that */
610 if (endian != REGMAP_ENDIAN_DEFAULT)
611 return endian;
612
613 /* Retrieve the endianness specification from the bus config */
614 if (bus && bus->reg_format_endian_default)
615 endian = bus->reg_format_endian_default;
616
617 /* If the bus specified a non-default value, use that */
618 if (endian != REGMAP_ENDIAN_DEFAULT)
619 return endian;
620
621 /* Use this if no other value was found */
622 return REGMAP_ENDIAN_BIG;
623}
624
625enum regmap_endian regmap_get_val_endian(struct device *dev,
626 const struct regmap_bus *bus,
627 const struct regmap_config *config)
628{
629 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
630 enum regmap_endian endian;
631
632 /* Retrieve the endianness specification from the regmap config */
633 endian = config->val_format_endian;
634
635 /* If the regmap config specified a non-default value, use that */
636 if (endian != REGMAP_ENDIAN_DEFAULT)
637 return endian;
638
639 /* If the firmware node exist try to get endianness from it */
640 if (fwnode_property_read_bool(fwnode, propname: "big-endian"))
641 endian = REGMAP_ENDIAN_BIG;
642 else if (fwnode_property_read_bool(fwnode, propname: "little-endian"))
643 endian = REGMAP_ENDIAN_LITTLE;
644 else if (fwnode_property_read_bool(fwnode, propname: "native-endian"))
645 endian = REGMAP_ENDIAN_NATIVE;
646
647 /* If the endianness was specified in fwnode, use that */
648 if (endian != REGMAP_ENDIAN_DEFAULT)
649 return endian;
650
651 /* Retrieve the endianness specification from the bus config */
652 if (bus && bus->val_format_endian_default)
653 endian = bus->val_format_endian_default;
654
655 /* If the bus specified a non-default value, use that */
656 if (endian != REGMAP_ENDIAN_DEFAULT)
657 return endian;
658
659 /* Use this if no other value was found */
660 return REGMAP_ENDIAN_BIG;
661}
662EXPORT_SYMBOL_GPL(regmap_get_val_endian);
663
664struct regmap *__regmap_init(struct device *dev,
665 const struct regmap_bus *bus,
666 void *bus_context,
667 const struct regmap_config *config,
668 struct lock_class_key *lock_key,
669 const char *lock_name)
670{
671 struct regmap *map;
672 int ret = -EINVAL;
673 enum regmap_endian reg_endian, val_endian;
674 int i, j;
675
676 if (!config)
677 goto err;
678
679 map = kzalloc(size: sizeof(*map), GFP_KERNEL);
680 if (map == NULL) {
681 ret = -ENOMEM;
682 goto err;
683 }
684
685 ret = regmap_set_name(map, config);
686 if (ret)
687 goto err_map;
688
689 ret = -EINVAL; /* Later error paths rely on this */
690
691 if (config->disable_locking) {
692 map->lock = map->unlock = regmap_lock_unlock_none;
693 map->can_sleep = config->can_sleep;
694 regmap_debugfs_disable(map);
695 } else if (config->lock && config->unlock) {
696 map->lock = config->lock;
697 map->unlock = config->unlock;
698 map->lock_arg = config->lock_arg;
699 map->can_sleep = config->can_sleep;
700 } else if (config->use_hwlock) {
701 map->hwlock = hwspin_lock_request_specific(id: config->hwlock_id);
702 if (!map->hwlock) {
703 ret = -ENXIO;
704 goto err_name;
705 }
706
707 switch (config->hwlock_mode) {
708 case HWLOCK_IRQSTATE:
709 map->lock = regmap_lock_hwlock_irqsave;
710 map->unlock = regmap_unlock_hwlock_irqrestore;
711 break;
712 case HWLOCK_IRQ:
713 map->lock = regmap_lock_hwlock_irq;
714 map->unlock = regmap_unlock_hwlock_irq;
715 break;
716 default:
717 map->lock = regmap_lock_hwlock;
718 map->unlock = regmap_unlock_hwlock;
719 break;
720 }
721
722 map->lock_arg = map;
723 } else {
724 if ((bus && bus->fast_io) ||
725 config->fast_io) {
726 if (config->use_raw_spinlock) {
727 raw_spin_lock_init(&map->raw_spinlock);
728 map->lock = regmap_lock_raw_spinlock;
729 map->unlock = regmap_unlock_raw_spinlock;
730 lockdep_set_class_and_name(&map->raw_spinlock,
731 lock_key, lock_name);
732 } else {
733 spin_lock_init(&map->spinlock);
734 map->lock = regmap_lock_spinlock;
735 map->unlock = regmap_unlock_spinlock;
736 lockdep_set_class_and_name(&map->spinlock,
737 lock_key, lock_name);
738 }
739 } else {
740 mutex_init(&map->mutex);
741 map->lock = regmap_lock_mutex;
742 map->unlock = regmap_unlock_mutex;
743 map->can_sleep = true;
744 lockdep_set_class_and_name(&map->mutex,
745 lock_key, lock_name);
746 }
747 map->lock_arg = map;
748 }
749
750 /*
751 * When we write in fast-paths with regmap_bulk_write() don't allocate
752 * scratch buffers with sleeping allocations.
753 */
754 if ((bus && bus->fast_io) || config->fast_io)
755 map->alloc_flags = GFP_ATOMIC;
756 else
757 map->alloc_flags = GFP_KERNEL;
758
759 map->reg_base = config->reg_base;
760
761 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
762 map->format.pad_bytes = config->pad_bits / 8;
763 map->format.reg_shift = config->reg_shift;
764 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
765 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
766 config->val_bits + config->pad_bits, 8);
767 map->reg_shift = config->pad_bits % 8;
768 if (config->reg_stride)
769 map->reg_stride = config->reg_stride;
770 else
771 map->reg_stride = 1;
772 if (is_power_of_2(n: map->reg_stride))
773 map->reg_stride_order = ilog2(map->reg_stride);
774 else
775 map->reg_stride_order = -1;
776 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
777 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
778 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
779 if (bus) {
780 map->max_raw_read = bus->max_raw_read;
781 map->max_raw_write = bus->max_raw_write;
782 } else if (config->max_raw_read && config->max_raw_write) {
783 map->max_raw_read = config->max_raw_read;
784 map->max_raw_write = config->max_raw_write;
785 }
786 map->dev = dev;
787 map->bus = bus;
788 map->bus_context = bus_context;
789 map->max_register = config->max_register;
790 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
791 map->wr_table = config->wr_table;
792 map->rd_table = config->rd_table;
793 map->volatile_table = config->volatile_table;
794 map->precious_table = config->precious_table;
795 map->wr_noinc_table = config->wr_noinc_table;
796 map->rd_noinc_table = config->rd_noinc_table;
797 map->writeable_reg = config->writeable_reg;
798 map->readable_reg = config->readable_reg;
799 map->volatile_reg = config->volatile_reg;
800 map->precious_reg = config->precious_reg;
801 map->writeable_noinc_reg = config->writeable_noinc_reg;
802 map->readable_noinc_reg = config->readable_noinc_reg;
803 map->cache_type = config->cache_type;
804
805 spin_lock_init(&map->async_lock);
806 INIT_LIST_HEAD(list: &map->async_list);
807 INIT_LIST_HEAD(list: &map->async_free);
808 init_waitqueue_head(&map->async_waitq);
809
810 if (config->read_flag_mask ||
811 config->write_flag_mask ||
812 config->zero_flag_mask) {
813 map->read_flag_mask = config->read_flag_mask;
814 map->write_flag_mask = config->write_flag_mask;
815 } else if (bus) {
816 map->read_flag_mask = bus->read_flag_mask;
817 }
818
819 if (config && config->read && config->write) {
820 map->reg_read = _regmap_bus_read;
821 if (config->reg_update_bits)
822 map->reg_update_bits = config->reg_update_bits;
823
824 /* Bulk read/write */
825 map->read = config->read;
826 map->write = config->write;
827
828 reg_endian = REGMAP_ENDIAN_NATIVE;
829 val_endian = REGMAP_ENDIAN_NATIVE;
830 } else if (!bus) {
831 map->reg_read = config->reg_read;
832 map->reg_write = config->reg_write;
833 map->reg_update_bits = config->reg_update_bits;
834
835 map->defer_caching = false;
836 goto skip_format_initialization;
837 } else if (!bus->read || !bus->write) {
838 map->reg_read = _regmap_bus_reg_read;
839 map->reg_write = _regmap_bus_reg_write;
840 map->reg_update_bits = bus->reg_update_bits;
841
842 map->defer_caching = false;
843 goto skip_format_initialization;
844 } else {
845 map->reg_read = _regmap_bus_read;
846 map->reg_update_bits = bus->reg_update_bits;
847 /* Bulk read/write */
848 map->read = bus->read;
849 map->write = bus->write;
850
851 reg_endian = regmap_get_reg_endian(bus, config);
852 val_endian = regmap_get_val_endian(dev, bus, config);
853 }
854
855 switch (config->reg_bits + map->reg_shift) {
856 case 2:
857 switch (config->val_bits) {
858 case 6:
859 map->format.format_write = regmap_format_2_6_write;
860 break;
861 default:
862 goto err_hwlock;
863 }
864 break;
865
866 case 4:
867 switch (config->val_bits) {
868 case 12:
869 map->format.format_write = regmap_format_4_12_write;
870 break;
871 default:
872 goto err_hwlock;
873 }
874 break;
875
876 case 7:
877 switch (config->val_bits) {
878 case 9:
879 map->format.format_write = regmap_format_7_9_write;
880 break;
881 case 17:
882 map->format.format_write = regmap_format_7_17_write;
883 break;
884 default:
885 goto err_hwlock;
886 }
887 break;
888
889 case 10:
890 switch (config->val_bits) {
891 case 14:
892 map->format.format_write = regmap_format_10_14_write;
893 break;
894 default:
895 goto err_hwlock;
896 }
897 break;
898
899 case 12:
900 switch (config->val_bits) {
901 case 20:
902 map->format.format_write = regmap_format_12_20_write;
903 break;
904 default:
905 goto err_hwlock;
906 }
907 break;
908
909 case 8:
910 map->format.format_reg = regmap_format_8;
911 break;
912
913 case 16:
914 switch (reg_endian) {
915 case REGMAP_ENDIAN_BIG:
916 map->format.format_reg = regmap_format_16_be;
917 break;
918 case REGMAP_ENDIAN_LITTLE:
919 map->format.format_reg = regmap_format_16_le;
920 break;
921 case REGMAP_ENDIAN_NATIVE:
922 map->format.format_reg = regmap_format_16_native;
923 break;
924 default:
925 goto err_hwlock;
926 }
927 break;
928
929 case 24:
930 switch (reg_endian) {
931 case REGMAP_ENDIAN_BIG:
932 map->format.format_reg = regmap_format_24_be;
933 break;
934 default:
935 goto err_hwlock;
936 }
937 break;
938
939 case 32:
940 switch (reg_endian) {
941 case REGMAP_ENDIAN_BIG:
942 map->format.format_reg = regmap_format_32_be;
943 break;
944 case REGMAP_ENDIAN_LITTLE:
945 map->format.format_reg = regmap_format_32_le;
946 break;
947 case REGMAP_ENDIAN_NATIVE:
948 map->format.format_reg = regmap_format_32_native;
949 break;
950 default:
951 goto err_hwlock;
952 }
953 break;
954
955 default:
956 goto err_hwlock;
957 }
958
959 if (val_endian == REGMAP_ENDIAN_NATIVE)
960 map->format.parse_inplace = regmap_parse_inplace_noop;
961
962 switch (config->val_bits) {
963 case 8:
964 map->format.format_val = regmap_format_8;
965 map->format.parse_val = regmap_parse_8;
966 map->format.parse_inplace = regmap_parse_inplace_noop;
967 break;
968 case 16:
969 switch (val_endian) {
970 case REGMAP_ENDIAN_BIG:
971 map->format.format_val = regmap_format_16_be;
972 map->format.parse_val = regmap_parse_16_be;
973 map->format.parse_inplace = regmap_parse_16_be_inplace;
974 break;
975 case REGMAP_ENDIAN_LITTLE:
976 map->format.format_val = regmap_format_16_le;
977 map->format.parse_val = regmap_parse_16_le;
978 map->format.parse_inplace = regmap_parse_16_le_inplace;
979 break;
980 case REGMAP_ENDIAN_NATIVE:
981 map->format.format_val = regmap_format_16_native;
982 map->format.parse_val = regmap_parse_16_native;
983 break;
984 default:
985 goto err_hwlock;
986 }
987 break;
988 case 24:
989 switch (val_endian) {
990 case REGMAP_ENDIAN_BIG:
991 map->format.format_val = regmap_format_24_be;
992 map->format.parse_val = regmap_parse_24_be;
993 break;
994 default:
995 goto err_hwlock;
996 }
997 break;
998 case 32:
999 switch (val_endian) {
1000 case REGMAP_ENDIAN_BIG:
1001 map->format.format_val = regmap_format_32_be;
1002 map->format.parse_val = regmap_parse_32_be;
1003 map->format.parse_inplace = regmap_parse_32_be_inplace;
1004 break;
1005 case REGMAP_ENDIAN_LITTLE:
1006 map->format.format_val = regmap_format_32_le;
1007 map->format.parse_val = regmap_parse_32_le;
1008 map->format.parse_inplace = regmap_parse_32_le_inplace;
1009 break;
1010 case REGMAP_ENDIAN_NATIVE:
1011 map->format.format_val = regmap_format_32_native;
1012 map->format.parse_val = regmap_parse_32_native;
1013 break;
1014 default:
1015 goto err_hwlock;
1016 }
1017 break;
1018 }
1019
1020 if (map->format.format_write) {
1021 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1022 (val_endian != REGMAP_ENDIAN_BIG))
1023 goto err_hwlock;
1024 map->use_single_write = true;
1025 }
1026
1027 if (!map->format.format_write &&
1028 !(map->format.format_reg && map->format.format_val))
1029 goto err_hwlock;
1030
1031 map->work_buf = kzalloc(size: map->format.buf_size, GFP_KERNEL);
1032 if (map->work_buf == NULL) {
1033 ret = -ENOMEM;
1034 goto err_hwlock;
1035 }
1036
1037 if (map->format.format_write) {
1038 map->defer_caching = false;
1039 map->reg_write = _regmap_bus_formatted_write;
1040 } else if (map->format.format_val) {
1041 map->defer_caching = true;
1042 map->reg_write = _regmap_bus_raw_write;
1043 }
1044
1045skip_format_initialization:
1046
1047 map->range_tree = RB_ROOT;
1048 for (i = 0; i < config->num_ranges; i++) {
1049 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1050 struct regmap_range_node *new;
1051
1052 /* Sanity check */
1053 if (range_cfg->range_max < range_cfg->range_min) {
1054 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1055 range_cfg->range_max, range_cfg->range_min);
1056 goto err_range;
1057 }
1058
1059 if (range_cfg->range_max > map->max_register) {
1060 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1061 range_cfg->range_max, map->max_register);
1062 goto err_range;
1063 }
1064
1065 if (range_cfg->selector_reg > map->max_register) {
1066 dev_err(map->dev,
1067 "Invalid range %d: selector out of map\n", i);
1068 goto err_range;
1069 }
1070
1071 if (range_cfg->window_len == 0) {
1072 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1073 i);
1074 goto err_range;
1075 }
1076
1077 /* Make sure, that this register range has no selector
1078 or data window within its boundary */
1079 for (j = 0; j < config->num_ranges; j++) {
1080 unsigned int sel_reg = config->ranges[j].selector_reg;
1081 unsigned int win_min = config->ranges[j].window_start;
1082 unsigned int win_max = win_min +
1083 config->ranges[j].window_len - 1;
1084
1085 /* Allow data window inside its own virtual range */
1086 if (j == i)
1087 continue;
1088
1089 if (range_cfg->range_min <= sel_reg &&
1090 sel_reg <= range_cfg->range_max) {
1091 dev_err(map->dev,
1092 "Range %d: selector for %d in window\n",
1093 i, j);
1094 goto err_range;
1095 }
1096
1097 if (!(win_max < range_cfg->range_min ||
1098 win_min > range_cfg->range_max)) {
1099 dev_err(map->dev,
1100 "Range %d: window for %d in window\n",
1101 i, j);
1102 goto err_range;
1103 }
1104 }
1105
1106 new = kzalloc(size: sizeof(*new), GFP_KERNEL);
1107 if (new == NULL) {
1108 ret = -ENOMEM;
1109 goto err_range;
1110 }
1111
1112 new->map = map;
1113 new->name = range_cfg->name;
1114 new->range_min = range_cfg->range_min;
1115 new->range_max = range_cfg->range_max;
1116 new->selector_reg = range_cfg->selector_reg;
1117 new->selector_mask = range_cfg->selector_mask;
1118 new->selector_shift = range_cfg->selector_shift;
1119 new->window_start = range_cfg->window_start;
1120 new->window_len = range_cfg->window_len;
1121
1122 if (!_regmap_range_add(map, data: new)) {
1123 dev_err(map->dev, "Failed to add range %d\n", i);
1124 kfree(objp: new);
1125 goto err_range;
1126 }
1127
1128 if (map->selector_work_buf == NULL) {
1129 map->selector_work_buf =
1130 kzalloc(size: map->format.buf_size, GFP_KERNEL);
1131 if (map->selector_work_buf == NULL) {
1132 ret = -ENOMEM;
1133 goto err_range;
1134 }
1135 }
1136 }
1137
1138 ret = regcache_init(map, config);
1139 if (ret != 0)
1140 goto err_range;
1141
1142 if (dev) {
1143 ret = regmap_attach_dev(dev, map, config);
1144 if (ret != 0)
1145 goto err_regcache;
1146 } else {
1147 regmap_debugfs_init(map);
1148 }
1149
1150 return map;
1151
1152err_regcache:
1153 regcache_exit(map);
1154err_range:
1155 regmap_range_exit(map);
1156 kfree(objp: map->work_buf);
1157err_hwlock:
1158 if (map->hwlock)
1159 hwspin_lock_free(hwlock: map->hwlock);
1160err_name:
1161 kfree_const(x: map->name);
1162err_map:
1163 kfree(objp: map);
1164err:
1165 return ERR_PTR(error: ret);
1166}
1167EXPORT_SYMBOL_GPL(__regmap_init);
1168
1169static void devm_regmap_release(struct device *dev, void *res)
1170{
1171 regmap_exit(map: *(struct regmap **)res);
1172}
1173
1174struct regmap *__devm_regmap_init(struct device *dev,
1175 const struct regmap_bus *bus,
1176 void *bus_context,
1177 const struct regmap_config *config,
1178 struct lock_class_key *lock_key,
1179 const char *lock_name)
1180{
1181 struct regmap **ptr, *regmap;
1182
1183 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1184 if (!ptr)
1185 return ERR_PTR(error: -ENOMEM);
1186
1187 regmap = __regmap_init(dev, bus, bus_context, config,
1188 lock_key, lock_name);
1189 if (!IS_ERR(ptr: regmap)) {
1190 *ptr = regmap;
1191 devres_add(dev, res: ptr);
1192 } else {
1193 devres_free(res: ptr);
1194 }
1195
1196 return regmap;
1197}
1198EXPORT_SYMBOL_GPL(__devm_regmap_init);
1199
1200static void regmap_field_init(struct regmap_field *rm_field,
1201 struct regmap *regmap, struct reg_field reg_field)
1202{
1203 rm_field->regmap = regmap;
1204 rm_field->reg = reg_field.reg;
1205 rm_field->shift = reg_field.lsb;
1206 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1207
1208 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1209
1210 rm_field->id_size = reg_field.id_size;
1211 rm_field->id_offset = reg_field.id_offset;
1212}
1213
1214/**
1215 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1216 *
1217 * @dev: Device that will be interacted with
1218 * @regmap: regmap bank in which this register field is located.
1219 * @reg_field: Register field with in the bank.
1220 *
1221 * The return value will be an ERR_PTR() on error or a valid pointer
1222 * to a struct regmap_field. The regmap_field will be automatically freed
1223 * by the device management code.
1224 */
1225struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1226 struct regmap *regmap, struct reg_field reg_field)
1227{
1228 struct regmap_field *rm_field = devm_kzalloc(dev,
1229 size: sizeof(*rm_field), GFP_KERNEL);
1230 if (!rm_field)
1231 return ERR_PTR(error: -ENOMEM);
1232
1233 regmap_field_init(rm_field, regmap, reg_field);
1234
1235 return rm_field;
1236
1237}
1238EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1239
1240
1241/**
1242 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1243 *
1244 * @regmap: regmap bank in which this register field is located.
1245 * @rm_field: regmap register fields within the bank.
1246 * @reg_field: Register fields within the bank.
1247 * @num_fields: Number of register fields.
1248 *
1249 * The return value will be an -ENOMEM on error or zero for success.
1250 * Newly allocated regmap_fields should be freed by calling
1251 * regmap_field_bulk_free()
1252 */
1253int regmap_field_bulk_alloc(struct regmap *regmap,
1254 struct regmap_field **rm_field,
1255 const struct reg_field *reg_field,
1256 int num_fields)
1257{
1258 struct regmap_field *rf;
1259 int i;
1260
1261 rf = kcalloc(n: num_fields, size: sizeof(*rf), GFP_KERNEL);
1262 if (!rf)
1263 return -ENOMEM;
1264
1265 for (i = 0; i < num_fields; i++) {
1266 regmap_field_init(rm_field: &rf[i], regmap, reg_field: reg_field[i]);
1267 rm_field[i] = &rf[i];
1268 }
1269
1270 return 0;
1271}
1272EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1273
1274/**
1275 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1276 * fields.
1277 *
1278 * @dev: Device that will be interacted with
1279 * @regmap: regmap bank in which this register field is located.
1280 * @rm_field: regmap register fields within the bank.
1281 * @reg_field: Register fields within the bank.
1282 * @num_fields: Number of register fields.
1283 *
1284 * The return value will be an -ENOMEM on error or zero for success.
1285 * Newly allocated regmap_fields will be automatically freed by the
1286 * device management code.
1287 */
1288int devm_regmap_field_bulk_alloc(struct device *dev,
1289 struct regmap *regmap,
1290 struct regmap_field **rm_field,
1291 const struct reg_field *reg_field,
1292 int num_fields)
1293{
1294 struct regmap_field *rf;
1295 int i;
1296
1297 rf = devm_kcalloc(dev, n: num_fields, size: sizeof(*rf), GFP_KERNEL);
1298 if (!rf)
1299 return -ENOMEM;
1300
1301 for (i = 0; i < num_fields; i++) {
1302 regmap_field_init(rm_field: &rf[i], regmap, reg_field: reg_field[i]);
1303 rm_field[i] = &rf[i];
1304 }
1305
1306 return 0;
1307}
1308EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1309
1310/**
1311 * regmap_field_bulk_free() - Free register field allocated using
1312 * regmap_field_bulk_alloc.
1313 *
1314 * @field: regmap fields which should be freed.
1315 */
1316void regmap_field_bulk_free(struct regmap_field *field)
1317{
1318 kfree(objp: field);
1319}
1320EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1321
1322/**
1323 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1324 * devm_regmap_field_bulk_alloc.
1325 *
1326 * @dev: Device that will be interacted with
1327 * @field: regmap field which should be freed.
1328 *
1329 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1330 * drivers need not call this function, as the memory allocated via devm
1331 * will be freed as per device-driver life-cycle.
1332 */
1333void devm_regmap_field_bulk_free(struct device *dev,
1334 struct regmap_field *field)
1335{
1336 devm_kfree(dev, p: field);
1337}
1338EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1339
1340/**
1341 * devm_regmap_field_free() - Free a register field allocated using
1342 * devm_regmap_field_alloc.
1343 *
1344 * @dev: Device that will be interacted with
1345 * @field: regmap field which should be freed.
1346 *
1347 * Free register field allocated using devm_regmap_field_alloc(). Usually
1348 * drivers need not call this function, as the memory allocated via devm
1349 * will be freed as per device-driver life-cyle.
1350 */
1351void devm_regmap_field_free(struct device *dev,
1352 struct regmap_field *field)
1353{
1354 devm_kfree(dev, p: field);
1355}
1356EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1357
1358/**
1359 * regmap_field_alloc() - Allocate and initialise a register field.
1360 *
1361 * @regmap: regmap bank in which this register field is located.
1362 * @reg_field: Register field with in the bank.
1363 *
1364 * The return value will be an ERR_PTR() on error or a valid pointer
1365 * to a struct regmap_field. The regmap_field should be freed by the
1366 * user once its finished working with it using regmap_field_free().
1367 */
1368struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1369 struct reg_field reg_field)
1370{
1371 struct regmap_field *rm_field = kzalloc(size: sizeof(*rm_field), GFP_KERNEL);
1372
1373 if (!rm_field)
1374 return ERR_PTR(error: -ENOMEM);
1375
1376 regmap_field_init(rm_field, regmap, reg_field);
1377
1378 return rm_field;
1379}
1380EXPORT_SYMBOL_GPL(regmap_field_alloc);
1381
1382/**
1383 * regmap_field_free() - Free register field allocated using
1384 * regmap_field_alloc.
1385 *
1386 * @field: regmap field which should be freed.
1387 */
1388void regmap_field_free(struct regmap_field *field)
1389{
1390 kfree(objp: field);
1391}
1392EXPORT_SYMBOL_GPL(regmap_field_free);
1393
1394/**
1395 * regmap_reinit_cache() - Reinitialise the current register cache
1396 *
1397 * @map: Register map to operate on.
1398 * @config: New configuration. Only the cache data will be used.
1399 *
1400 * Discard any existing register cache for the map and initialize a
1401 * new cache. This can be used to restore the cache to defaults or to
1402 * update the cache configuration to reflect runtime discovery of the
1403 * hardware.
1404 *
1405 * No explicit locking is done here, the user needs to ensure that
1406 * this function will not race with other calls to regmap.
1407 */
1408int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1409{
1410 int ret;
1411
1412 regcache_exit(map);
1413 regmap_debugfs_exit(map);
1414
1415 map->max_register = config->max_register;
1416 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1417 map->writeable_reg = config->writeable_reg;
1418 map->readable_reg = config->readable_reg;
1419 map->volatile_reg = config->volatile_reg;
1420 map->precious_reg = config->precious_reg;
1421 map->writeable_noinc_reg = config->writeable_noinc_reg;
1422 map->readable_noinc_reg = config->readable_noinc_reg;
1423 map->cache_type = config->cache_type;
1424
1425 ret = regmap_set_name(map, config);
1426 if (ret)
1427 return ret;
1428
1429 regmap_debugfs_init(map);
1430
1431 map->cache_bypass = false;
1432 map->cache_only = false;
1433
1434 return regcache_init(map, config);
1435}
1436EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1437
1438/**
1439 * regmap_exit() - Free a previously allocated register map
1440 *
1441 * @map: Register map to operate on.
1442 */
1443void regmap_exit(struct regmap *map)
1444{
1445 struct regmap_async *async;
1446
1447 regcache_exit(map);
1448 regmap_debugfs_exit(map);
1449 regmap_range_exit(map);
1450 if (map->bus && map->bus->free_context)
1451 map->bus->free_context(map->bus_context);
1452 kfree(objp: map->work_buf);
1453 while (!list_empty(head: &map->async_free)) {
1454 async = list_first_entry_or_null(&map->async_free,
1455 struct regmap_async,
1456 list);
1457 list_del(entry: &async->list);
1458 kfree(objp: async->work_buf);
1459 kfree(objp: async);
1460 }
1461 if (map->hwlock)
1462 hwspin_lock_free(hwlock: map->hwlock);
1463 if (map->lock == regmap_lock_mutex)
1464 mutex_destroy(lock: &map->mutex);
1465 kfree_const(x: map->name);
1466 kfree(objp: map->patch);
1467 if (map->bus && map->bus->free_on_exit)
1468 kfree(objp: map->bus);
1469 kfree(objp: map);
1470}
1471EXPORT_SYMBOL_GPL(regmap_exit);
1472
1473static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1474{
1475 struct regmap **r = res;
1476 if (!r || !*r) {
1477 WARN_ON(!r || !*r);
1478 return 0;
1479 }
1480
1481 /* If the user didn't specify a name match any */
1482 if (data)
1483 return (*r)->name && !strcmp((*r)->name, data);
1484 else
1485 return 1;
1486}
1487
1488/**
1489 * dev_get_regmap() - Obtain the regmap (if any) for a device
1490 *
1491 * @dev: Device to retrieve the map for
1492 * @name: Optional name for the register map, usually NULL.
1493 *
1494 * Returns the regmap for the device if one is present, or NULL. If
1495 * name is specified then it must match the name specified when
1496 * registering the device, if it is NULL then the first regmap found
1497 * will be used. Devices with multiple register maps are very rare,
1498 * generic code should normally not need to specify a name.
1499 */
1500struct regmap *dev_get_regmap(struct device *dev, const char *name)
1501{
1502 struct regmap **r = devres_find(dev, release: dev_get_regmap_release,
1503 match: dev_get_regmap_match, match_data: (void *)name);
1504
1505 if (!r)
1506 return NULL;
1507 return *r;
1508}
1509EXPORT_SYMBOL_GPL(dev_get_regmap);
1510
1511/**
1512 * regmap_get_device() - Obtain the device from a regmap
1513 *
1514 * @map: Register map to operate on.
1515 *
1516 * Returns the underlying device that the regmap has been created for.
1517 */
1518struct device *regmap_get_device(struct regmap *map)
1519{
1520 return map->dev;
1521}
1522EXPORT_SYMBOL_GPL(regmap_get_device);
1523
1524static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1525 struct regmap_range_node *range,
1526 unsigned int val_num)
1527{
1528 void *orig_work_buf;
1529 unsigned int win_offset;
1530 unsigned int win_page;
1531 bool page_chg;
1532 int ret;
1533
1534 win_offset = (*reg - range->range_min) % range->window_len;
1535 win_page = (*reg - range->range_min) / range->window_len;
1536
1537 if (val_num > 1) {
1538 /* Bulk write shouldn't cross range boundary */
1539 if (*reg + val_num - 1 > range->range_max)
1540 return -EINVAL;
1541
1542 /* ... or single page boundary */
1543 if (val_num > range->window_len - win_offset)
1544 return -EINVAL;
1545 }
1546
1547 /* It is possible to have selector register inside data window.
1548 In that case, selector register is located on every page and
1549 it needs no page switching, when accessed alone. */
1550 if (val_num > 1 ||
1551 range->window_start + win_offset != range->selector_reg) {
1552 /* Use separate work_buf during page switching */
1553 orig_work_buf = map->work_buf;
1554 map->work_buf = map->selector_work_buf;
1555
1556 ret = _regmap_update_bits(map, reg: range->selector_reg,
1557 mask: range->selector_mask,
1558 val: win_page << range->selector_shift,
1559 change: &page_chg, force_write: false);
1560
1561 map->work_buf = orig_work_buf;
1562
1563 if (ret != 0)
1564 return ret;
1565 }
1566
1567 *reg = range->window_start + win_offset;
1568
1569 return 0;
1570}
1571
1572static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1573 unsigned long mask)
1574{
1575 u8 *buf;
1576 int i;
1577
1578 if (!mask || !map->work_buf)
1579 return;
1580
1581 buf = map->work_buf;
1582
1583 for (i = 0; i < max_bytes; i++)
1584 buf[i] |= (mask >> (8 * i)) & 0xff;
1585}
1586
1587static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1588{
1589 reg += map->reg_base;
1590
1591 if (map->format.reg_shift > 0)
1592 reg >>= map->format.reg_shift;
1593 else if (map->format.reg_shift < 0)
1594 reg <<= -(map->format.reg_shift);
1595
1596 return reg;
1597}
1598
1599static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1600 const void *val, size_t val_len, bool noinc)
1601{
1602 struct regmap_range_node *range;
1603 unsigned long flags;
1604 void *work_val = map->work_buf + map->format.reg_bytes +
1605 map->format.pad_bytes;
1606 void *buf;
1607 int ret = -ENOTSUPP;
1608 size_t len;
1609 int i;
1610
1611 /* Check for unwritable or noinc registers in range
1612 * before we start
1613 */
1614 if (!regmap_writeable_noinc(map, reg)) {
1615 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1616 unsigned int element =
1617 reg + regmap_get_offset(map, index: i);
1618 if (!regmap_writeable(map, reg: element) ||
1619 regmap_writeable_noinc(map, reg: element))
1620 return -EINVAL;
1621 }
1622 }
1623
1624 if (!map->cache_bypass && map->format.parse_val) {
1625 unsigned int ival, offset;
1626 int val_bytes = map->format.val_bytes;
1627
1628 /* Cache the last written value for noinc writes */
1629 i = noinc ? val_len - val_bytes : 0;
1630 for (; i < val_len; i += val_bytes) {
1631 ival = map->format.parse_val(val + i);
1632 offset = noinc ? 0 : regmap_get_offset(map, index: i / val_bytes);
1633 ret = regcache_write(map, reg: reg + offset, value: ival);
1634 if (ret) {
1635 dev_err(map->dev,
1636 "Error in caching of register: %x ret: %d\n",
1637 reg + offset, ret);
1638 return ret;
1639 }
1640 }
1641 if (map->cache_only) {
1642 map->cache_dirty = true;
1643 return 0;
1644 }
1645 }
1646
1647 range = _regmap_range_lookup(map, reg);
1648 if (range) {
1649 int val_num = val_len / map->format.val_bytes;
1650 int win_offset = (reg - range->range_min) % range->window_len;
1651 int win_residue = range->window_len - win_offset;
1652
1653 /* If the write goes beyond the end of the window split it */
1654 while (val_num > win_residue) {
1655 dev_dbg(map->dev, "Writing window %d/%zu\n",
1656 win_residue, val_len / map->format.val_bytes);
1657 ret = _regmap_raw_write_impl(map, reg, val,
1658 val_len: win_residue *
1659 map->format.val_bytes, noinc);
1660 if (ret != 0)
1661 return ret;
1662
1663 reg += win_residue;
1664 val_num -= win_residue;
1665 val += win_residue * map->format.val_bytes;
1666 val_len -= win_residue * map->format.val_bytes;
1667
1668 win_offset = (reg - range->range_min) %
1669 range->window_len;
1670 win_residue = range->window_len - win_offset;
1671 }
1672
1673 ret = _regmap_select_page(map, reg: &reg, range, val_num: noinc ? 1 : val_num);
1674 if (ret != 0)
1675 return ret;
1676 }
1677
1678 reg = regmap_reg_addr(map, reg);
1679 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1680 regmap_set_work_buf_flag_mask(map, max_bytes: map->format.reg_bytes,
1681 mask: map->write_flag_mask);
1682
1683 /*
1684 * Essentially all I/O mechanisms will be faster with a single
1685 * buffer to write. Since register syncs often generate raw
1686 * writes of single registers optimise that case.
1687 */
1688 if (val != work_val && val_len == map->format.val_bytes) {
1689 memcpy(work_val, val, map->format.val_bytes);
1690 val = work_val;
1691 }
1692
1693 if (map->async && map->bus && map->bus->async_write) {
1694 struct regmap_async *async;
1695
1696 trace_regmap_async_write_start(map, reg, count: val_len);
1697
1698 spin_lock_irqsave(&map->async_lock, flags);
1699 async = list_first_entry_or_null(&map->async_free,
1700 struct regmap_async,
1701 list);
1702 if (async)
1703 list_del(entry: &async->list);
1704 spin_unlock_irqrestore(lock: &map->async_lock, flags);
1705
1706 if (!async) {
1707 async = map->bus->async_alloc();
1708 if (!async)
1709 return -ENOMEM;
1710
1711 async->work_buf = kzalloc(size: map->format.buf_size,
1712 GFP_KERNEL | GFP_DMA);
1713 if (!async->work_buf) {
1714 kfree(objp: async);
1715 return -ENOMEM;
1716 }
1717 }
1718
1719 async->map = map;
1720
1721 /* If the caller supplied the value we can use it safely. */
1722 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1723 map->format.reg_bytes + map->format.val_bytes);
1724
1725 spin_lock_irqsave(&map->async_lock, flags);
1726 list_add_tail(new: &async->list, head: &map->async_list);
1727 spin_unlock_irqrestore(lock: &map->async_lock, flags);
1728
1729 if (val != work_val)
1730 ret = map->bus->async_write(map->bus_context,
1731 async->work_buf,
1732 map->format.reg_bytes +
1733 map->format.pad_bytes,
1734 val, val_len, async);
1735 else
1736 ret = map->bus->async_write(map->bus_context,
1737 async->work_buf,
1738 map->format.reg_bytes +
1739 map->format.pad_bytes +
1740 val_len, NULL, 0, async);
1741
1742 if (ret != 0) {
1743 dev_err(map->dev, "Failed to schedule write: %d\n",
1744 ret);
1745
1746 spin_lock_irqsave(&map->async_lock, flags);
1747 list_move(list: &async->list, head: &map->async_free);
1748 spin_unlock_irqrestore(lock: &map->async_lock, flags);
1749 }
1750
1751 return ret;
1752 }
1753
1754 trace_regmap_hw_write_start(map, reg, count: val_len / map->format.val_bytes);
1755
1756 /* If we're doing a single register write we can probably just
1757 * send the work_buf directly, otherwise try to do a gather
1758 * write.
1759 */
1760 if (val == work_val)
1761 ret = map->write(map->bus_context, map->work_buf,
1762 map->format.reg_bytes +
1763 map->format.pad_bytes +
1764 val_len);
1765 else if (map->bus && map->bus->gather_write)
1766 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1767 map->format.reg_bytes +
1768 map->format.pad_bytes,
1769 val, val_len);
1770 else
1771 ret = -ENOTSUPP;
1772
1773 /* If that didn't work fall back on linearising by hand. */
1774 if (ret == -ENOTSUPP) {
1775 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1776 buf = kzalloc(size: len, GFP_KERNEL);
1777 if (!buf)
1778 return -ENOMEM;
1779
1780 memcpy(buf, map->work_buf, map->format.reg_bytes);
1781 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1782 val, val_len);
1783 ret = map->write(map->bus_context, buf, len);
1784
1785 kfree(objp: buf);
1786 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1787 /* regcache_drop_region() takes lock that we already have,
1788 * thus call map->cache_ops->drop() directly
1789 */
1790 if (map->cache_ops && map->cache_ops->drop)
1791 map->cache_ops->drop(map, reg, reg + 1);
1792 }
1793
1794 trace_regmap_hw_write_done(map, reg, count: val_len / map->format.val_bytes);
1795
1796 return ret;
1797}
1798
1799/**
1800 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1801 *
1802 * @map: Map to check.
1803 */
1804bool regmap_can_raw_write(struct regmap *map)
1805{
1806 return map->write && map->format.format_val && map->format.format_reg;
1807}
1808EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1809
1810/**
1811 * regmap_get_raw_read_max - Get the maximum size we can read
1812 *
1813 * @map: Map to check.
1814 */
1815size_t regmap_get_raw_read_max(struct regmap *map)
1816{
1817 return map->max_raw_read;
1818}
1819EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1820
1821/**
1822 * regmap_get_raw_write_max - Get the maximum size we can read
1823 *
1824 * @map: Map to check.
1825 */
1826size_t regmap_get_raw_write_max(struct regmap *map)
1827{
1828 return map->max_raw_write;
1829}
1830EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1831
1832static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1833 unsigned int val)
1834{
1835 int ret;
1836 struct regmap_range_node *range;
1837 struct regmap *map = context;
1838
1839 WARN_ON(!map->format.format_write);
1840
1841 range = _regmap_range_lookup(map, reg);
1842 if (range) {
1843 ret = _regmap_select_page(map, reg: &reg, range, val_num: 1);
1844 if (ret != 0)
1845 return ret;
1846 }
1847
1848 reg = regmap_reg_addr(map, reg);
1849 map->format.format_write(map, reg, val);
1850
1851 trace_regmap_hw_write_start(map, reg, count: 1);
1852
1853 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1854
1855 trace_regmap_hw_write_done(map, reg, count: 1);
1856
1857 return ret;
1858}
1859
1860static int _regmap_bus_reg_write(void *context, unsigned int reg,
1861 unsigned int val)
1862{
1863 struct regmap *map = context;
1864 struct regmap_range_node *range;
1865 int ret;
1866
1867 range = _regmap_range_lookup(map, reg);
1868 if (range) {
1869 ret = _regmap_select_page(map, reg: &reg, range, val_num: 1);
1870 if (ret != 0)
1871 return ret;
1872 }
1873
1874 reg = regmap_reg_addr(map, reg);
1875 return map->bus->reg_write(map->bus_context, reg, val);
1876}
1877
1878static int _regmap_bus_raw_write(void *context, unsigned int reg,
1879 unsigned int val)
1880{
1881 struct regmap *map = context;
1882
1883 WARN_ON(!map->format.format_val);
1884
1885 map->format.format_val(map->work_buf + map->format.reg_bytes
1886 + map->format.pad_bytes, val, 0);
1887 return _regmap_raw_write_impl(map, reg,
1888 val: map->work_buf +
1889 map->format.reg_bytes +
1890 map->format.pad_bytes,
1891 val_len: map->format.val_bytes,
1892 noinc: false);
1893}
1894
1895static inline void *_regmap_map_get_context(struct regmap *map)
1896{
1897 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1898}
1899
1900int _regmap_write(struct regmap *map, unsigned int reg,
1901 unsigned int val)
1902{
1903 int ret;
1904 void *context = _regmap_map_get_context(map);
1905
1906 if (!regmap_writeable(map, reg))
1907 return -EIO;
1908
1909 if (!map->cache_bypass && !map->defer_caching) {
1910 ret = regcache_write(map, reg, value: val);
1911 if (ret != 0)
1912 return ret;
1913 if (map->cache_only) {
1914 map->cache_dirty = true;
1915 return 0;
1916 }
1917 }
1918
1919 ret = map->reg_write(context, reg, val);
1920 if (ret == 0) {
1921 if (regmap_should_log(map))
1922 dev_info(map->dev, "%x <= %x\n", reg, val);
1923
1924 trace_regmap_reg_write(map, reg, val);
1925 }
1926
1927 return ret;
1928}
1929
1930/**
1931 * regmap_write() - Write a value to a single register
1932 *
1933 * @map: Register map to write to
1934 * @reg: Register to write to
1935 * @val: Value to be written
1936 *
1937 * A value of zero will be returned on success, a negative errno will
1938 * be returned in error cases.
1939 */
1940int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1941{
1942 int ret;
1943
1944 if (!IS_ALIGNED(reg, map->reg_stride))
1945 return -EINVAL;
1946
1947 map->lock(map->lock_arg);
1948
1949 ret = _regmap_write(map, reg, val);
1950
1951 map->unlock(map->lock_arg);
1952
1953 return ret;
1954}
1955EXPORT_SYMBOL_GPL(regmap_write);
1956
1957/**
1958 * regmap_write_async() - Write a value to a single register asynchronously
1959 *
1960 * @map: Register map to write to
1961 * @reg: Register to write to
1962 * @val: Value to be written
1963 *
1964 * A value of zero will be returned on success, a negative errno will
1965 * be returned in error cases.
1966 */
1967int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1968{
1969 int ret;
1970
1971 if (!IS_ALIGNED(reg, map->reg_stride))
1972 return -EINVAL;
1973
1974 map->lock(map->lock_arg);
1975
1976 map->async = true;
1977
1978 ret = _regmap_write(map, reg, val);
1979
1980 map->async = false;
1981
1982 map->unlock(map->lock_arg);
1983
1984 return ret;
1985}
1986EXPORT_SYMBOL_GPL(regmap_write_async);
1987
1988int _regmap_raw_write(struct regmap *map, unsigned int reg,
1989 const void *val, size_t val_len, bool noinc)
1990{
1991 size_t val_bytes = map->format.val_bytes;
1992 size_t val_count = val_len / val_bytes;
1993 size_t chunk_count, chunk_bytes;
1994 size_t chunk_regs = val_count;
1995 int ret, i;
1996
1997 if (!val_count)
1998 return -EINVAL;
1999
2000 if (map->use_single_write)
2001 chunk_regs = 1;
2002 else if (map->max_raw_write && val_len > map->max_raw_write)
2003 chunk_regs = map->max_raw_write / val_bytes;
2004
2005 chunk_count = val_count / chunk_regs;
2006 chunk_bytes = chunk_regs * val_bytes;
2007
2008 /* Write as many bytes as possible with chunk_size */
2009 for (i = 0; i < chunk_count; i++) {
2010 ret = _regmap_raw_write_impl(map, reg, val, val_len: chunk_bytes, noinc);
2011 if (ret)
2012 return ret;
2013
2014 reg += regmap_get_offset(map, index: chunk_regs);
2015 val += chunk_bytes;
2016 val_len -= chunk_bytes;
2017 }
2018
2019 /* Write remaining bytes */
2020 if (val_len)
2021 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2022
2023 return ret;
2024}
2025
2026/**
2027 * regmap_raw_write() - Write raw values to one or more registers
2028 *
2029 * @map: Register map to write to
2030 * @reg: Initial register to write to
2031 * @val: Block of data to be written, laid out for direct transmission to the
2032 * device
2033 * @val_len: Length of data pointed to by val.
2034 *
2035 * This function is intended to be used for things like firmware
2036 * download where a large block of data needs to be transferred to the
2037 * device. No formatting will be done on the data provided.
2038 *
2039 * A value of zero will be returned on success, a negative errno will
2040 * be returned in error cases.
2041 */
2042int regmap_raw_write(struct regmap *map, unsigned int reg,
2043 const void *val, size_t val_len)
2044{
2045 int ret;
2046
2047 if (!regmap_can_raw_write(map))
2048 return -EINVAL;
2049 if (val_len % map->format.val_bytes)
2050 return -EINVAL;
2051
2052 map->lock(map->lock_arg);
2053
2054 ret = _regmap_raw_write(map, reg, val, val_len, noinc: false);
2055
2056 map->unlock(map->lock_arg);
2057
2058 return ret;
2059}
2060EXPORT_SYMBOL_GPL(regmap_raw_write);
2061
2062static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2063 void *val, unsigned int val_len, bool write)
2064{
2065 size_t val_bytes = map->format.val_bytes;
2066 size_t val_count = val_len / val_bytes;
2067 unsigned int lastval;
2068 u8 *u8p;
2069 u16 *u16p;
2070 u32 *u32p;
2071 int ret;
2072 int i;
2073
2074 switch (val_bytes) {
2075 case 1:
2076 u8p = val;
2077 if (write)
2078 lastval = (unsigned int)u8p[val_count - 1];
2079 break;
2080 case 2:
2081 u16p = val;
2082 if (write)
2083 lastval = (unsigned int)u16p[val_count - 1];
2084 break;
2085 case 4:
2086 u32p = val;
2087 if (write)
2088 lastval = (unsigned int)u32p[val_count - 1];
2089 break;
2090 default:
2091 return -EINVAL;
2092 }
2093
2094 /*
2095 * Update the cache with the last value we write, the rest is just
2096 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2097 * sure a single read from the cache will work.
2098 */
2099 if (write) {
2100 if (!map->cache_bypass && !map->defer_caching) {
2101 ret = regcache_write(map, reg, value: lastval);
2102 if (ret != 0)
2103 return ret;
2104 if (map->cache_only) {
2105 map->cache_dirty = true;
2106 return 0;
2107 }
2108 }
2109 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2110 } else {
2111 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2112 }
2113
2114 if (!ret && regmap_should_log(map)) {
2115 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2116 for (i = 0; i < val_count; i++) {
2117 switch (val_bytes) {
2118 case 1:
2119 pr_cont("%x", u8p[i]);
2120 break;
2121 case 2:
2122 pr_cont("%x", u16p[i]);
2123 break;
2124 case 4:
2125 pr_cont("%x", u32p[i]);
2126 break;
2127 default:
2128 break;
2129 }
2130 if (i == (val_count - 1))
2131 pr_cont("]\n");
2132 else
2133 pr_cont(",");
2134 }
2135 }
2136
2137 return 0;
2138}
2139
2140/**
2141 * regmap_noinc_write(): Write data to a register without incrementing the
2142 * register number
2143 *
2144 * @map: Register map to write to
2145 * @reg: Register to write to
2146 * @val: Pointer to data buffer
2147 * @val_len: Length of output buffer in bytes.
2148 *
2149 * The regmap API usually assumes that bulk bus write operations will write a
2150 * range of registers. Some devices have certain registers for which a write
2151 * operation can write to an internal FIFO.
2152 *
2153 * The target register must be volatile but registers after it can be
2154 * completely unrelated cacheable registers.
2155 *
2156 * This will attempt multiple writes as required to write val_len bytes.
2157 *
2158 * A value of zero will be returned on success, a negative errno will be
2159 * returned in error cases.
2160 */
2161int regmap_noinc_write(struct regmap *map, unsigned int reg,
2162 const void *val, size_t val_len)
2163{
2164 size_t write_len;
2165 int ret;
2166
2167 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2168 return -EINVAL;
2169 if (val_len % map->format.val_bytes)
2170 return -EINVAL;
2171 if (!IS_ALIGNED(reg, map->reg_stride))
2172 return -EINVAL;
2173 if (val_len == 0)
2174 return -EINVAL;
2175
2176 map->lock(map->lock_arg);
2177
2178 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2179 ret = -EINVAL;
2180 goto out_unlock;
2181 }
2182
2183 /*
2184 * Use the accelerated operation if we can. The val drops the const
2185 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2186 */
2187 if (map->bus->reg_noinc_write) {
2188 ret = regmap_noinc_readwrite(map, reg, val: (void *)val, val_len, write: true);
2189 goto out_unlock;
2190 }
2191
2192 while (val_len) {
2193 if (map->max_raw_write && map->max_raw_write < val_len)
2194 write_len = map->max_raw_write;
2195 else
2196 write_len = val_len;
2197 ret = _regmap_raw_write(map, reg, val, val_len: write_len, noinc: true);
2198 if (ret)
2199 goto out_unlock;
2200 val = ((u8 *)val) + write_len;
2201 val_len -= write_len;
2202 }
2203
2204out_unlock:
2205 map->unlock(map->lock_arg);
2206 return ret;
2207}
2208EXPORT_SYMBOL_GPL(regmap_noinc_write);
2209
2210/**
2211 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2212 * register field.
2213 *
2214 * @field: Register field to write to
2215 * @mask: Bitmask to change
2216 * @val: Value to be written
2217 * @change: Boolean indicating if a write was done
2218 * @async: Boolean indicating asynchronously
2219 * @force: Boolean indicating use force update
2220 *
2221 * Perform a read/modify/write cycle on the register field with change,
2222 * async, force option.
2223 *
2224 * A value of zero will be returned on success, a negative errno will
2225 * be returned in error cases.
2226 */
2227int regmap_field_update_bits_base(struct regmap_field *field,
2228 unsigned int mask, unsigned int val,
2229 bool *change, bool async, bool force)
2230{
2231 mask = (mask << field->shift) & field->mask;
2232
2233 return regmap_update_bits_base(map: field->regmap, reg: field->reg,
2234 mask, val: val << field->shift,
2235 change, async, force);
2236}
2237EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2238
2239/**
2240 * regmap_field_test_bits() - Check if all specified bits are set in a
2241 * register field.
2242 *
2243 * @field: Register field to operate on
2244 * @bits: Bits to test
2245 *
2246 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2247 * tested bits is not set and 1 if all tested bits are set.
2248 */
2249int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2250{
2251 unsigned int val, ret;
2252
2253 ret = regmap_field_read(field, val: &val);
2254 if (ret)
2255 return ret;
2256
2257 return (val & bits) == bits;
2258}
2259EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2260
2261/**
2262 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2263 * register field with port ID
2264 *
2265 * @field: Register field to write to
2266 * @id: port ID
2267 * @mask: Bitmask to change
2268 * @val: Value to be written
2269 * @change: Boolean indicating if a write was done
2270 * @async: Boolean indicating asynchronously
2271 * @force: Boolean indicating use force update
2272 *
2273 * A value of zero will be returned on success, a negative errno will
2274 * be returned in error cases.
2275 */
2276int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2277 unsigned int mask, unsigned int val,
2278 bool *change, bool async, bool force)
2279{
2280 if (id >= field->id_size)
2281 return -EINVAL;
2282
2283 mask = (mask << field->shift) & field->mask;
2284
2285 return regmap_update_bits_base(map: field->regmap,
2286 reg: field->reg + (field->id_offset * id),
2287 mask, val: val << field->shift,
2288 change, async, force);
2289}
2290EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2291
2292/**
2293 * regmap_bulk_write() - Write multiple registers to the device
2294 *
2295 * @map: Register map to write to
2296 * @reg: First register to be write from
2297 * @val: Block of data to be written, in native register size for device
2298 * @val_count: Number of registers to write
2299 *
2300 * This function is intended to be used for writing a large block of
2301 * data to the device either in single transfer or multiple transfer.
2302 *
2303 * A value of zero will be returned on success, a negative errno will
2304 * be returned in error cases.
2305 */
2306int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2307 size_t val_count)
2308{
2309 int ret = 0, i;
2310 size_t val_bytes = map->format.val_bytes;
2311
2312 if (!IS_ALIGNED(reg, map->reg_stride))
2313 return -EINVAL;
2314
2315 /*
2316 * Some devices don't support bulk write, for them we have a series of
2317 * single write operations.
2318 */
2319 if (!map->write || !map->format.parse_inplace) {
2320 map->lock(map->lock_arg);
2321 for (i = 0; i < val_count; i++) {
2322 unsigned int ival;
2323
2324 switch (val_bytes) {
2325 case 1:
2326 ival = *(u8 *)(val + (i * val_bytes));
2327 break;
2328 case 2:
2329 ival = *(u16 *)(val + (i * val_bytes));
2330 break;
2331 case 4:
2332 ival = *(u32 *)(val + (i * val_bytes));
2333 break;
2334 default:
2335 ret = -EINVAL;
2336 goto out;
2337 }
2338
2339 ret = _regmap_write(map,
2340 reg: reg + regmap_get_offset(map, index: i),
2341 val: ival);
2342 if (ret != 0)
2343 goto out;
2344 }
2345out:
2346 map->unlock(map->lock_arg);
2347 } else {
2348 void *wval;
2349
2350 wval = kmemdup(p: val, size: val_count * val_bytes, gfp: map->alloc_flags);
2351 if (!wval)
2352 return -ENOMEM;
2353
2354 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2355 map->format.parse_inplace(wval + i);
2356
2357 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2358
2359 kfree(objp: wval);
2360 }
2361
2362 if (!ret)
2363 trace_regmap_bulk_write(map, reg, val, val_len: val_bytes * val_count);
2364
2365 return ret;
2366}
2367EXPORT_SYMBOL_GPL(regmap_bulk_write);
2368
2369/*
2370 * _regmap_raw_multi_reg_write()
2371 *
2372 * the (register,newvalue) pairs in regs have not been formatted, but
2373 * they are all in the same page and have been changed to being page
2374 * relative. The page register has been written if that was necessary.
2375 */
2376static int _regmap_raw_multi_reg_write(struct regmap *map,
2377 const struct reg_sequence *regs,
2378 size_t num_regs)
2379{
2380 int ret;
2381 void *buf;
2382 int i;
2383 u8 *u8;
2384 size_t val_bytes = map->format.val_bytes;
2385 size_t reg_bytes = map->format.reg_bytes;
2386 size_t pad_bytes = map->format.pad_bytes;
2387 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2388 size_t len = pair_size * num_regs;
2389
2390 if (!len)
2391 return -EINVAL;
2392
2393 buf = kzalloc(size: len, GFP_KERNEL);
2394 if (!buf)
2395 return -ENOMEM;
2396
2397 /* We have to linearise by hand. */
2398
2399 u8 = buf;
2400
2401 for (i = 0; i < num_regs; i++) {
2402 unsigned int reg = regs[i].reg;
2403 unsigned int val = regs[i].def;
2404 trace_regmap_hw_write_start(map, reg, count: 1);
2405 reg = regmap_reg_addr(map, reg);
2406 map->format.format_reg(u8, reg, map->reg_shift);
2407 u8 += reg_bytes + pad_bytes;
2408 map->format.format_val(u8, val, 0);
2409 u8 += val_bytes;
2410 }
2411 u8 = buf;
2412 *u8 |= map->write_flag_mask;
2413
2414 ret = map->write(map->bus_context, buf, len);
2415
2416 kfree(objp: buf);
2417
2418 for (i = 0; i < num_regs; i++) {
2419 int reg = regs[i].reg;
2420 trace_regmap_hw_write_done(map, reg, count: 1);
2421 }
2422 return ret;
2423}
2424
2425static unsigned int _regmap_register_page(struct regmap *map,
2426 unsigned int reg,
2427 struct regmap_range_node *range)
2428{
2429 unsigned int win_page = (reg - range->range_min) / range->window_len;
2430
2431 return win_page;
2432}
2433
2434static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2435 struct reg_sequence *regs,
2436 size_t num_regs)
2437{
2438 int ret;
2439 int i, n;
2440 struct reg_sequence *base;
2441 unsigned int this_page = 0;
2442 unsigned int page_change = 0;
2443 /*
2444 * the set of registers are not neccessarily in order, but
2445 * since the order of write must be preserved this algorithm
2446 * chops the set each time the page changes. This also applies
2447 * if there is a delay required at any point in the sequence.
2448 */
2449 base = regs;
2450 for (i = 0, n = 0; i < num_regs; i++, n++) {
2451 unsigned int reg = regs[i].reg;
2452 struct regmap_range_node *range;
2453
2454 range = _regmap_range_lookup(map, reg);
2455 if (range) {
2456 unsigned int win_page = _regmap_register_page(map, reg,
2457 range);
2458
2459 if (i == 0)
2460 this_page = win_page;
2461 if (win_page != this_page) {
2462 this_page = win_page;
2463 page_change = 1;
2464 }
2465 }
2466
2467 /* If we have both a page change and a delay make sure to
2468 * write the regs and apply the delay before we change the
2469 * page.
2470 */
2471
2472 if (page_change || regs[i].delay_us) {
2473
2474 /* For situations where the first write requires
2475 * a delay we need to make sure we don't call
2476 * raw_multi_reg_write with n=0
2477 * This can't occur with page breaks as we
2478 * never write on the first iteration
2479 */
2480 if (regs[i].delay_us && i == 0)
2481 n = 1;
2482
2483 ret = _regmap_raw_multi_reg_write(map, regs: base, num_regs: n);
2484 if (ret != 0)
2485 return ret;
2486
2487 if (regs[i].delay_us) {
2488 if (map->can_sleep)
2489 fsleep(usecs: regs[i].delay_us);
2490 else
2491 udelay(regs[i].delay_us);
2492 }
2493
2494 base += n;
2495 n = 0;
2496
2497 if (page_change) {
2498 ret = _regmap_select_page(map,
2499 reg: &base[n].reg,
2500 range, val_num: 1);
2501 if (ret != 0)
2502 return ret;
2503
2504 page_change = 0;
2505 }
2506
2507 }
2508
2509 }
2510 if (n > 0)
2511 return _regmap_raw_multi_reg_write(map, regs: base, num_regs: n);
2512 return 0;
2513}
2514
2515static int _regmap_multi_reg_write(struct regmap *map,
2516 const struct reg_sequence *regs,
2517 size_t num_regs)
2518{
2519 int i;
2520 int ret;
2521
2522 if (!map->can_multi_write) {
2523 for (i = 0; i < num_regs; i++) {
2524 ret = _regmap_write(map, reg: regs[i].reg, val: regs[i].def);
2525 if (ret != 0)
2526 return ret;
2527
2528 if (regs[i].delay_us) {
2529 if (map->can_sleep)
2530 fsleep(usecs: regs[i].delay_us);
2531 else
2532 udelay(regs[i].delay_us);
2533 }
2534 }
2535 return 0;
2536 }
2537
2538 if (!map->format.parse_inplace)
2539 return -EINVAL;
2540
2541 if (map->writeable_reg)
2542 for (i = 0; i < num_regs; i++) {
2543 int reg = regs[i].reg;
2544 if (!map->writeable_reg(map->dev, reg))
2545 return -EINVAL;
2546 if (!IS_ALIGNED(reg, map->reg_stride))
2547 return -EINVAL;
2548 }
2549
2550 if (!map->cache_bypass) {
2551 for (i = 0; i < num_regs; i++) {
2552 unsigned int val = regs[i].def;
2553 unsigned int reg = regs[i].reg;
2554 ret = regcache_write(map, reg, value: val);
2555 if (ret) {
2556 dev_err(map->dev,
2557 "Error in caching of register: %x ret: %d\n",
2558 reg, ret);
2559 return ret;
2560 }
2561 }
2562 if (map->cache_only) {
2563 map->cache_dirty = true;
2564 return 0;
2565 }
2566 }
2567
2568 WARN_ON(!map->bus);
2569
2570 for (i = 0; i < num_regs; i++) {
2571 unsigned int reg = regs[i].reg;
2572 struct regmap_range_node *range;
2573
2574 /* Coalesce all the writes between a page break or a delay
2575 * in a sequence
2576 */
2577 range = _regmap_range_lookup(map, reg);
2578 if (range || regs[i].delay_us) {
2579 size_t len = sizeof(struct reg_sequence)*num_regs;
2580 struct reg_sequence *base = kmemdup(p: regs, size: len,
2581 GFP_KERNEL);
2582 if (!base)
2583 return -ENOMEM;
2584 ret = _regmap_range_multi_paged_reg_write(map, regs: base,
2585 num_regs);
2586 kfree(objp: base);
2587
2588 return ret;
2589 }
2590 }
2591 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2592}
2593
2594/**
2595 * regmap_multi_reg_write() - Write multiple registers to the device
2596 *
2597 * @map: Register map to write to
2598 * @regs: Array of structures containing register,value to be written
2599 * @num_regs: Number of registers to write
2600 *
2601 * Write multiple registers to the device where the set of register, value
2602 * pairs are supplied in any order, possibly not all in a single range.
2603 *
2604 * The 'normal' block write mode will send ultimately send data on the
2605 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2606 * addressed. However, this alternative block multi write mode will send
2607 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2608 * must of course support the mode.
2609 *
2610 * A value of zero will be returned on success, a negative errno will be
2611 * returned in error cases.
2612 */
2613int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2614 int num_regs)
2615{
2616 int ret;
2617
2618 map->lock(map->lock_arg);
2619
2620 ret = _regmap_multi_reg_write(map, regs, num_regs);
2621
2622 map->unlock(map->lock_arg);
2623
2624 return ret;
2625}
2626EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2627
2628/**
2629 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2630 * device but not the cache
2631 *
2632 * @map: Register map to write to
2633 * @regs: Array of structures containing register,value to be written
2634 * @num_regs: Number of registers to write
2635 *
2636 * Write multiple registers to the device but not the cache where the set
2637 * of register are supplied in any order.
2638 *
2639 * This function is intended to be used for writing a large block of data
2640 * atomically to the device in single transfer for those I2C client devices
2641 * that implement this alternative block write mode.
2642 *
2643 * A value of zero will be returned on success, a negative errno will
2644 * be returned in error cases.
2645 */
2646int regmap_multi_reg_write_bypassed(struct regmap *map,
2647 const struct reg_sequence *regs,
2648 int num_regs)
2649{
2650 int ret;
2651 bool bypass;
2652
2653 map->lock(map->lock_arg);
2654
2655 bypass = map->cache_bypass;
2656 map->cache_bypass = true;
2657
2658 ret = _regmap_multi_reg_write(map, regs, num_regs);
2659
2660 map->cache_bypass = bypass;
2661
2662 map->unlock(map->lock_arg);
2663
2664 return ret;
2665}
2666EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2667
2668/**
2669 * regmap_raw_write_async() - Write raw values to one or more registers
2670 * asynchronously
2671 *
2672 * @map: Register map to write to
2673 * @reg: Initial register to write to
2674 * @val: Block of data to be written, laid out for direct transmission to the
2675 * device. Must be valid until regmap_async_complete() is called.
2676 * @val_len: Length of data pointed to by val.
2677 *
2678 * This function is intended to be used for things like firmware
2679 * download where a large block of data needs to be transferred to the
2680 * device. No formatting will be done on the data provided.
2681 *
2682 * If supported by the underlying bus the write will be scheduled
2683 * asynchronously, helping maximise I/O speed on higher speed buses
2684 * like SPI. regmap_async_complete() can be called to ensure that all
2685 * asynchrnous writes have been completed.
2686 *
2687 * A value of zero will be returned on success, a negative errno will
2688 * be returned in error cases.
2689 */
2690int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2691 const void *val, size_t val_len)
2692{
2693 int ret;
2694
2695 if (val_len % map->format.val_bytes)
2696 return -EINVAL;
2697 if (!IS_ALIGNED(reg, map->reg_stride))
2698 return -EINVAL;
2699
2700 map->lock(map->lock_arg);
2701
2702 map->async = true;
2703
2704 ret = _regmap_raw_write(map, reg, val, val_len, noinc: false);
2705
2706 map->async = false;
2707
2708 map->unlock(map->lock_arg);
2709
2710 return ret;
2711}
2712EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2713
2714static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2715 unsigned int val_len, bool noinc)
2716{
2717 struct regmap_range_node *range;
2718 int ret;
2719
2720 if (!map->read)
2721 return -EINVAL;
2722
2723 range = _regmap_range_lookup(map, reg);
2724 if (range) {
2725 ret = _regmap_select_page(map, reg: &reg, range,
2726 val_num: noinc ? 1 : val_len / map->format.val_bytes);
2727 if (ret != 0)
2728 return ret;
2729 }
2730
2731 reg = regmap_reg_addr(map, reg);
2732 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2733 regmap_set_work_buf_flag_mask(map, max_bytes: map->format.reg_bytes,
2734 mask: map->read_flag_mask);
2735 trace_regmap_hw_read_start(map, reg, count: val_len / map->format.val_bytes);
2736
2737 ret = map->read(map->bus_context, map->work_buf,
2738 map->format.reg_bytes + map->format.pad_bytes,
2739 val, val_len);
2740
2741 trace_regmap_hw_read_done(map, reg, count: val_len / map->format.val_bytes);
2742
2743 return ret;
2744}
2745
2746static int _regmap_bus_reg_read(void *context, unsigned int reg,
2747 unsigned int *val)
2748{
2749 struct regmap *map = context;
2750 struct regmap_range_node *range;
2751 int ret;
2752
2753 range = _regmap_range_lookup(map, reg);
2754 if (range) {
2755 ret = _regmap_select_page(map, reg: &reg, range, val_num: 1);
2756 if (ret != 0)
2757 return ret;
2758 }
2759
2760 reg = regmap_reg_addr(map, reg);
2761 return map->bus->reg_read(map->bus_context, reg, val);
2762}
2763
2764static int _regmap_bus_read(void *context, unsigned int reg,
2765 unsigned int *val)
2766{
2767 int ret;
2768 struct regmap *map = context;
2769 void *work_val = map->work_buf + map->format.reg_bytes +
2770 map->format.pad_bytes;
2771
2772 if (!map->format.parse_val)
2773 return -EINVAL;
2774
2775 ret = _regmap_raw_read(map, reg, val: work_val, val_len: map->format.val_bytes, noinc: false);
2776 if (ret == 0)
2777 *val = map->format.parse_val(work_val);
2778
2779 return ret;
2780}
2781
2782static int _regmap_read(struct regmap *map, unsigned int reg,
2783 unsigned int *val)
2784{
2785 int ret;
2786 void *context = _regmap_map_get_context(map);
2787
2788 if (!map->cache_bypass) {
2789 ret = regcache_read(map, reg, value: val);
2790 if (ret == 0)
2791 return 0;
2792 }
2793
2794 if (map->cache_only)
2795 return -EBUSY;
2796
2797 if (!regmap_readable(map, reg))
2798 return -EIO;
2799
2800 ret = map->reg_read(context, reg, val);
2801 if (ret == 0) {
2802 if (regmap_should_log(map))
2803 dev_info(map->dev, "%x => %x\n", reg, *val);
2804
2805 trace_regmap_reg_read(map, reg, val: *val);
2806
2807 if (!map->cache_bypass)
2808 regcache_write(map, reg, value: *val);
2809 }
2810
2811 return ret;
2812}
2813
2814/**
2815 * regmap_read() - Read a value from a single register
2816 *
2817 * @map: Register map to read from
2818 * @reg: Register to be read from
2819 * @val: Pointer to store read value
2820 *
2821 * A value of zero will be returned on success, a negative errno will
2822 * be returned in error cases.
2823 */
2824int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2825{
2826 int ret;
2827
2828 if (!IS_ALIGNED(reg, map->reg_stride))
2829 return -EINVAL;
2830
2831 map->lock(map->lock_arg);
2832
2833 ret = _regmap_read(map, reg, val);
2834
2835 map->unlock(map->lock_arg);
2836
2837 return ret;
2838}
2839EXPORT_SYMBOL_GPL(regmap_read);
2840
2841/**
2842 * regmap_raw_read() - Read raw data from the device
2843 *
2844 * @map: Register map to read from
2845 * @reg: First register to be read from
2846 * @val: Pointer to store read value
2847 * @val_len: Size of data to read
2848 *
2849 * A value of zero will be returned on success, a negative errno will
2850 * be returned in error cases.
2851 */
2852int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2853 size_t val_len)
2854{
2855 size_t val_bytes = map->format.val_bytes;
2856 size_t val_count = val_len / val_bytes;
2857 unsigned int v;
2858 int ret, i;
2859
2860 if (val_len % map->format.val_bytes)
2861 return -EINVAL;
2862 if (!IS_ALIGNED(reg, map->reg_stride))
2863 return -EINVAL;
2864 if (val_count == 0)
2865 return -EINVAL;
2866
2867 map->lock(map->lock_arg);
2868
2869 if (regmap_volatile_range(map, reg, num: val_count) || map->cache_bypass ||
2870 map->cache_type == REGCACHE_NONE) {
2871 size_t chunk_count, chunk_bytes;
2872 size_t chunk_regs = val_count;
2873
2874 if (!map->cache_bypass && map->cache_only) {
2875 ret = -EBUSY;
2876 goto out;
2877 }
2878
2879 if (!map->read) {
2880 ret = -ENOTSUPP;
2881 goto out;
2882 }
2883
2884 if (map->use_single_read)
2885 chunk_regs = 1;
2886 else if (map->max_raw_read && val_len > map->max_raw_read)
2887 chunk_regs = map->max_raw_read / val_bytes;
2888
2889 chunk_count = val_count / chunk_regs;
2890 chunk_bytes = chunk_regs * val_bytes;
2891
2892 /* Read bytes that fit into whole chunks */
2893 for (i = 0; i < chunk_count; i++) {
2894 ret = _regmap_raw_read(map, reg, val, val_len: chunk_bytes, noinc: false);
2895 if (ret != 0)
2896 goto out;
2897
2898 reg += regmap_get_offset(map, index: chunk_regs);
2899 val += chunk_bytes;
2900 val_len -= chunk_bytes;
2901 }
2902
2903 /* Read remaining bytes */
2904 if (val_len) {
2905 ret = _regmap_raw_read(map, reg, val, val_len, noinc: false);
2906 if (ret != 0)
2907 goto out;
2908 }
2909 } else {
2910 /* Otherwise go word by word for the cache; should be low
2911 * cost as we expect to hit the cache.
2912 */
2913 for (i = 0; i < val_count; i++) {
2914 ret = _regmap_read(map, reg: reg + regmap_get_offset(map, index: i),
2915 val: &v);
2916 if (ret != 0)
2917 goto out;
2918
2919 map->format.format_val(val + (i * val_bytes), v, 0);
2920 }
2921 }
2922
2923 out:
2924 map->unlock(map->lock_arg);
2925
2926 return ret;
2927}
2928EXPORT_SYMBOL_GPL(regmap_raw_read);
2929
2930/**
2931 * regmap_noinc_read(): Read data from a register without incrementing the
2932 * register number
2933 *
2934 * @map: Register map to read from
2935 * @reg: Register to read from
2936 * @val: Pointer to data buffer
2937 * @val_len: Length of output buffer in bytes.
2938 *
2939 * The regmap API usually assumes that bulk read operations will read a
2940 * range of registers. Some devices have certain registers for which a read
2941 * operation read will read from an internal FIFO.
2942 *
2943 * The target register must be volatile but registers after it can be
2944 * completely unrelated cacheable registers.
2945 *
2946 * This will attempt multiple reads as required to read val_len bytes.
2947 *
2948 * A value of zero will be returned on success, a negative errno will be
2949 * returned in error cases.
2950 */
2951int regmap_noinc_read(struct regmap *map, unsigned int reg,
2952 void *val, size_t val_len)
2953{
2954 size_t read_len;
2955 int ret;
2956
2957 if (!map->read)
2958 return -ENOTSUPP;
2959
2960 if (val_len % map->format.val_bytes)
2961 return -EINVAL;
2962 if (!IS_ALIGNED(reg, map->reg_stride))
2963 return -EINVAL;
2964 if (val_len == 0)
2965 return -EINVAL;
2966
2967 map->lock(map->lock_arg);
2968
2969 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2970 ret = -EINVAL;
2971 goto out_unlock;
2972 }
2973
2974 /*
2975 * We have not defined the FIFO semantics for cache, as the
2976 * cache is just one value deep. Should we return the last
2977 * written value? Just avoid this by always reading the FIFO
2978 * even when using cache. Cache only will not work.
2979 */
2980 if (!map->cache_bypass && map->cache_only) {
2981 ret = -EBUSY;
2982 goto out_unlock;
2983 }
2984
2985 /* Use the accelerated operation if we can */
2986 if (map->bus->reg_noinc_read) {
2987 ret = regmap_noinc_readwrite(map, reg, val, val_len, write: false);
2988 goto out_unlock;
2989 }
2990
2991 while (val_len) {
2992 if (map->max_raw_read && map->max_raw_read < val_len)
2993 read_len = map->max_raw_read;
2994 else
2995 read_len = val_len;
2996 ret = _regmap_raw_read(map, reg, val, val_len: read_len, noinc: true);
2997 if (ret)
2998 goto out_unlock;
2999 val = ((u8 *)val) + read_len;
3000 val_len -= read_len;
3001 }
3002
3003out_unlock:
3004 map->unlock(map->lock_arg);
3005 return ret;
3006}
3007EXPORT_SYMBOL_GPL(regmap_noinc_read);
3008
3009/**
3010 * regmap_field_read(): Read a value to a single register field
3011 *
3012 * @field: Register field to read from
3013 * @val: Pointer to store read value
3014 *
3015 * A value of zero will be returned on success, a negative errno will
3016 * be returned in error cases.
3017 */
3018int regmap_field_read(struct regmap_field *field, unsigned int *val)
3019{
3020 int ret;
3021 unsigned int reg_val;
3022 ret = regmap_read(field->regmap, field->reg, &reg_val);
3023 if (ret != 0)
3024 return ret;
3025
3026 reg_val &= field->mask;
3027 reg_val >>= field->shift;
3028 *val = reg_val;
3029
3030 return ret;
3031}
3032EXPORT_SYMBOL_GPL(regmap_field_read);
3033
3034/**
3035 * regmap_fields_read() - Read a value to a single register field with port ID
3036 *
3037 * @field: Register field to read from
3038 * @id: port ID
3039 * @val: Pointer to store read value
3040 *
3041 * A value of zero will be returned on success, a negative errno will
3042 * be returned in error cases.
3043 */
3044int regmap_fields_read(struct regmap_field *field, unsigned int id,
3045 unsigned int *val)
3046{
3047 int ret;
3048 unsigned int reg_val;
3049
3050 if (id >= field->id_size)
3051 return -EINVAL;
3052
3053 ret = regmap_read(field->regmap,
3054 field->reg + (field->id_offset * id),
3055 &reg_val);
3056 if (ret != 0)
3057 return ret;
3058
3059 reg_val &= field->mask;
3060 reg_val >>= field->shift;
3061 *val = reg_val;
3062
3063 return ret;
3064}
3065EXPORT_SYMBOL_GPL(regmap_fields_read);
3066
3067/**
3068 * regmap_bulk_read() - Read multiple registers from the device
3069 *
3070 * @map: Register map to read from
3071 * @reg: First register to be read from
3072 * @val: Pointer to store read value, in native register size for device
3073 * @val_count: Number of registers to read
3074 *
3075 * A value of zero will be returned on success, a negative errno will
3076 * be returned in error cases.
3077 */
3078int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3079 size_t val_count)
3080{
3081 int ret, i;
3082 size_t val_bytes = map->format.val_bytes;
3083 bool vol = regmap_volatile_range(map, reg, num: val_count);
3084
3085 if (!IS_ALIGNED(reg, map->reg_stride))
3086 return -EINVAL;
3087 if (val_count == 0)
3088 return -EINVAL;
3089
3090 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3091 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3092 if (ret != 0)
3093 return ret;
3094
3095 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3096 map->format.parse_inplace(val + i);
3097 } else {
3098 u32 *u32 = val;
3099 u16 *u16 = val;
3100 u8 *u8 = val;
3101
3102 map->lock(map->lock_arg);
3103
3104 for (i = 0; i < val_count; i++) {
3105 unsigned int ival;
3106
3107 ret = _regmap_read(map, reg: reg + regmap_get_offset(map, index: i),
3108 val: &ival);
3109 if (ret != 0)
3110 goto out;
3111
3112 switch (map->format.val_bytes) {
3113 case 4:
3114 u32[i] = ival;
3115 break;
3116 case 2:
3117 u16[i] = ival;
3118 break;
3119 case 1:
3120 u8[i] = ival;
3121 break;
3122 default:
3123 ret = -EINVAL;
3124 goto out;
3125 }
3126 }
3127
3128out:
3129 map->unlock(map->lock_arg);
3130 }
3131
3132 if (!ret)
3133 trace_regmap_bulk_read(map, reg, val, val_len: val_bytes * val_count);
3134
3135 return ret;
3136}
3137EXPORT_SYMBOL_GPL(regmap_bulk_read);
3138
3139static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3140 unsigned int mask, unsigned int val,
3141 bool *change, bool force_write)
3142{
3143 int ret;
3144 unsigned int tmp, orig;
3145
3146 if (change)
3147 *change = false;
3148
3149 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3150 reg = regmap_reg_addr(map, reg);
3151 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3152 if (ret == 0 && change)
3153 *change = true;
3154 } else {
3155 ret = _regmap_read(map, reg, val: &orig);
3156 if (ret != 0)
3157 return ret;
3158
3159 tmp = orig & ~mask;
3160 tmp |= val & mask;
3161
3162 if (force_write || (tmp != orig) || map->force_write_field) {
3163 ret = _regmap_write(map, reg, val: tmp);
3164 if (ret == 0 && change)
3165 *change = true;
3166 }
3167 }
3168
3169 return ret;
3170}
3171
3172/**
3173 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3174 *
3175 * @map: Register map to update
3176 * @reg: Register to update
3177 * @mask: Bitmask to change
3178 * @val: New value for bitmask
3179 * @change: Boolean indicating if a write was done
3180 * @async: Boolean indicating asynchronously
3181 * @force: Boolean indicating use force update
3182 *
3183 * Perform a read/modify/write cycle on a register map with change, async, force
3184 * options.
3185 *
3186 * If async is true:
3187 *
3188 * With most buses the read must be done synchronously so this is most useful
3189 * for devices with a cache which do not need to interact with the hardware to
3190 * determine the current register value.
3191 *
3192 * Returns zero for success, a negative number on error.
3193 */
3194int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3195 unsigned int mask, unsigned int val,
3196 bool *change, bool async, bool force)
3197{
3198 int ret;
3199
3200 map->lock(map->lock_arg);
3201
3202 map->async = async;
3203
3204 ret = _regmap_update_bits(map, reg, mask, val, change, force_write: force);
3205
3206 map->async = false;
3207
3208 map->unlock(map->lock_arg);
3209
3210 return ret;
3211}
3212EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3213
3214/**
3215 * regmap_test_bits() - Check if all specified bits are set in a register.
3216 *
3217 * @map: Register map to operate on
3218 * @reg: Register to read from
3219 * @bits: Bits to test
3220 *
3221 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3222 * bits are set and a negative error number if the underlying regmap_read()
3223 * fails.
3224 */
3225int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3226{
3227 unsigned int val, ret;
3228
3229 ret = regmap_read(map, reg, &val);
3230 if (ret)
3231 return ret;
3232
3233 return (val & bits) == bits;
3234}
3235EXPORT_SYMBOL_GPL(regmap_test_bits);
3236
3237void regmap_async_complete_cb(struct regmap_async *async, int ret)
3238{
3239 struct regmap *map = async->map;
3240 bool wake;
3241
3242 trace_regmap_async_io_complete(map);
3243
3244 spin_lock(lock: &map->async_lock);
3245 list_move(list: &async->list, head: &map->async_free);
3246 wake = list_empty(head: &map->async_list);
3247
3248 if (ret != 0)
3249 map->async_ret = ret;
3250
3251 spin_unlock(lock: &map->async_lock);
3252
3253 if (wake)
3254 wake_up(&map->async_waitq);
3255}
3256EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3257
3258static int regmap_async_is_done(struct regmap *map)
3259{
3260 unsigned long flags;
3261 int ret;
3262
3263 spin_lock_irqsave(&map->async_lock, flags);
3264 ret = list_empty(head: &map->async_list);
3265 spin_unlock_irqrestore(lock: &map->async_lock, flags);
3266
3267 return ret;
3268}
3269
3270/**
3271 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3272 *
3273 * @map: Map to operate on.
3274 *
3275 * Blocks until any pending asynchronous I/O has completed. Returns
3276 * an error code for any failed I/O operations.
3277 */
3278int regmap_async_complete(struct regmap *map)
3279{
3280 unsigned long flags;
3281 int ret;
3282
3283 /* Nothing to do with no async support */
3284 if (!map->bus || !map->bus->async_write)
3285 return 0;
3286
3287 trace_regmap_async_complete_start(map);
3288
3289 wait_event(map->async_waitq, regmap_async_is_done(map));
3290
3291 spin_lock_irqsave(&map->async_lock, flags);
3292 ret = map->async_ret;
3293 map->async_ret = 0;
3294 spin_unlock_irqrestore(lock: &map->async_lock, flags);
3295
3296 trace_regmap_async_complete_done(map);
3297
3298 return ret;
3299}
3300EXPORT_SYMBOL_GPL(regmap_async_complete);
3301
3302/**
3303 * regmap_register_patch - Register and apply register updates to be applied
3304 * on device initialistion
3305 *
3306 * @map: Register map to apply updates to.
3307 * @regs: Values to update.
3308 * @num_regs: Number of entries in regs.
3309 *
3310 * Register a set of register updates to be applied to the device
3311 * whenever the device registers are synchronised with the cache and
3312 * apply them immediately. Typically this is used to apply
3313 * corrections to be applied to the device defaults on startup, such
3314 * as the updates some vendors provide to undocumented registers.
3315 *
3316 * The caller must ensure that this function cannot be called
3317 * concurrently with either itself or regcache_sync().
3318 */
3319int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3320 int num_regs)
3321{
3322 struct reg_sequence *p;
3323 int ret;
3324 bool bypass;
3325
3326 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3327 num_regs))
3328 return 0;
3329
3330 p = krealloc(objp: map->patch,
3331 new_size: sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3332 GFP_KERNEL);
3333 if (p) {
3334 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3335 map->patch = p;
3336 map->patch_regs += num_regs;
3337 } else {
3338 return -ENOMEM;
3339 }
3340
3341 map->lock(map->lock_arg);
3342
3343 bypass = map->cache_bypass;
3344
3345 map->cache_bypass = true;
3346 map->async = true;
3347
3348 ret = _regmap_multi_reg_write(map, regs, num_regs);
3349
3350 map->async = false;
3351 map->cache_bypass = bypass;
3352
3353 map->unlock(map->lock_arg);
3354
3355 regmap_async_complete(map);
3356
3357 return ret;
3358}
3359EXPORT_SYMBOL_GPL(regmap_register_patch);
3360
3361/**
3362 * regmap_get_val_bytes() - Report the size of a register value
3363 *
3364 * @map: Register map to operate on.
3365 *
3366 * Report the size of a register value, mainly intended to for use by
3367 * generic infrastructure built on top of regmap.
3368 */
3369int regmap_get_val_bytes(struct regmap *map)
3370{
3371 if (map->format.format_write)
3372 return -EINVAL;
3373
3374 return map->format.val_bytes;
3375}
3376EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3377
3378/**
3379 * regmap_get_max_register() - Report the max register value
3380 *
3381 * @map: Register map to operate on.
3382 *
3383 * Report the max register value, mainly intended to for use by
3384 * generic infrastructure built on top of regmap.
3385 */
3386int regmap_get_max_register(struct regmap *map)
3387{
3388 return map->max_register_is_set ? map->max_register : -EINVAL;
3389}
3390EXPORT_SYMBOL_GPL(regmap_get_max_register);
3391
3392/**
3393 * regmap_get_reg_stride() - Report the register address stride
3394 *
3395 * @map: Register map to operate on.
3396 *
3397 * Report the register address stride, mainly intended to for use by
3398 * generic infrastructure built on top of regmap.
3399 */
3400int regmap_get_reg_stride(struct regmap *map)
3401{
3402 return map->reg_stride;
3403}
3404EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3405
3406/**
3407 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3408 *
3409 * @map: Register map to operate on.
3410 *
3411 * Returns true if an access to the register might sleep, else false.
3412 */
3413bool regmap_might_sleep(struct regmap *map)
3414{
3415 return map->can_sleep;
3416}
3417EXPORT_SYMBOL_GPL(regmap_might_sleep);
3418
3419int regmap_parse_val(struct regmap *map, const void *buf,
3420 unsigned int *val)
3421{
3422 if (!map->format.parse_val)
3423 return -EINVAL;
3424
3425 *val = map->format.parse_val(buf);
3426
3427 return 0;
3428}
3429EXPORT_SYMBOL_GPL(regmap_parse_val);
3430
3431static int __init regmap_initcall(void)
3432{
3433 regmap_debugfs_initcall();
3434
3435 return 0;
3436}
3437postcore_initcall(regmap_initcall);
3438

source code of linux/drivers/base/regmap/regmap.c