1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2023 Loongson Technology Corporation Limited
4 */
5
6#include <linux/delay.h>
7
8#include <drm/drm_atomic.h>
9#include <drm/drm_atomic_helper.h>
10#include <drm/drm_debugfs.h>
11#include <drm/drm_vblank.h>
12
13#include "lsdc_drv.h"
14
15/*
16 * After the CRTC soft reset, the vblank counter would be reset to zero.
17 * But the address and other settings in the CRTC register remain the same
18 * as before.
19 */
20
21static void lsdc_crtc0_soft_reset(struct lsdc_crtc *lcrtc)
22{
23 struct lsdc_device *ldev = lcrtc->ldev;
24 u32 val;
25
26 val = lsdc_rreg32(ldev, LSDC_CRTC0_CFG_REG);
27
28 val &= CFG_VALID_BITS_MASK;
29
30 /* Soft reset bit, active low */
31 val &= ~CFG_RESET_N;
32
33 val &= ~CFG_PIX_FMT_MASK;
34
35 lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, val);
36
37 udelay(1);
38
39 val |= CFG_RESET_N | LSDC_PF_XRGB8888 | CFG_OUTPUT_ENABLE;
40
41 lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, val);
42
43 /* Wait about a vblank time */
44 mdelay(20);
45}
46
47static void lsdc_crtc1_soft_reset(struct lsdc_crtc *lcrtc)
48{
49 struct lsdc_device *ldev = lcrtc->ldev;
50 u32 val;
51
52 val = lsdc_rreg32(ldev, LSDC_CRTC1_CFG_REG);
53
54 val &= CFG_VALID_BITS_MASK;
55
56 /* Soft reset bit, active low */
57 val &= ~CFG_RESET_N;
58
59 val &= ~CFG_PIX_FMT_MASK;
60
61 lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, val);
62
63 udelay(1);
64
65 val |= CFG_RESET_N | LSDC_PF_XRGB8888 | CFG_OUTPUT_ENABLE;
66
67 lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, val);
68
69 /* Wait about a vblank time */
70 msleep(msecs: 20);
71}
72
73static void lsdc_crtc0_enable(struct lsdc_crtc *lcrtc)
74{
75 struct lsdc_device *ldev = lcrtc->ldev;
76 u32 val;
77
78 val = lsdc_rreg32(ldev, LSDC_CRTC0_CFG_REG);
79
80 /*
81 * This may happen in extremely rare cases, but a soft reset can
82 * bring it back to normal. We add a warning here, hoping to catch
83 * something if it happens.
84 */
85 if (val & CRTC_ANCHORED) {
86 drm_warn(&ldev->base, "%s stall\n", lcrtc->base.name);
87 return lsdc_crtc0_soft_reset(lcrtc);
88 }
89
90 lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, val: val | CFG_OUTPUT_ENABLE);
91}
92
93static void lsdc_crtc0_disable(struct lsdc_crtc *lcrtc)
94{
95 struct lsdc_device *ldev = lcrtc->ldev;
96
97 lsdc_ureg32_clr(ldev, LSDC_CRTC0_CFG_REG, CFG_OUTPUT_ENABLE);
98
99 udelay(9);
100}
101
102static void lsdc_crtc1_enable(struct lsdc_crtc *lcrtc)
103{
104 struct lsdc_device *ldev = lcrtc->ldev;
105 u32 val;
106
107 /*
108 * This may happen in extremely rare cases, but a soft reset can
109 * bring it back to normal. We add a warning here, hoping to catch
110 * something if it happens.
111 */
112 val = lsdc_rreg32(ldev, LSDC_CRTC1_CFG_REG);
113 if (val & CRTC_ANCHORED) {
114 drm_warn(&ldev->base, "%s stall\n", lcrtc->base.name);
115 return lsdc_crtc1_soft_reset(lcrtc);
116 }
117
118 lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, val: val | CFG_OUTPUT_ENABLE);
119}
120
121static void lsdc_crtc1_disable(struct lsdc_crtc *lcrtc)
122{
123 struct lsdc_device *ldev = lcrtc->ldev;
124
125 lsdc_ureg32_clr(ldev, LSDC_CRTC1_CFG_REG, CFG_OUTPUT_ENABLE);
126
127 udelay(9);
128}
129
130/* All Loongson display controllers have hardware scanout position recoders */
131
132static void lsdc_crtc0_scan_pos(struct lsdc_crtc *lcrtc, int *hpos, int *vpos)
133{
134 struct lsdc_device *ldev = lcrtc->ldev;
135 u32 val;
136
137 val = lsdc_rreg32(ldev, LSDC_CRTC0_SCAN_POS_REG);
138
139 *hpos = val >> 16;
140 *vpos = val & 0xffff;
141}
142
143static void lsdc_crtc1_scan_pos(struct lsdc_crtc *lcrtc, int *hpos, int *vpos)
144{
145 struct lsdc_device *ldev = lcrtc->ldev;
146 u32 val;
147
148 val = lsdc_rreg32(ldev, LSDC_CRTC1_SCAN_POS_REG);
149
150 *hpos = val >> 16;
151 *vpos = val & 0xffff;
152}
153
154static void lsdc_crtc0_enable_vblank(struct lsdc_crtc *lcrtc)
155{
156 struct lsdc_device *ldev = lcrtc->ldev;
157
158 lsdc_ureg32_set(ldev, LSDC_INT_REG, INT_CRTC0_VSYNC_EN);
159}
160
161static void lsdc_crtc0_disable_vblank(struct lsdc_crtc *lcrtc)
162{
163 struct lsdc_device *ldev = lcrtc->ldev;
164
165 lsdc_ureg32_clr(ldev, LSDC_INT_REG, INT_CRTC0_VSYNC_EN);
166}
167
168static void lsdc_crtc1_enable_vblank(struct lsdc_crtc *lcrtc)
169{
170 struct lsdc_device *ldev = lcrtc->ldev;
171
172 lsdc_ureg32_set(ldev, LSDC_INT_REG, INT_CRTC1_VSYNC_EN);
173}
174
175static void lsdc_crtc1_disable_vblank(struct lsdc_crtc *lcrtc)
176{
177 struct lsdc_device *ldev = lcrtc->ldev;
178
179 lsdc_ureg32_clr(ldev, LSDC_INT_REG, INT_CRTC1_VSYNC_EN);
180}
181
182static void lsdc_crtc0_flip(struct lsdc_crtc *lcrtc)
183{
184 struct lsdc_device *ldev = lcrtc->ldev;
185
186 lsdc_ureg32_set(ldev, LSDC_CRTC0_CFG_REG, CFG_PAGE_FLIP);
187}
188
189static void lsdc_crtc1_flip(struct lsdc_crtc *lcrtc)
190{
191 struct lsdc_device *ldev = lcrtc->ldev;
192
193 lsdc_ureg32_set(ldev, LSDC_CRTC1_CFG_REG, CFG_PAGE_FLIP);
194}
195
196/*
197 * CRTC0 clone from CRTC1 or CRTC1 clone from CRTC0 using hardware logic
198 * This may be useful for custom cloning (TWIN) applications. Saving the
199 * bandwidth compared with the clone (mirroring) display mode provided by
200 * drm core.
201 */
202
203static void lsdc_crtc0_clone(struct lsdc_crtc *lcrtc)
204{
205 struct lsdc_device *ldev = lcrtc->ldev;
206
207 lsdc_ureg32_set(ldev, LSDC_CRTC0_CFG_REG, CFG_HW_CLONE);
208}
209
210static void lsdc_crtc1_clone(struct lsdc_crtc *lcrtc)
211{
212 struct lsdc_device *ldev = lcrtc->ldev;
213
214 lsdc_ureg32_set(ldev, LSDC_CRTC1_CFG_REG, CFG_HW_CLONE);
215}
216
217static void lsdc_crtc0_set_mode(struct lsdc_crtc *lcrtc,
218 const struct drm_display_mode *mode)
219{
220 struct lsdc_device *ldev = lcrtc->ldev;
221
222 lsdc_wreg32(ldev, LSDC_CRTC0_HDISPLAY_REG,
223 val: (mode->crtc_htotal << 16) | mode->crtc_hdisplay);
224
225 lsdc_wreg32(ldev, LSDC_CRTC0_VDISPLAY_REG,
226 val: (mode->crtc_vtotal << 16) | mode->crtc_vdisplay);
227
228 lsdc_wreg32(ldev, LSDC_CRTC0_HSYNC_REG,
229 val: (mode->crtc_hsync_end << 16) | mode->crtc_hsync_start | HSYNC_EN);
230
231 lsdc_wreg32(ldev, LSDC_CRTC0_VSYNC_REG,
232 val: (mode->crtc_vsync_end << 16) | mode->crtc_vsync_start | VSYNC_EN);
233}
234
235static void lsdc_crtc1_set_mode(struct lsdc_crtc *lcrtc,
236 const struct drm_display_mode *mode)
237{
238 struct lsdc_device *ldev = lcrtc->ldev;
239
240 lsdc_wreg32(ldev, LSDC_CRTC1_HDISPLAY_REG,
241 val: (mode->crtc_htotal << 16) | mode->crtc_hdisplay);
242
243 lsdc_wreg32(ldev, LSDC_CRTC1_VDISPLAY_REG,
244 val: (mode->crtc_vtotal << 16) | mode->crtc_vdisplay);
245
246 lsdc_wreg32(ldev, LSDC_CRTC1_HSYNC_REG,
247 val: (mode->crtc_hsync_end << 16) | mode->crtc_hsync_start | HSYNC_EN);
248
249 lsdc_wreg32(ldev, LSDC_CRTC1_VSYNC_REG,
250 val: (mode->crtc_vsync_end << 16) | mode->crtc_vsync_start | VSYNC_EN);
251}
252
253/*
254 * This is required for S3 support.
255 * After resuming from suspend, LSDC_CRTCx_CFG_REG (x = 0 or 1) is filled
256 * with garbage value, which causes the CRTC hang there.
257 *
258 * This function provides minimal settings for the affected registers.
259 * This overrides the firmware's settings on startup, making the CRTC work
260 * on our own, similar to the functional of GPU POST (Power On Self Test).
261 * Only touch CRTC hardware-related parts.
262 */
263
264static void lsdc_crtc0_reset(struct lsdc_crtc *lcrtc)
265{
266 struct lsdc_device *ldev = lcrtc->ldev;
267
268 lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, CFG_RESET_N | LSDC_PF_XRGB8888);
269}
270
271static void lsdc_crtc1_reset(struct lsdc_crtc *lcrtc)
272{
273 struct lsdc_device *ldev = lcrtc->ldev;
274
275 lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, CFG_RESET_N | LSDC_PF_XRGB8888);
276}
277
278static const struct lsdc_crtc_hw_ops ls7a1000_crtc_hw_ops[2] = {
279 {
280 .enable = lsdc_crtc0_enable,
281 .disable = lsdc_crtc0_disable,
282 .enable_vblank = lsdc_crtc0_enable_vblank,
283 .disable_vblank = lsdc_crtc0_disable_vblank,
284 .flip = lsdc_crtc0_flip,
285 .clone = lsdc_crtc0_clone,
286 .set_mode = lsdc_crtc0_set_mode,
287 .get_scan_pos = lsdc_crtc0_scan_pos,
288 .soft_reset = lsdc_crtc0_soft_reset,
289 .reset = lsdc_crtc0_reset,
290 },
291 {
292 .enable = lsdc_crtc1_enable,
293 .disable = lsdc_crtc1_disable,
294 .enable_vblank = lsdc_crtc1_enable_vblank,
295 .disable_vblank = lsdc_crtc1_disable_vblank,
296 .flip = lsdc_crtc1_flip,
297 .clone = lsdc_crtc1_clone,
298 .set_mode = lsdc_crtc1_set_mode,
299 .get_scan_pos = lsdc_crtc1_scan_pos,
300 .soft_reset = lsdc_crtc1_soft_reset,
301 .reset = lsdc_crtc1_reset,
302 },
303};
304
305/*
306 * The 32-bit hardware vblank counter has been available since LS7A2000
307 * and LS2K2000. The counter increases even though the CRTC is disabled,
308 * it will be reset only if the CRTC is being soft reset.
309 * Those registers are also readable for ls7a1000, but its value does not
310 * change.
311 */
312
313static u32 lsdc_crtc0_get_vblank_count(struct lsdc_crtc *lcrtc)
314{
315 struct lsdc_device *ldev = lcrtc->ldev;
316
317 return lsdc_rreg32(ldev, LSDC_CRTC0_VSYNC_COUNTER_REG);
318}
319
320static u32 lsdc_crtc1_get_vblank_count(struct lsdc_crtc *lcrtc)
321{
322 struct lsdc_device *ldev = lcrtc->ldev;
323
324 return lsdc_rreg32(ldev, LSDC_CRTC1_VSYNC_COUNTER_REG);
325}
326
327/*
328 * The DMA step bit fields are available since LS7A2000/LS2K2000, for
329 * supporting odd resolutions. But a large DMA step save the bandwidth.
330 * The larger, the better. Behavior of writing those bits on LS7A1000
331 * or LS2K1000 is underfined.
332 */
333
334static void lsdc_crtc0_set_dma_step(struct lsdc_crtc *lcrtc,
335 enum lsdc_dma_steps dma_step)
336{
337 struct lsdc_device *ldev = lcrtc->ldev;
338 u32 val = lsdc_rreg32(ldev, LSDC_CRTC0_CFG_REG);
339
340 val &= ~CFG_DMA_STEP_MASK;
341 val |= dma_step << CFG_DMA_STEP_SHIFT;
342
343 lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, val);
344}
345
346static void lsdc_crtc1_set_dma_step(struct lsdc_crtc *lcrtc,
347 enum lsdc_dma_steps dma_step)
348{
349 struct lsdc_device *ldev = lcrtc->ldev;
350 u32 val = lsdc_rreg32(ldev, LSDC_CRTC1_CFG_REG);
351
352 val &= ~CFG_DMA_STEP_MASK;
353 val |= dma_step << CFG_DMA_STEP_SHIFT;
354
355 lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, val);
356}
357
358static const struct lsdc_crtc_hw_ops ls7a2000_crtc_hw_ops[2] = {
359 {
360 .enable = lsdc_crtc0_enable,
361 .disable = lsdc_crtc0_disable,
362 .enable_vblank = lsdc_crtc0_enable_vblank,
363 .disable_vblank = lsdc_crtc0_disable_vblank,
364 .flip = lsdc_crtc0_flip,
365 .clone = lsdc_crtc0_clone,
366 .set_mode = lsdc_crtc0_set_mode,
367 .soft_reset = lsdc_crtc0_soft_reset,
368 .get_scan_pos = lsdc_crtc0_scan_pos,
369 .set_dma_step = lsdc_crtc0_set_dma_step,
370 .get_vblank_counter = lsdc_crtc0_get_vblank_count,
371 .reset = lsdc_crtc0_reset,
372 },
373 {
374 .enable = lsdc_crtc1_enable,
375 .disable = lsdc_crtc1_disable,
376 .enable_vblank = lsdc_crtc1_enable_vblank,
377 .disable_vblank = lsdc_crtc1_disable_vblank,
378 .flip = lsdc_crtc1_flip,
379 .clone = lsdc_crtc1_clone,
380 .set_mode = lsdc_crtc1_set_mode,
381 .get_scan_pos = lsdc_crtc1_scan_pos,
382 .soft_reset = lsdc_crtc1_soft_reset,
383 .set_dma_step = lsdc_crtc1_set_dma_step,
384 .get_vblank_counter = lsdc_crtc1_get_vblank_count,
385 .reset = lsdc_crtc1_reset,
386 },
387};
388
389static void lsdc_crtc_reset(struct drm_crtc *crtc)
390{
391 struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
392 const struct lsdc_crtc_hw_ops *ops = lcrtc->hw_ops;
393 struct lsdc_crtc_state *priv_crtc_state;
394
395 if (crtc->state)
396 crtc->funcs->atomic_destroy_state(crtc, crtc->state);
397
398 priv_crtc_state = kzalloc(size: sizeof(*priv_crtc_state), GFP_KERNEL);
399
400 if (!priv_crtc_state)
401 __drm_atomic_helper_crtc_reset(crtc, NULL);
402 else
403 __drm_atomic_helper_crtc_reset(crtc, state: &priv_crtc_state->base);
404
405 /* Reset the CRTC hardware, this is required for S3 support */
406 ops->reset(lcrtc);
407}
408
409static void lsdc_crtc_atomic_destroy_state(struct drm_crtc *crtc,
410 struct drm_crtc_state *state)
411{
412 struct lsdc_crtc_state *priv_state = to_lsdc_crtc_state(base: state);
413
414 __drm_atomic_helper_crtc_destroy_state(state: &priv_state->base);
415
416 kfree(objp: priv_state);
417}
418
419static struct drm_crtc_state *
420lsdc_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
421{
422 struct lsdc_crtc_state *new_priv_state;
423 struct lsdc_crtc_state *old_priv_state;
424
425 new_priv_state = kzalloc(size: sizeof(*new_priv_state), GFP_KERNEL);
426 if (!new_priv_state)
427 return NULL;
428
429 __drm_atomic_helper_crtc_duplicate_state(crtc, state: &new_priv_state->base);
430
431 old_priv_state = to_lsdc_crtc_state(base: crtc->state);
432
433 memcpy(&new_priv_state->pparms, &old_priv_state->pparms,
434 sizeof(new_priv_state->pparms));
435
436 return &new_priv_state->base;
437}
438
439static u32 lsdc_crtc_get_vblank_counter(struct drm_crtc *crtc)
440{
441 struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
442
443 /* 32-bit hardware vblank counter */
444 return lcrtc->hw_ops->get_vblank_counter(lcrtc);
445}
446
447static int lsdc_crtc_enable_vblank(struct drm_crtc *crtc)
448{
449 struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
450
451 if (!lcrtc->has_vblank)
452 return -EINVAL;
453
454 lcrtc->hw_ops->enable_vblank(lcrtc);
455
456 return 0;
457}
458
459static void lsdc_crtc_disable_vblank(struct drm_crtc *crtc)
460{
461 struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
462
463 if (!lcrtc->has_vblank)
464 return;
465
466 lcrtc->hw_ops->disable_vblank(lcrtc);
467}
468
469/*
470 * CRTC related debugfs
471 * Primary planes and cursor planes belong to the CRTC as well.
472 * For the sake of convenience, plane-related registers are also add here.
473 */
474
475#define REG_DEF(reg) { \
476 .name = __stringify_1(LSDC_##reg##_REG), \
477 .offset = LSDC_##reg##_REG, \
478}
479
480static const struct lsdc_reg32 lsdc_crtc_regs_array[2][21] = {
481 [0] = {
482 REG_DEF(CRTC0_CFG),
483 REG_DEF(CRTC0_FB_ORIGIN),
484 REG_DEF(CRTC0_DVO_CONF),
485 REG_DEF(CRTC0_HDISPLAY),
486 REG_DEF(CRTC0_HSYNC),
487 REG_DEF(CRTC0_VDISPLAY),
488 REG_DEF(CRTC0_VSYNC),
489 REG_DEF(CRTC0_GAMMA_INDEX),
490 REG_DEF(CRTC0_GAMMA_DATA),
491 REG_DEF(CRTC0_SYNC_DEVIATION),
492 REG_DEF(CRTC0_VSYNC_COUNTER),
493 REG_DEF(CRTC0_SCAN_POS),
494 REG_DEF(CRTC0_STRIDE),
495 REG_DEF(CRTC0_FB1_ADDR_HI),
496 REG_DEF(CRTC0_FB1_ADDR_LO),
497 REG_DEF(CRTC0_FB0_ADDR_HI),
498 REG_DEF(CRTC0_FB0_ADDR_LO),
499 REG_DEF(CURSOR0_CFG),
500 REG_DEF(CURSOR0_POSITION),
501 REG_DEF(CURSOR0_BG_COLOR),
502 REG_DEF(CURSOR0_FG_COLOR),
503 },
504 [1] = {
505 REG_DEF(CRTC1_CFG),
506 REG_DEF(CRTC1_FB_ORIGIN),
507 REG_DEF(CRTC1_DVO_CONF),
508 REG_DEF(CRTC1_HDISPLAY),
509 REG_DEF(CRTC1_HSYNC),
510 REG_DEF(CRTC1_VDISPLAY),
511 REG_DEF(CRTC1_VSYNC),
512 REG_DEF(CRTC1_GAMMA_INDEX),
513 REG_DEF(CRTC1_GAMMA_DATA),
514 REG_DEF(CRTC1_SYNC_DEVIATION),
515 REG_DEF(CRTC1_VSYNC_COUNTER),
516 REG_DEF(CRTC1_SCAN_POS),
517 REG_DEF(CRTC1_STRIDE),
518 REG_DEF(CRTC1_FB1_ADDR_HI),
519 REG_DEF(CRTC1_FB1_ADDR_LO),
520 REG_DEF(CRTC1_FB0_ADDR_HI),
521 REG_DEF(CRTC1_FB0_ADDR_LO),
522 REG_DEF(CURSOR1_CFG),
523 REG_DEF(CURSOR1_POSITION),
524 REG_DEF(CURSOR1_BG_COLOR),
525 REG_DEF(CURSOR1_FG_COLOR),
526 },
527};
528
529static int lsdc_crtc_show_regs(struct seq_file *m, void *arg)
530{
531 struct drm_info_node *node = (struct drm_info_node *)m->private;
532 struct lsdc_crtc *lcrtc = (struct lsdc_crtc *)node->info_ent->data;
533 struct lsdc_device *ldev = lcrtc->ldev;
534 unsigned int i;
535
536 for (i = 0; i < lcrtc->nreg; i++) {
537 const struct lsdc_reg32 *preg = &lcrtc->preg[i];
538 u32 offset = preg->offset;
539
540 seq_printf(m, fmt: "%s (0x%04x): 0x%08x\n",
541 preg->name, offset, lsdc_rreg32(ldev, offset));
542 }
543
544 return 0;
545}
546
547static int lsdc_crtc_show_scan_position(struct seq_file *m, void *arg)
548{
549 struct drm_info_node *node = (struct drm_info_node *)m->private;
550 struct lsdc_crtc *lcrtc = (struct lsdc_crtc *)node->info_ent->data;
551 int x, y;
552
553 lcrtc->hw_ops->get_scan_pos(lcrtc, &x, &y);
554 seq_printf(m, fmt: "Scanout position: x: %08u, y: %08u\n", x, y);
555
556 return 0;
557}
558
559static int lsdc_crtc_show_vblank_counter(struct seq_file *m, void *arg)
560{
561 struct drm_info_node *node = (struct drm_info_node *)m->private;
562 struct lsdc_crtc *lcrtc = (struct lsdc_crtc *)node->info_ent->data;
563
564 if (lcrtc->hw_ops->get_vblank_counter)
565 seq_printf(m, fmt: "%s vblank counter: %08u\n\n", lcrtc->base.name,
566 lcrtc->hw_ops->get_vblank_counter(lcrtc));
567
568 return 0;
569}
570
571static int lsdc_pixpll_show_clock(struct seq_file *m, void *arg)
572{
573 struct drm_info_node *node = (struct drm_info_node *)m->private;
574 struct lsdc_crtc *lcrtc = (struct lsdc_crtc *)node->info_ent->data;
575 struct lsdc_pixpll *pixpll = &lcrtc->pixpll;
576 const struct lsdc_pixpll_funcs *funcs = pixpll->funcs;
577 struct drm_crtc *crtc = &lcrtc->base;
578 struct drm_display_mode *mode = &crtc->state->mode;
579 struct drm_printer printer = drm_seq_file_printer(f: m);
580 unsigned int out_khz;
581
582 out_khz = funcs->get_rate(pixpll);
583
584 seq_printf(m, fmt: "%s: %dx%d@%d\n", crtc->name,
585 mode->hdisplay, mode->vdisplay, drm_mode_vrefresh(mode));
586
587 seq_printf(m, fmt: "Pixel clock required: %d kHz\n", mode->clock);
588 seq_printf(m, fmt: "Actual frequency output: %u kHz\n", out_khz);
589 seq_printf(m, fmt: "Diff: %d kHz\n", out_khz - mode->clock);
590
591 funcs->print(pixpll, &printer);
592
593 return 0;
594}
595
596static struct drm_info_list lsdc_crtc_debugfs_list[2][4] = {
597 [0] = {
598 { "regs", lsdc_crtc_show_regs, 0, NULL },
599 { "pixclk", lsdc_pixpll_show_clock, 0, NULL },
600 { "scanpos", lsdc_crtc_show_scan_position, 0, NULL },
601 { "vblanks", lsdc_crtc_show_vblank_counter, 0, NULL },
602 },
603 [1] = {
604 { "regs", lsdc_crtc_show_regs, 0, NULL },
605 { "pixclk", lsdc_pixpll_show_clock, 0, NULL },
606 { "scanpos", lsdc_crtc_show_scan_position, 0, NULL },
607 { "vblanks", lsdc_crtc_show_vblank_counter, 0, NULL },
608 },
609};
610
611/* operate manually */
612
613static int lsdc_crtc_man_op_show(struct seq_file *m, void *data)
614{
615 seq_puts(m, s: "soft_reset: soft reset this CRTC\n");
616 seq_puts(m, s: "enable: enable this CRTC\n");
617 seq_puts(m, s: "disable: disable this CRTC\n");
618 seq_puts(m, s: "flip: trigger the page flip\n");
619 seq_puts(m, s: "clone: clone the another crtc with hardware logic\n");
620
621 return 0;
622}
623
624static int lsdc_crtc_man_op_open(struct inode *inode, struct file *file)
625{
626 struct drm_crtc *crtc = inode->i_private;
627
628 return single_open(file, lsdc_crtc_man_op_show, crtc);
629}
630
631static ssize_t lsdc_crtc_man_op_write(struct file *file,
632 const char __user *ubuf,
633 size_t len,
634 loff_t *offp)
635{
636 struct seq_file *m = file->private_data;
637 struct lsdc_crtc *lcrtc = m->private;
638 const struct lsdc_crtc_hw_ops *ops = lcrtc->hw_ops;
639 char buf[16];
640
641 if (len > sizeof(buf) - 1)
642 return -EINVAL;
643
644 if (copy_from_user(to: buf, from: ubuf, n: len))
645 return -EFAULT;
646
647 buf[len] = '\0';
648
649 if (sysfs_streq(s1: buf, s2: "soft_reset"))
650 ops->soft_reset(lcrtc);
651 else if (sysfs_streq(s1: buf, s2: "enable"))
652 ops->enable(lcrtc);
653 else if (sysfs_streq(s1: buf, s2: "disable"))
654 ops->disable(lcrtc);
655 else if (sysfs_streq(s1: buf, s2: "flip"))
656 ops->flip(lcrtc);
657 else if (sysfs_streq(s1: buf, s2: "clone"))
658 ops->clone(lcrtc);
659
660 return len;
661}
662
663static const struct file_operations lsdc_crtc_man_op_fops = {
664 .owner = THIS_MODULE,
665 .open = lsdc_crtc_man_op_open,
666 .read = seq_read,
667 .llseek = seq_lseek,
668 .release = single_release,
669 .write = lsdc_crtc_man_op_write,
670};
671
672static int lsdc_crtc_late_register(struct drm_crtc *crtc)
673{
674 struct lsdc_display_pipe *dispipe = crtc_to_display_pipe(crtc);
675 struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
676 struct drm_minor *minor = crtc->dev->primary;
677 unsigned int index = dispipe->index;
678 unsigned int i;
679
680 lcrtc->preg = lsdc_crtc_regs_array[index];
681 lcrtc->nreg = ARRAY_SIZE(lsdc_crtc_regs_array[index]);
682 lcrtc->p_info_list = lsdc_crtc_debugfs_list[index];
683 lcrtc->n_info_list = ARRAY_SIZE(lsdc_crtc_debugfs_list[index]);
684
685 for (i = 0; i < lcrtc->n_info_list; ++i)
686 lcrtc->p_info_list[i].data = lcrtc;
687
688 drm_debugfs_create_files(files: lcrtc->p_info_list, count: lcrtc->n_info_list,
689 root: crtc->debugfs_entry, minor);
690
691 /* Manual operations supported */
692 debugfs_create_file(name: "ops", mode: 0644, parent: crtc->debugfs_entry, data: lcrtc,
693 fops: &lsdc_crtc_man_op_fops);
694
695 return 0;
696}
697
698static void lsdc_crtc_atomic_print_state(struct drm_printer *p,
699 const struct drm_crtc_state *state)
700{
701 const struct lsdc_crtc_state *priv_state;
702 const struct lsdc_pixpll_parms *pparms;
703
704 priv_state = container_of_const(state, struct lsdc_crtc_state, base);
705 pparms = &priv_state->pparms;
706
707 drm_printf(p, f: "\tInput clock divider = %u\n", pparms->div_ref);
708 drm_printf(p, f: "\tMedium clock multiplier = %u\n", pparms->loopc);
709 drm_printf(p, f: "\tOutput clock divider = %u\n", pparms->div_out);
710}
711
712static const struct drm_crtc_funcs ls7a1000_crtc_funcs = {
713 .reset = lsdc_crtc_reset,
714 .destroy = drm_crtc_cleanup,
715 .set_config = drm_atomic_helper_set_config,
716 .page_flip = drm_atomic_helper_page_flip,
717 .atomic_duplicate_state = lsdc_crtc_atomic_duplicate_state,
718 .atomic_destroy_state = lsdc_crtc_atomic_destroy_state,
719 .late_register = lsdc_crtc_late_register,
720 .enable_vblank = lsdc_crtc_enable_vblank,
721 .disable_vblank = lsdc_crtc_disable_vblank,
722 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
723 .atomic_print_state = lsdc_crtc_atomic_print_state,
724};
725
726static const struct drm_crtc_funcs ls7a2000_crtc_funcs = {
727 .reset = lsdc_crtc_reset,
728 .destroy = drm_crtc_cleanup,
729 .set_config = drm_atomic_helper_set_config,
730 .page_flip = drm_atomic_helper_page_flip,
731 .atomic_duplicate_state = lsdc_crtc_atomic_duplicate_state,
732 .atomic_destroy_state = lsdc_crtc_atomic_destroy_state,
733 .late_register = lsdc_crtc_late_register,
734 .get_vblank_counter = lsdc_crtc_get_vblank_counter,
735 .enable_vblank = lsdc_crtc_enable_vblank,
736 .disable_vblank = lsdc_crtc_disable_vblank,
737 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
738 .atomic_print_state = lsdc_crtc_atomic_print_state,
739};
740
741static enum drm_mode_status
742lsdc_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode)
743{
744 struct drm_device *ddev = crtc->dev;
745 struct lsdc_device *ldev = to_lsdc(ddev);
746 const struct lsdc_desc *descp = ldev->descp;
747 unsigned int pitch;
748
749 if (mode->hdisplay > descp->max_width)
750 return MODE_BAD_HVALUE;
751
752 if (mode->vdisplay > descp->max_height)
753 return MODE_BAD_VVALUE;
754
755 if (mode->clock > descp->max_pixel_clk) {
756 drm_dbg_kms(ddev, "mode %dx%d, pixel clock=%d is too high\n",
757 mode->hdisplay, mode->vdisplay, mode->clock);
758 return MODE_CLOCK_HIGH;
759 }
760
761 /* 4 for DRM_FORMAT_XRGB8888 */
762 pitch = mode->hdisplay * 4;
763
764 if (pitch % descp->pitch_align) {
765 drm_dbg_kms(ddev, "align to %u bytes is required: %u\n",
766 descp->pitch_align, pitch);
767 return MODE_BAD_WIDTH;
768 }
769
770 return MODE_OK;
771}
772
773static int lsdc_pixpll_atomic_check(struct drm_crtc *crtc,
774 struct drm_crtc_state *state)
775{
776 struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
777 struct lsdc_pixpll *pixpll = &lcrtc->pixpll;
778 const struct lsdc_pixpll_funcs *pfuncs = pixpll->funcs;
779 struct lsdc_crtc_state *priv_state = to_lsdc_crtc_state(base: state);
780 unsigned int clock = state->mode.clock;
781 int ret;
782
783 ret = pfuncs->compute(pixpll, clock, &priv_state->pparms);
784 if (ret) {
785 drm_warn(crtc->dev, "Failed to find PLL params for %ukHz\n",
786 clock);
787 return -EINVAL;
788 }
789
790 return 0;
791}
792
793static int lsdc_crtc_helper_atomic_check(struct drm_crtc *crtc,
794 struct drm_atomic_state *state)
795{
796 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
797
798 if (!crtc_state->enable)
799 return 0;
800
801 return lsdc_pixpll_atomic_check(crtc, state: crtc_state);
802}
803
804static void lsdc_crtc_mode_set_nofb(struct drm_crtc *crtc)
805{
806 struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
807 const struct lsdc_crtc_hw_ops *crtc_hw_ops = lcrtc->hw_ops;
808 struct lsdc_pixpll *pixpll = &lcrtc->pixpll;
809 const struct lsdc_pixpll_funcs *pixpll_funcs = pixpll->funcs;
810 struct drm_crtc_state *state = crtc->state;
811 struct drm_display_mode *mode = &state->mode;
812 struct lsdc_crtc_state *priv_state = to_lsdc_crtc_state(base: state);
813
814 pixpll_funcs->update(pixpll, &priv_state->pparms);
815
816 if (crtc_hw_ops->set_dma_step) {
817 unsigned int width_in_bytes = mode->hdisplay * 4;
818 enum lsdc_dma_steps dma_step;
819
820 /*
821 * Using DMA step as large as possible, for improving
822 * hardware DMA efficiency.
823 */
824 if (width_in_bytes % 256 == 0)
825 dma_step = LSDC_DMA_STEP_256_BYTES;
826 else if (width_in_bytes % 128 == 0)
827 dma_step = LSDC_DMA_STEP_128_BYTES;
828 else if (width_in_bytes % 64 == 0)
829 dma_step = LSDC_DMA_STEP_64_BYTES;
830 else /* width_in_bytes % 32 == 0 */
831 dma_step = LSDC_DMA_STEP_32_BYTES;
832
833 crtc_hw_ops->set_dma_step(lcrtc, dma_step);
834 }
835
836 crtc_hw_ops->set_mode(lcrtc, mode);
837}
838
839static void lsdc_crtc_send_vblank(struct drm_crtc *crtc)
840{
841 struct drm_device *ddev = crtc->dev;
842 unsigned long flags;
843
844 if (!crtc->state || !crtc->state->event)
845 return;
846
847 drm_dbg(ddev, "Send vblank manually\n");
848
849 spin_lock_irqsave(&ddev->event_lock, flags);
850 drm_crtc_send_vblank_event(crtc, e: crtc->state->event);
851 crtc->state->event = NULL;
852 spin_unlock_irqrestore(lock: &ddev->event_lock, flags);
853}
854
855static void lsdc_crtc_atomic_enable(struct drm_crtc *crtc,
856 struct drm_atomic_state *state)
857{
858 struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
859
860 if (lcrtc->has_vblank)
861 drm_crtc_vblank_on(crtc);
862
863 lcrtc->hw_ops->enable(lcrtc);
864}
865
866static void lsdc_crtc_atomic_disable(struct drm_crtc *crtc,
867 struct drm_atomic_state *state)
868{
869 struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
870
871 if (lcrtc->has_vblank)
872 drm_crtc_vblank_off(crtc);
873
874 lcrtc->hw_ops->disable(lcrtc);
875
876 /*
877 * Make sure we issue a vblank event after disabling the CRTC if
878 * someone was waiting it.
879 */
880 lsdc_crtc_send_vblank(crtc);
881}
882
883static void lsdc_crtc_atomic_flush(struct drm_crtc *crtc,
884 struct drm_atomic_state *state)
885{
886 spin_lock_irq(lock: &crtc->dev->event_lock);
887 if (crtc->state->event) {
888 if (drm_crtc_vblank_get(crtc) == 0)
889 drm_crtc_arm_vblank_event(crtc, e: crtc->state->event);
890 else
891 drm_crtc_send_vblank_event(crtc, e: crtc->state->event);
892 crtc->state->event = NULL;
893 }
894 spin_unlock_irq(lock: &crtc->dev->event_lock);
895}
896
897static bool lsdc_crtc_get_scanout_position(struct drm_crtc *crtc,
898 bool in_vblank_irq,
899 int *vpos,
900 int *hpos,
901 ktime_t *stime,
902 ktime_t *etime,
903 const struct drm_display_mode *mode)
904{
905 struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
906 const struct lsdc_crtc_hw_ops *ops = lcrtc->hw_ops;
907 int vsw, vbp, vactive_start, vactive_end, vfp_end;
908 int x, y;
909
910 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
911 vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
912
913 vactive_start = vsw + vbp + 1;
914 vactive_end = vactive_start + mode->crtc_vdisplay;
915
916 /* last scan line before VSYNC */
917 vfp_end = mode->crtc_vtotal;
918
919 if (stime)
920 *stime = ktime_get();
921
922 ops->get_scan_pos(lcrtc, &x, &y);
923
924 if (y > vactive_end)
925 y = y - vfp_end - vactive_start;
926 else
927 y -= vactive_start;
928
929 *vpos = y;
930 *hpos = 0;
931
932 if (etime)
933 *etime = ktime_get();
934
935 return true;
936}
937
938static const struct drm_crtc_helper_funcs lsdc_crtc_helper_funcs = {
939 .mode_valid = lsdc_crtc_mode_valid,
940 .mode_set_nofb = lsdc_crtc_mode_set_nofb,
941 .atomic_enable = lsdc_crtc_atomic_enable,
942 .atomic_disable = lsdc_crtc_atomic_disable,
943 .atomic_check = lsdc_crtc_helper_atomic_check,
944 .atomic_flush = lsdc_crtc_atomic_flush,
945 .get_scanout_position = lsdc_crtc_get_scanout_position,
946};
947
948int ls7a1000_crtc_init(struct drm_device *ddev,
949 struct drm_crtc *crtc,
950 struct drm_plane *primary,
951 struct drm_plane *cursor,
952 unsigned int index,
953 bool has_vblank)
954{
955 struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
956 int ret;
957
958 ret = lsdc_pixpll_init(this: &lcrtc->pixpll, ddev, index);
959 if (ret) {
960 drm_err(ddev, "pixel pll init failed: %d\n", ret);
961 return ret;
962 }
963
964 lcrtc->ldev = to_lsdc(ddev);
965 lcrtc->has_vblank = has_vblank;
966 lcrtc->hw_ops = &ls7a1000_crtc_hw_ops[index];
967
968 ret = drm_crtc_init_with_planes(dev: ddev, crtc, primary, cursor,
969 funcs: &ls7a1000_crtc_funcs,
970 name: "LS-CRTC-%d", index);
971 if (ret) {
972 drm_err(ddev, "crtc init with planes failed: %d\n", ret);
973 return ret;
974 }
975
976 drm_crtc_helper_add(crtc, funcs: &lsdc_crtc_helper_funcs);
977
978 ret = drm_mode_crtc_set_gamma_size(crtc, gamma_size: 256);
979 if (ret)
980 return ret;
981
982 drm_crtc_enable_color_mgmt(crtc, degamma_lut_size: 0, has_ctm: false, gamma_lut_size: 256);
983
984 return 0;
985}
986
987int ls7a2000_crtc_init(struct drm_device *ddev,
988 struct drm_crtc *crtc,
989 struct drm_plane *primary,
990 struct drm_plane *cursor,
991 unsigned int index,
992 bool has_vblank)
993{
994 struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
995 int ret;
996
997 ret = lsdc_pixpll_init(this: &lcrtc->pixpll, ddev, index);
998 if (ret) {
999 drm_err(ddev, "crtc init with pll failed: %d\n", ret);
1000 return ret;
1001 }
1002
1003 lcrtc->ldev = to_lsdc(ddev);
1004 lcrtc->has_vblank = has_vblank;
1005 lcrtc->hw_ops = &ls7a2000_crtc_hw_ops[index];
1006
1007 ret = drm_crtc_init_with_planes(dev: ddev, crtc, primary, cursor,
1008 funcs: &ls7a2000_crtc_funcs,
1009 name: "LS-CRTC-%u", index);
1010 if (ret) {
1011 drm_err(ddev, "crtc init with planes failed: %d\n", ret);
1012 return ret;
1013 }
1014
1015 drm_crtc_helper_add(crtc, funcs: &lsdc_crtc_helper_funcs);
1016
1017 ret = drm_mode_crtc_set_gamma_size(crtc, gamma_size: 256);
1018 if (ret)
1019 return ret;
1020
1021 drm_crtc_enable_color_mgmt(crtc, degamma_lut_size: 0, has_ctm: false, gamma_lut_size: 256);
1022
1023 return 0;
1024}
1025

source code of linux/drivers/gpu/drm/loongson/lsdc_crtc.c