1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Hardware monitoring driver for PMBus devices
4 *
5 * Copyright (c) 2010, 2011 Ericsson AB.
6 * Copyright (c) 2012 Guenter Roeck
7 */
8
9#include <linux/debugfs.h>
10#include <linux/delay.h>
11#include <linux/dcache.h>
12#include <linux/kernel.h>
13#include <linux/math64.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/err.h>
17#include <linux/slab.h>
18#include <linux/i2c.h>
19#include <linux/hwmon.h>
20#include <linux/hwmon-sysfs.h>
21#include <linux/pmbus.h>
22#include <linux/regulator/driver.h>
23#include <linux/regulator/machine.h>
24#include <linux/of.h>
25#include <linux/thermal.h>
26#include "pmbus.h"
27
28/*
29 * Number of additional attribute pointers to allocate
30 * with each call to krealloc
31 */
32#define PMBUS_ATTR_ALLOC_SIZE 32
33#define PMBUS_NAME_SIZE 24
34
35/*
36 * The type of operation used for picking the delay between
37 * successive pmbus operations.
38 */
39#define PMBUS_OP_WRITE BIT(0)
40#define PMBUS_OP_PAGE_CHANGE BIT(1)
41
42static int wp = -1;
43module_param(wp, int, 0444);
44
45struct pmbus_sensor {
46 struct pmbus_sensor *next;
47 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
48 struct device_attribute attribute;
49 u8 page; /* page number */
50 u8 phase; /* phase number, 0xff for all phases */
51 u16 reg; /* register */
52 enum pmbus_sensor_classes class; /* sensor class */
53 bool update; /* runtime sensor update needed */
54 bool convert; /* Whether or not to apply linear/vid/direct */
55 int data; /* Sensor data; negative if there was a read error */
56};
57#define to_pmbus_sensor(_attr) \
58 container_of(_attr, struct pmbus_sensor, attribute)
59
60struct pmbus_boolean {
61 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
62 struct sensor_device_attribute attribute;
63 struct pmbus_sensor *s1;
64 struct pmbus_sensor *s2;
65};
66#define to_pmbus_boolean(_attr) \
67 container_of(_attr, struct pmbus_boolean, attribute)
68
69struct pmbus_label {
70 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
71 struct device_attribute attribute;
72 char label[PMBUS_NAME_SIZE]; /* label */
73};
74#define to_pmbus_label(_attr) \
75 container_of(_attr, struct pmbus_label, attribute)
76
77/* Macros for converting between sensor index and register/page/status mask */
78
79#define PB_STATUS_MASK 0xffff
80#define PB_REG_SHIFT 16
81#define PB_REG_MASK 0x3ff
82#define PB_PAGE_SHIFT 26
83#define PB_PAGE_MASK 0x3f
84
85#define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \
86 ((reg) << PB_REG_SHIFT) | (mask))
87
88#define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
89#define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK)
90#define pb_index_to_mask(index) ((index) & PB_STATUS_MASK)
91
92struct pmbus_data {
93 struct device *dev;
94 struct device *hwmon_dev;
95 struct regulator_dev **rdevs;
96
97 u32 flags; /* from platform data */
98
99 u8 revision; /* The PMBus revision the device is compliant with */
100
101 int exponent[PMBUS_PAGES];
102 /* linear mode: exponent for output voltages */
103
104 const struct pmbus_driver_info *info;
105
106 int max_attributes;
107 int num_attributes;
108 struct attribute_group group;
109 const struct attribute_group **groups;
110
111 struct pmbus_sensor *sensors;
112
113 struct mutex update_lock;
114
115 bool has_status_word; /* device uses STATUS_WORD register */
116 int (*read_status)(struct i2c_client *client, int page);
117
118 s16 currpage; /* current page, -1 for unknown/unset */
119 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */
120
121 int vout_low[PMBUS_PAGES]; /* voltage low margin */
122 int vout_high[PMBUS_PAGES]; /* voltage high margin */
123
124 ktime_t next_access_backoff; /* Wait until at least this time */
125};
126
127struct pmbus_debugfs_entry {
128 struct i2c_client *client;
129 u8 page;
130 u8 reg;
131};
132
133static const int pmbus_fan_rpm_mask[] = {
134 PB_FAN_1_RPM,
135 PB_FAN_2_RPM,
136 PB_FAN_1_RPM,
137 PB_FAN_2_RPM,
138};
139
140static const int pmbus_fan_config_registers[] = {
141 PMBUS_FAN_CONFIG_12,
142 PMBUS_FAN_CONFIG_12,
143 PMBUS_FAN_CONFIG_34,
144 PMBUS_FAN_CONFIG_34
145};
146
147static const int pmbus_fan_command_registers[] = {
148 PMBUS_FAN_COMMAND_1,
149 PMBUS_FAN_COMMAND_2,
150 PMBUS_FAN_COMMAND_3,
151 PMBUS_FAN_COMMAND_4,
152};
153
154void pmbus_clear_cache(struct i2c_client *client)
155{
156 struct pmbus_data *data = i2c_get_clientdata(client);
157 struct pmbus_sensor *sensor;
158
159 for (sensor = data->sensors; sensor; sensor = sensor->next)
160 sensor->data = -ENODATA;
161}
162EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, "PMBUS");
163
164void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
165{
166 struct pmbus_data *data = i2c_get_clientdata(client);
167 struct pmbus_sensor *sensor;
168
169 for (sensor = data->sensors; sensor; sensor = sensor->next)
170 if (sensor->reg == reg)
171 sensor->update = update;
172}
173EXPORT_SYMBOL_NS_GPL(pmbus_set_update, "PMBUS");
174
175/* Some chips need a delay between accesses. */
176static void pmbus_wait(struct i2c_client *client)
177{
178 struct pmbus_data *data = i2c_get_clientdata(client);
179 s64 delay = ktime_us_delta(later: data->next_access_backoff, earlier: ktime_get());
180
181 if (delay > 0)
182 fsleep(usecs: delay);
183}
184
185/* Sets the last operation timestamp for pmbus_wait */
186static void pmbus_update_ts(struct i2c_client *client, int op)
187{
188 struct pmbus_data *data = i2c_get_clientdata(client);
189 const struct pmbus_driver_info *info = data->info;
190 int delay = info->access_delay;
191
192 if (op & PMBUS_OP_WRITE)
193 delay = max(delay, info->write_delay);
194 if (op & PMBUS_OP_PAGE_CHANGE)
195 delay = max(delay, info->page_change_delay);
196
197 if (delay > 0)
198 data->next_access_backoff = ktime_add_us(kt: ktime_get(), usec: delay);
199}
200
201int pmbus_set_page(struct i2c_client *client, int page, int phase)
202{
203 struct pmbus_data *data = i2c_get_clientdata(client);
204 int rv;
205
206 if (page < 0)
207 return 0;
208
209 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
210 data->info->pages > 1 && page != data->currpage) {
211 pmbus_wait(client);
212 rv = i2c_smbus_write_byte_data(client, command: PMBUS_PAGE, value: page);
213 pmbus_update_ts(client, PMBUS_OP_WRITE | PMBUS_OP_PAGE_CHANGE);
214 if (rv < 0)
215 return rv;
216
217 pmbus_wait(client);
218 rv = i2c_smbus_read_byte_data(client, command: PMBUS_PAGE);
219 pmbus_update_ts(client, op: 0);
220 if (rv < 0)
221 return rv;
222
223 if (rv != page)
224 return -EIO;
225 }
226 data->currpage = page;
227
228 if (data->info->phases[page] && data->currphase != phase &&
229 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
230 pmbus_wait(client);
231 rv = i2c_smbus_write_byte_data(client, command: PMBUS_PHASE,
232 value: phase);
233 pmbus_update_ts(client, PMBUS_OP_WRITE);
234 if (rv)
235 return rv;
236 }
237 data->currphase = phase;
238
239 return 0;
240}
241EXPORT_SYMBOL_NS_GPL(pmbus_set_page, "PMBUS");
242
243int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
244{
245 int rv;
246
247 rv = pmbus_set_page(client, page, 0xff);
248 if (rv < 0)
249 return rv;
250
251 pmbus_wait(client);
252 rv = i2c_smbus_write_byte(client, value);
253 pmbus_update_ts(client, PMBUS_OP_WRITE);
254
255 return rv;
256}
257EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, "PMBUS");
258
259/*
260 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
261 * a device specific mapping function exists and calls it if necessary.
262 */
263static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
264{
265 struct pmbus_data *data = i2c_get_clientdata(client);
266 const struct pmbus_driver_info *info = data->info;
267 int status;
268
269 if (info->write_byte) {
270 status = info->write_byte(client, page, value);
271 if (status != -ENODATA)
272 return status;
273 }
274 return pmbus_write_byte(client, page, value);
275}
276
277int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
278 u16 word)
279{
280 int rv;
281
282 rv = pmbus_set_page(client, page, 0xff);
283 if (rv < 0)
284 return rv;
285
286 pmbus_wait(client);
287 rv = i2c_smbus_write_word_data(client, command: reg, value: word);
288 pmbus_update_ts(client, PMBUS_OP_WRITE);
289
290 return rv;
291}
292EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, "PMBUS");
293
294static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
295 u16 word)
296{
297 int bit;
298 int id;
299 int rv;
300
301 switch (reg) {
302 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
303 id = reg - PMBUS_VIRT_FAN_TARGET_1;
304 bit = pmbus_fan_rpm_mask[id];
305 rv = pmbus_update_fan(client, page, id, config: bit, mask: bit, command: word);
306 break;
307 default:
308 rv = -ENXIO;
309 break;
310 }
311
312 return rv;
313}
314
315/*
316 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
317 * a device specific mapping function exists and calls it if necessary.
318 */
319static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
320 u16 word)
321{
322 struct pmbus_data *data = i2c_get_clientdata(client);
323 const struct pmbus_driver_info *info = data->info;
324 int status;
325
326 if (info->write_word_data) {
327 status = info->write_word_data(client, page, reg, word);
328 if (status != -ENODATA)
329 return status;
330 }
331
332 if (reg >= PMBUS_VIRT_BASE)
333 return pmbus_write_virt_reg(client, page, reg, word);
334
335 return pmbus_write_word_data(client, page, reg, word);
336}
337
338/*
339 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
340 * a device specific mapping function exists and calls it if necessary.
341 */
342static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
343{
344 struct pmbus_data *data = i2c_get_clientdata(client);
345 const struct pmbus_driver_info *info = data->info;
346 int status;
347
348 if (info->write_byte_data) {
349 status = info->write_byte_data(client, page, reg, value);
350 if (status != -ENODATA)
351 return status;
352 }
353 return pmbus_write_byte_data(client, page, reg, value);
354}
355
356/*
357 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
358 * a device specific mapping function exists and calls it if necessary.
359 */
360static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
361{
362 struct pmbus_data *data = i2c_get_clientdata(client);
363 const struct pmbus_driver_info *info = data->info;
364 int status;
365
366 if (info->read_byte_data) {
367 status = info->read_byte_data(client, page, reg);
368 if (status != -ENODATA)
369 return status;
370 }
371 return pmbus_read_byte_data(client, page, reg);
372}
373
374int pmbus_update_fan(struct i2c_client *client, int page, int id,
375 u8 config, u8 mask, u16 command)
376{
377 int from;
378 int rv;
379 u8 to;
380
381 from = _pmbus_read_byte_data(client, page,
382 reg: pmbus_fan_config_registers[id]);
383 if (from < 0)
384 return from;
385
386 to = (from & ~mask) | (config & mask);
387 if (to != from) {
388 rv = _pmbus_write_byte_data(client, page,
389 reg: pmbus_fan_config_registers[id], value: to);
390 if (rv < 0)
391 return rv;
392 }
393
394 return _pmbus_write_word_data(client, page,
395 reg: pmbus_fan_command_registers[id], word: command);
396}
397EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, "PMBUS");
398
399int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
400{
401 int rv;
402
403 rv = pmbus_set_page(client, page, phase);
404 if (rv < 0)
405 return rv;
406
407 pmbus_wait(client);
408 rv = i2c_smbus_read_word_data(client, command: reg);
409 pmbus_update_ts(client, op: 0);
410
411 return rv;
412}
413EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, "PMBUS");
414
415static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
416{
417 int rv;
418 int id;
419
420 switch (reg) {
421 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
422 id = reg - PMBUS_VIRT_FAN_TARGET_1;
423 rv = pmbus_get_fan_rate_device(client, page, id, mode: rpm);
424 break;
425 default:
426 rv = -ENXIO;
427 break;
428 }
429
430 return rv;
431}
432
433/*
434 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
435 * a device specific mapping function exists and calls it if necessary.
436 */
437static int _pmbus_read_word_data(struct i2c_client *client, int page,
438 int phase, int reg)
439{
440 struct pmbus_data *data = i2c_get_clientdata(client);
441 const struct pmbus_driver_info *info = data->info;
442 int status;
443
444 if (info->read_word_data) {
445 status = info->read_word_data(client, page, phase, reg);
446 if (status != -ENODATA)
447 return status;
448 }
449
450 if (reg >= PMBUS_VIRT_BASE)
451 return pmbus_read_virt_reg(client, page, reg);
452
453 return pmbus_read_word_data(client, page, phase, reg);
454}
455
456/* Same as above, but without phase parameter, for use in check functions */
457static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
458{
459 return _pmbus_read_word_data(client, page, phase: 0xff, reg);
460}
461
462int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
463{
464 int rv;
465
466 rv = pmbus_set_page(client, page, 0xff);
467 if (rv < 0)
468 return rv;
469
470 pmbus_wait(client);
471 rv = i2c_smbus_read_byte_data(client, command: reg);
472 pmbus_update_ts(client, op: 0);
473
474 return rv;
475}
476EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, "PMBUS");
477
478int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
479{
480 int rv;
481
482 rv = pmbus_set_page(client, page, 0xff);
483 if (rv < 0)
484 return rv;
485
486 pmbus_wait(client);
487 rv = i2c_smbus_write_byte_data(client, command: reg, value);
488 pmbus_update_ts(client, PMBUS_OP_WRITE);
489
490 return rv;
491}
492EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, "PMBUS");
493
494int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
495 u8 mask, u8 value)
496{
497 unsigned int tmp;
498 int rv;
499
500 rv = _pmbus_read_byte_data(client, page, reg);
501 if (rv < 0)
502 return rv;
503
504 tmp = (rv & ~mask) | (value & mask);
505
506 if (tmp != rv)
507 rv = _pmbus_write_byte_data(client, page, reg, value: tmp);
508
509 return rv;
510}
511EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, "PMBUS");
512
513static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
514 char *data_buf)
515{
516 int rv;
517
518 rv = pmbus_set_page(client, page, 0xff);
519 if (rv < 0)
520 return rv;
521
522 pmbus_wait(client);
523 rv = i2c_smbus_read_block_data(client, command: reg, values: data_buf);
524 pmbus_update_ts(client, op: 0);
525
526 return rv;
527}
528
529static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
530 int reg)
531{
532 struct pmbus_sensor *sensor;
533
534 for (sensor = data->sensors; sensor; sensor = sensor->next) {
535 if (sensor->page == page && sensor->reg == reg)
536 return sensor;
537 }
538
539 return ERR_PTR(error: -EINVAL);
540}
541
542static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
543 enum pmbus_fan_mode mode,
544 bool from_cache)
545{
546 struct pmbus_data *data = i2c_get_clientdata(client);
547 bool want_rpm, have_rpm;
548 struct pmbus_sensor *s;
549 int config;
550 int reg;
551
552 want_rpm = (mode == rpm);
553
554 if (from_cache) {
555 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
556 s = pmbus_find_sensor(data, page, reg: reg + id);
557 if (IS_ERR(ptr: s))
558 return PTR_ERR(ptr: s);
559
560 return s->data;
561 }
562
563 config = _pmbus_read_byte_data(client, page,
564 reg: pmbus_fan_config_registers[id]);
565 if (config < 0)
566 return config;
567
568 have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
569 if (want_rpm == have_rpm)
570 return pmbus_read_word_data(client, page, 0xff,
571 pmbus_fan_command_registers[id]);
572
573 /* Can't sensibly map between RPM and PWM, just return zero */
574 return 0;
575}
576
577int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
578 enum pmbus_fan_mode mode)
579{
580 return pmbus_get_fan_rate(client, page, id, mode, from_cache: false);
581}
582EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, "PMBUS");
583
584int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
585 enum pmbus_fan_mode mode)
586{
587 return pmbus_get_fan_rate(client, page, id, mode, from_cache: true);
588}
589EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, "PMBUS");
590
591static void pmbus_clear_fault_page(struct i2c_client *client, int page)
592{
593 _pmbus_write_byte(client, page, value: PMBUS_CLEAR_FAULTS);
594}
595
596void pmbus_clear_faults(struct i2c_client *client)
597{
598 struct pmbus_data *data = i2c_get_clientdata(client);
599 int i;
600
601 for (i = 0; i < data->info->pages; i++)
602 pmbus_clear_fault_page(client, page: i);
603}
604EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, "PMBUS");
605
606static int pmbus_check_status_cml(struct i2c_client *client)
607{
608 struct pmbus_data *data = i2c_get_clientdata(client);
609 int status, status2;
610
611 status = data->read_status(client, -1);
612 if (status < 0 || (status & PB_STATUS_CML)) {
613 status2 = _pmbus_read_byte_data(client, page: -1, reg: PMBUS_STATUS_CML);
614 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
615 return -EIO;
616 }
617 return 0;
618}
619
620static bool pmbus_check_register(struct i2c_client *client,
621 int (*func)(struct i2c_client *client,
622 int page, int reg),
623 int page, int reg)
624{
625 int rv;
626 struct pmbus_data *data = i2c_get_clientdata(client);
627
628 rv = func(client, page, reg);
629 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
630 rv = pmbus_check_status_cml(client);
631 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
632 data->read_status(client, -1);
633 if (reg < PMBUS_VIRT_BASE)
634 pmbus_clear_fault_page(client, page: -1);
635 return rv >= 0;
636}
637
638static bool pmbus_check_status_register(struct i2c_client *client, int page)
639{
640 int status;
641 struct pmbus_data *data = i2c_get_clientdata(client);
642
643 status = data->read_status(client, page);
644 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
645 (status & PB_STATUS_CML)) {
646 status = _pmbus_read_byte_data(client, page: -1, reg: PMBUS_STATUS_CML);
647 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
648 status = -EIO;
649 }
650
651 pmbus_clear_fault_page(client, page: -1);
652 return status >= 0;
653}
654
655bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
656{
657 return pmbus_check_register(client, func: _pmbus_read_byte_data, page, reg);
658}
659EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, "PMBUS");
660
661bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
662{
663 return pmbus_check_register(client, func: __pmbus_read_word_data, page, reg);
664}
665EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, "PMBUS");
666
667static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
668 int page, int reg)
669{
670 int rv;
671 struct pmbus_data *data = i2c_get_clientdata(client);
672 char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
673
674 rv = pmbus_read_block_data(client, page, reg, data_buf);
675 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
676 rv = pmbus_check_status_cml(client);
677 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
678 data->read_status(client, -1);
679 pmbus_clear_fault_page(client, page: -1);
680 return rv >= 0;
681}
682
683const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
684{
685 struct pmbus_data *data = i2c_get_clientdata(client);
686
687 return data->info;
688}
689EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, "PMBUS");
690
691static int pmbus_get_status(struct i2c_client *client, int page, int reg)
692{
693 struct pmbus_data *data = i2c_get_clientdata(client);
694 int status;
695
696 switch (reg) {
697 case PMBUS_STATUS_WORD:
698 status = data->read_status(client, page);
699 break;
700 default:
701 status = _pmbus_read_byte_data(client, page, reg);
702 break;
703 }
704 if (status < 0)
705 pmbus_clear_faults(client);
706 return status;
707}
708
709static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
710{
711 if (sensor->data < 0 || sensor->update)
712 sensor->data = _pmbus_read_word_data(client, page: sensor->page,
713 phase: sensor->phase, reg: sensor->reg);
714}
715
716/*
717 * Convert ieee754 sensor values to milli- or micro-units
718 * depending on sensor type.
719 *
720 * ieee754 data format:
721 * bit 15: sign
722 * bit 10..14: exponent
723 * bit 0..9: mantissa
724 * exponent=0:
725 * v=(−1)^signbit * 2^(−14) * 0.significantbits
726 * exponent=1..30:
727 * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
728 * exponent=31:
729 * v=NaN
730 *
731 * Add the number mantissa bits into the calculations for simplicity.
732 * To do that, add '10' to the exponent. By doing that, we can just add
733 * 0x400 to normal values and get the expected result.
734 */
735static long pmbus_reg2data_ieee754(struct pmbus_data *data,
736 struct pmbus_sensor *sensor)
737{
738 int exponent;
739 bool sign;
740 long val;
741
742 /* only support half precision for now */
743 sign = sensor->data & 0x8000;
744 exponent = (sensor->data >> 10) & 0x1f;
745 val = sensor->data & 0x3ff;
746
747 if (exponent == 0) { /* subnormal */
748 exponent = -(14 + 10);
749 } else if (exponent == 0x1f) { /* NaN, convert to min/max */
750 exponent = 0;
751 val = 65504;
752 } else {
753 exponent -= (15 + 10); /* normal */
754 val |= 0x400;
755 }
756
757 /* scale result to milli-units for all sensors except fans */
758 if (sensor->class != PSC_FAN)
759 val = val * 1000L;
760
761 /* scale result to micro-units for power sensors */
762 if (sensor->class == PSC_POWER)
763 val = val * 1000L;
764
765 if (exponent >= 0)
766 val <<= exponent;
767 else
768 val >>= -exponent;
769
770 if (sign)
771 val = -val;
772
773 return val;
774}
775
776/*
777 * Convert linear sensor values to milli- or micro-units
778 * depending on sensor type.
779 */
780static s64 pmbus_reg2data_linear(struct pmbus_data *data,
781 struct pmbus_sensor *sensor)
782{
783 s16 exponent;
784 s32 mantissa;
785 s64 val;
786
787 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
788 exponent = data->exponent[sensor->page];
789 mantissa = (u16)sensor->data;
790 } else { /* LINEAR11 */
791 exponent = ((s16)sensor->data) >> 11;
792 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
793 }
794
795 val = mantissa;
796
797 /* scale result to milli-units for all sensors except fans */
798 if (sensor->class != PSC_FAN)
799 val = val * 1000LL;
800
801 /* scale result to micro-units for power sensors */
802 if (sensor->class == PSC_POWER)
803 val = val * 1000LL;
804
805 if (exponent >= 0)
806 val <<= exponent;
807 else
808 val >>= -exponent;
809
810 return val;
811}
812
813/*
814 * Convert direct sensor values to milli- or micro-units
815 * depending on sensor type.
816 */
817static s64 pmbus_reg2data_direct(struct pmbus_data *data,
818 struct pmbus_sensor *sensor)
819{
820 s64 b, val = (s16)sensor->data;
821 s32 m, R;
822
823 m = data->info->m[sensor->class];
824 b = data->info->b[sensor->class];
825 R = data->info->R[sensor->class];
826
827 if (m == 0)
828 return 0;
829
830 /* X = 1/m * (Y * 10^-R - b) */
831 R = -R;
832 /* scale result to milli-units for everything but fans */
833 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
834 R += 3;
835 b *= 1000;
836 }
837
838 /* scale result to micro-units for power sensors */
839 if (sensor->class == PSC_POWER) {
840 R += 3;
841 b *= 1000;
842 }
843
844 while (R > 0) {
845 val *= 10;
846 R--;
847 }
848 while (R < 0) {
849 val = div_s64(dividend: val + 5LL, divisor: 10L); /* round closest */
850 R++;
851 }
852
853 val = div_s64(dividend: val - b, divisor: m);
854 return val;
855}
856
857/*
858 * Convert VID sensor values to milli- or micro-units
859 * depending on sensor type.
860 */
861static s64 pmbus_reg2data_vid(struct pmbus_data *data,
862 struct pmbus_sensor *sensor)
863{
864 long val = sensor->data;
865 long rv = 0;
866
867 switch (data->info->vrm_version[sensor->page]) {
868 case vr11:
869 if (val >= 0x02 && val <= 0xb2)
870 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
871 break;
872 case vr12:
873 if (val >= 0x01)
874 rv = 250 + (val - 1) * 5;
875 break;
876 case vr13:
877 if (val >= 0x01)
878 rv = 500 + (val - 1) * 10;
879 break;
880 case imvp9:
881 if (val >= 0x01)
882 rv = 200 + (val - 1) * 10;
883 break;
884 case amd625mv:
885 if (val >= 0x0 && val <= 0xd8)
886 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
887 break;
888 }
889 return rv;
890}
891
892static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
893{
894 s64 val;
895
896 if (!sensor->convert)
897 return sensor->data;
898
899 switch (data->info->format[sensor->class]) {
900 case direct:
901 val = pmbus_reg2data_direct(data, sensor);
902 break;
903 case vid:
904 val = pmbus_reg2data_vid(data, sensor);
905 break;
906 case ieee754:
907 val = pmbus_reg2data_ieee754(data, sensor);
908 break;
909 case linear:
910 default:
911 val = pmbus_reg2data_linear(data, sensor);
912 break;
913 }
914 return val;
915}
916
917#define MAX_IEEE_MANTISSA (0x7ff * 1000)
918#define MIN_IEEE_MANTISSA (0x400 * 1000)
919
920static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
921 struct pmbus_sensor *sensor, long val)
922{
923 u16 exponent = (15 + 10);
924 long mantissa;
925 u16 sign = 0;
926
927 /* simple case */
928 if (val == 0)
929 return 0;
930
931 if (val < 0) {
932 sign = 0x8000;
933 val = -val;
934 }
935
936 /* Power is in uW. Convert to mW before converting. */
937 if (sensor->class == PSC_POWER)
938 val = DIV_ROUND_CLOSEST(val, 1000L);
939
940 /*
941 * For simplicity, convert fan data to milli-units
942 * before calculating the exponent.
943 */
944 if (sensor->class == PSC_FAN)
945 val = val * 1000;
946
947 /* Reduce large mantissa until it fits into 10 bit */
948 while (val > MAX_IEEE_MANTISSA && exponent < 30) {
949 exponent++;
950 val >>= 1;
951 }
952 /*
953 * Increase small mantissa to generate valid 'normal'
954 * number
955 */
956 while (val < MIN_IEEE_MANTISSA && exponent > 1) {
957 exponent--;
958 val <<= 1;
959 }
960
961 /* Convert mantissa from milli-units to units */
962 mantissa = DIV_ROUND_CLOSEST(val, 1000);
963
964 /*
965 * Ensure that the resulting number is within range.
966 * Valid range is 0x400..0x7ff, where bit 10 reflects
967 * the implied high bit in normalized ieee754 numbers.
968 * Set the range to 0x400..0x7ff to reflect this.
969 * The upper bit is then removed by the mask against
970 * 0x3ff in the final assignment.
971 */
972 if (mantissa > 0x7ff)
973 mantissa = 0x7ff;
974 else if (mantissa < 0x400)
975 mantissa = 0x400;
976
977 /* Convert to sign, 5 bit exponent, 10 bit mantissa */
978 return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
979}
980
981#define MAX_LIN_MANTISSA (1023 * 1000)
982#define MIN_LIN_MANTISSA (511 * 1000)
983
984static u16 pmbus_data2reg_linear(struct pmbus_data *data,
985 struct pmbus_sensor *sensor, s64 val)
986{
987 s16 exponent = 0, mantissa;
988 bool negative = false;
989
990 /* simple case */
991 if (val == 0)
992 return 0;
993
994 if (sensor->class == PSC_VOLTAGE_OUT) {
995 /* LINEAR16 does not support negative voltages */
996 if (val < 0)
997 return 0;
998
999 /*
1000 * For a static exponents, we don't have a choice
1001 * but to adjust the value to it.
1002 */
1003 if (data->exponent[sensor->page] < 0)
1004 val <<= -data->exponent[sensor->page];
1005 else
1006 val >>= data->exponent[sensor->page];
1007 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1008 return clamp_val(val, 0, 0xffff);
1009 }
1010
1011 if (val < 0) {
1012 negative = true;
1013 val = -val;
1014 }
1015
1016 /* Power is in uW. Convert to mW before converting. */
1017 if (sensor->class == PSC_POWER)
1018 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1019
1020 /*
1021 * For simplicity, convert fan data to milli-units
1022 * before calculating the exponent.
1023 */
1024 if (sensor->class == PSC_FAN)
1025 val = val * 1000LL;
1026
1027 /* Reduce large mantissa until it fits into 10 bit */
1028 while (val >= MAX_LIN_MANTISSA && exponent < 15) {
1029 exponent++;
1030 val >>= 1;
1031 }
1032 /* Increase small mantissa to improve precision */
1033 while (val < MIN_LIN_MANTISSA && exponent > -15) {
1034 exponent--;
1035 val <<= 1;
1036 }
1037
1038 /* Convert mantissa from milli-units to units */
1039 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
1040
1041 /* restore sign */
1042 if (negative)
1043 mantissa = -mantissa;
1044
1045 /* Convert to 5 bit exponent, 11 bit mantissa */
1046 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
1047}
1048
1049static u16 pmbus_data2reg_direct(struct pmbus_data *data,
1050 struct pmbus_sensor *sensor, s64 val)
1051{
1052 s64 b;
1053 s32 m, R;
1054
1055 m = data->info->m[sensor->class];
1056 b = data->info->b[sensor->class];
1057 R = data->info->R[sensor->class];
1058
1059 /* Power is in uW. Adjust R and b. */
1060 if (sensor->class == PSC_POWER) {
1061 R -= 3;
1062 b *= 1000;
1063 }
1064
1065 /* Calculate Y = (m * X + b) * 10^R */
1066 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1067 R -= 3; /* Adjust R and b for data in milli-units */
1068 b *= 1000;
1069 }
1070 val = val * m + b;
1071
1072 while (R > 0) {
1073 val *= 10;
1074 R--;
1075 }
1076 while (R < 0) {
1077 val = div_s64(dividend: val + 5LL, divisor: 10L); /* round closest */
1078 R++;
1079 }
1080
1081 return (u16)clamp_val(val, S16_MIN, S16_MAX);
1082}
1083
1084static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1085 struct pmbus_sensor *sensor, s64 val)
1086{
1087 val = clamp_val(val, 500, 1600);
1088
1089 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1090}
1091
1092static u16 pmbus_data2reg(struct pmbus_data *data,
1093 struct pmbus_sensor *sensor, s64 val)
1094{
1095 u16 regval;
1096
1097 if (!sensor->convert)
1098 return val;
1099
1100 switch (data->info->format[sensor->class]) {
1101 case direct:
1102 regval = pmbus_data2reg_direct(data, sensor, val);
1103 break;
1104 case vid:
1105 regval = pmbus_data2reg_vid(data, sensor, val);
1106 break;
1107 case ieee754:
1108 regval = pmbus_data2reg_ieee754(data, sensor, val);
1109 break;
1110 case linear:
1111 default:
1112 regval = pmbus_data2reg_linear(data, sensor, val);
1113 break;
1114 }
1115 return regval;
1116}
1117
1118/*
1119 * Return boolean calculated from converted data.
1120 * <index> defines a status register index and mask.
1121 * The mask is in the lower 8 bits, the register index is in bits 8..23.
1122 *
1123 * The associated pmbus_boolean structure contains optional pointers to two
1124 * sensor attributes. If specified, those attributes are compared against each
1125 * other to determine if a limit has been exceeded.
1126 *
1127 * If the sensor attribute pointers are NULL, the function returns true if
1128 * (status[reg] & mask) is true.
1129 *
1130 * If sensor attribute pointers are provided, a comparison against a specified
1131 * limit has to be performed to determine the boolean result.
1132 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1133 * sensor values referenced by sensor attribute pointers s1 and s2).
1134 *
1135 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1136 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1137 *
1138 * If a negative value is stored in any of the referenced registers, this value
1139 * reflects an error code which will be returned.
1140 */
1141static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1142 int index)
1143{
1144 struct pmbus_data *data = i2c_get_clientdata(client);
1145 struct pmbus_sensor *s1 = b->s1;
1146 struct pmbus_sensor *s2 = b->s2;
1147 u16 mask = pb_index_to_mask(index);
1148 u8 page = pb_index_to_page(index);
1149 u16 reg = pb_index_to_reg(index);
1150 int ret, status;
1151 u16 regval;
1152
1153 mutex_lock(&data->update_lock);
1154 status = pmbus_get_status(client, page, reg);
1155 if (status < 0) {
1156 ret = status;
1157 goto unlock;
1158 }
1159
1160 if (s1)
1161 pmbus_update_sensor_data(client, sensor: s1);
1162 if (s2)
1163 pmbus_update_sensor_data(client, sensor: s2);
1164
1165 regval = status & mask;
1166 if (regval) {
1167 if (data->revision >= PMBUS_REV_12) {
1168 ret = _pmbus_write_byte_data(client, page, reg, value: regval);
1169 if (ret)
1170 goto unlock;
1171 } else {
1172 pmbus_clear_fault_page(client, page);
1173 }
1174 }
1175 if (s1 && s2) {
1176 s64 v1, v2;
1177
1178 if (s1->data < 0) {
1179 ret = s1->data;
1180 goto unlock;
1181 }
1182 if (s2->data < 0) {
1183 ret = s2->data;
1184 goto unlock;
1185 }
1186
1187 v1 = pmbus_reg2data(data, sensor: s1);
1188 v2 = pmbus_reg2data(data, sensor: s2);
1189 ret = !!(regval && v1 >= v2);
1190 } else {
1191 ret = !!regval;
1192 }
1193unlock:
1194 mutex_unlock(lock: &data->update_lock);
1195 return ret;
1196}
1197
1198static ssize_t pmbus_show_boolean(struct device *dev,
1199 struct device_attribute *da, char *buf)
1200{
1201 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1202 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1203 struct i2c_client *client = to_i2c_client(dev->parent);
1204 int val;
1205
1206 val = pmbus_get_boolean(client, b: boolean, index: attr->index);
1207 if (val < 0)
1208 return val;
1209 return sysfs_emit(buf, fmt: "%d\n", val);
1210}
1211
1212static ssize_t pmbus_show_sensor(struct device *dev,
1213 struct device_attribute *devattr, char *buf)
1214{
1215 struct i2c_client *client = to_i2c_client(dev->parent);
1216 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1217 struct pmbus_data *data = i2c_get_clientdata(client);
1218 ssize_t ret;
1219
1220 mutex_lock(&data->update_lock);
1221 pmbus_update_sensor_data(client, sensor);
1222 if (sensor->data < 0)
1223 ret = sensor->data;
1224 else
1225 ret = sysfs_emit(buf, fmt: "%lld\n", pmbus_reg2data(data, sensor));
1226 mutex_unlock(lock: &data->update_lock);
1227 return ret;
1228}
1229
1230static ssize_t pmbus_set_sensor(struct device *dev,
1231 struct device_attribute *devattr,
1232 const char *buf, size_t count)
1233{
1234 struct i2c_client *client = to_i2c_client(dev->parent);
1235 struct pmbus_data *data = i2c_get_clientdata(client);
1236 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1237 ssize_t rv = count;
1238 s64 val;
1239 int ret;
1240 u16 regval;
1241
1242 if (kstrtos64(s: buf, base: 10, res: &val) < 0)
1243 return -EINVAL;
1244
1245 mutex_lock(&data->update_lock);
1246 regval = pmbus_data2reg(data, sensor, val);
1247 ret = _pmbus_write_word_data(client, page: sensor->page, reg: sensor->reg, word: regval);
1248 if (ret < 0)
1249 rv = ret;
1250 else
1251 sensor->data = -ENODATA;
1252 mutex_unlock(lock: &data->update_lock);
1253 return rv;
1254}
1255
1256static ssize_t pmbus_show_label(struct device *dev,
1257 struct device_attribute *da, char *buf)
1258{
1259 struct pmbus_label *label = to_pmbus_label(da);
1260
1261 return sysfs_emit(buf, fmt: "%s\n", label->label);
1262}
1263
1264static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1265{
1266 if (data->num_attributes >= data->max_attributes - 1) {
1267 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1268 void *new_attrs = devm_krealloc_array(dev: data->dev, p: data->group.attrs,
1269 new_n: new_max_attrs, new_size: sizeof(void *),
1270 GFP_KERNEL);
1271 if (!new_attrs)
1272 return -ENOMEM;
1273 data->group.attrs = new_attrs;
1274 data->max_attributes = new_max_attrs;
1275 }
1276
1277 data->group.attrs[data->num_attributes++] = attr;
1278 data->group.attrs[data->num_attributes] = NULL;
1279 return 0;
1280}
1281
1282static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1283 const char *name,
1284 umode_t mode,
1285 ssize_t (*show)(struct device *dev,
1286 struct device_attribute *attr,
1287 char *buf),
1288 ssize_t (*store)(struct device *dev,
1289 struct device_attribute *attr,
1290 const char *buf, size_t count))
1291{
1292 sysfs_attr_init(&dev_attr->attr);
1293 dev_attr->attr.name = name;
1294 dev_attr->attr.mode = mode;
1295 dev_attr->show = show;
1296 dev_attr->store = store;
1297}
1298
1299static void pmbus_attr_init(struct sensor_device_attribute *a,
1300 const char *name,
1301 umode_t mode,
1302 ssize_t (*show)(struct device *dev,
1303 struct device_attribute *attr,
1304 char *buf),
1305 ssize_t (*store)(struct device *dev,
1306 struct device_attribute *attr,
1307 const char *buf, size_t count),
1308 int idx)
1309{
1310 pmbus_dev_attr_init(dev_attr: &a->dev_attr, name, mode, show, store);
1311 a->index = idx;
1312}
1313
1314static int pmbus_add_boolean(struct pmbus_data *data,
1315 const char *name, const char *type, int seq,
1316 struct pmbus_sensor *s1,
1317 struct pmbus_sensor *s2,
1318 u8 page, u16 reg, u16 mask)
1319{
1320 struct pmbus_boolean *boolean;
1321 struct sensor_device_attribute *a;
1322
1323 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1324 return -EINVAL;
1325
1326 boolean = devm_kzalloc(dev: data->dev, size: sizeof(*boolean), GFP_KERNEL);
1327 if (!boolean)
1328 return -ENOMEM;
1329
1330 a = &boolean->attribute;
1331
1332 snprintf(buf: boolean->name, size: sizeof(boolean->name), fmt: "%s%d_%s",
1333 name, seq, type);
1334 boolean->s1 = s1;
1335 boolean->s2 = s2;
1336 pmbus_attr_init(a, name: boolean->name, mode: 0444, show: pmbus_show_boolean, NULL,
1337 pb_reg_to_index(page, reg, mask));
1338
1339 return pmbus_add_attribute(data, attr: &a->dev_attr.attr);
1340}
1341
1342/* of thermal for pmbus temperature sensors */
1343struct pmbus_thermal_data {
1344 struct pmbus_data *pmbus_data;
1345 struct pmbus_sensor *sensor;
1346};
1347
1348static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1349{
1350 struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tzd: tz);
1351 struct pmbus_sensor *sensor = tdata->sensor;
1352 struct pmbus_data *pmbus_data = tdata->pmbus_data;
1353 struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1354 struct device *dev = pmbus_data->hwmon_dev;
1355 int ret = 0;
1356
1357 if (!dev) {
1358 /* May not even get to hwmon yet */
1359 *temp = 0;
1360 return 0;
1361 }
1362
1363 mutex_lock(&pmbus_data->update_lock);
1364 pmbus_update_sensor_data(client, sensor);
1365 if (sensor->data < 0)
1366 ret = sensor->data;
1367 else
1368 *temp = (int)pmbus_reg2data(data: pmbus_data, sensor);
1369 mutex_unlock(lock: &pmbus_data->update_lock);
1370
1371 return ret;
1372}
1373
1374static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1375 .get_temp = pmbus_thermal_get_temp,
1376};
1377
1378static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1379 struct pmbus_sensor *sensor, int index)
1380{
1381 struct device *dev = pmbus_data->dev;
1382 struct pmbus_thermal_data *tdata;
1383 struct thermal_zone_device *tzd;
1384
1385 tdata = devm_kzalloc(dev, size: sizeof(*tdata), GFP_KERNEL);
1386 if (!tdata)
1387 return -ENOMEM;
1388
1389 tdata->sensor = sensor;
1390 tdata->pmbus_data = pmbus_data;
1391
1392 tzd = devm_thermal_of_zone_register(dev, id: index, data: tdata,
1393 ops: &pmbus_thermal_ops);
1394 /*
1395 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1396 * so ignore that error but forward any other error.
1397 */
1398 if (IS_ERR(ptr: tzd) && (PTR_ERR(ptr: tzd) != -ENODEV))
1399 return PTR_ERR(ptr: tzd);
1400
1401 return 0;
1402}
1403
1404static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1405 const char *name, const char *type,
1406 int seq, int page, int phase,
1407 int reg,
1408 enum pmbus_sensor_classes class,
1409 bool update, bool readonly,
1410 bool convert)
1411{
1412 struct pmbus_sensor *sensor;
1413 struct device_attribute *a;
1414
1415 sensor = devm_kzalloc(dev: data->dev, size: sizeof(*sensor), GFP_KERNEL);
1416 if (!sensor)
1417 return NULL;
1418 a = &sensor->attribute;
1419
1420 if (type)
1421 snprintf(buf: sensor->name, size: sizeof(sensor->name), fmt: "%s%d_%s",
1422 name, seq, type);
1423 else
1424 snprintf(buf: sensor->name, size: sizeof(sensor->name), fmt: "%s%d",
1425 name, seq);
1426
1427 if (data->flags & PMBUS_WRITE_PROTECTED)
1428 readonly = true;
1429
1430 sensor->page = page;
1431 sensor->phase = phase;
1432 sensor->reg = reg;
1433 sensor->class = class;
1434 sensor->update = update;
1435 sensor->convert = convert;
1436 sensor->data = -ENODATA;
1437 pmbus_dev_attr_init(dev_attr: a, name: sensor->name,
1438 mode: readonly ? 0444 : 0644,
1439 show: pmbus_show_sensor, store: pmbus_set_sensor);
1440
1441 if (pmbus_add_attribute(data, attr: &a->attr))
1442 return NULL;
1443
1444 sensor->next = data->sensors;
1445 data->sensors = sensor;
1446
1447 /* temperature sensors with _input values are registered with thermal */
1448 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1449 pmbus_thermal_add_sensor(pmbus_data: data, sensor, index: seq);
1450
1451 return sensor;
1452}
1453
1454static int pmbus_add_label(struct pmbus_data *data,
1455 const char *name, int seq,
1456 const char *lstring, int index, int phase)
1457{
1458 struct pmbus_label *label;
1459 struct device_attribute *a;
1460
1461 label = devm_kzalloc(dev: data->dev, size: sizeof(*label), GFP_KERNEL);
1462 if (!label)
1463 return -ENOMEM;
1464
1465 a = &label->attribute;
1466
1467 snprintf(buf: label->name, size: sizeof(label->name), fmt: "%s%d_label", name, seq);
1468 if (!index) {
1469 if (phase == 0xff)
1470 strscpy(label->label, lstring);
1471 else
1472 snprintf(buf: label->label, size: sizeof(label->label), fmt: "%s.%d",
1473 lstring, phase);
1474 } else {
1475 if (phase == 0xff)
1476 snprintf(buf: label->label, size: sizeof(label->label), fmt: "%s%d",
1477 lstring, index);
1478 else
1479 snprintf(buf: label->label, size: sizeof(label->label), fmt: "%s%d.%d",
1480 lstring, index, phase);
1481 }
1482
1483 pmbus_dev_attr_init(dev_attr: a, name: label->name, mode: 0444, show: pmbus_show_label, NULL);
1484 return pmbus_add_attribute(data, attr: &a->attr);
1485}
1486
1487/*
1488 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1489 */
1490
1491/*
1492 * The pmbus_limit_attr structure describes a single limit attribute
1493 * and its associated alarm attribute.
1494 */
1495struct pmbus_limit_attr {
1496 u16 reg; /* Limit register */
1497 u16 sbit; /* Alarm attribute status bit */
1498 bool update; /* True if register needs updates */
1499 bool low; /* True if low limit; for limits with compare functions only */
1500 const char *attr; /* Attribute name */
1501 const char *alarm; /* Alarm attribute name */
1502};
1503
1504/*
1505 * The pmbus_sensor_attr structure describes one sensor attribute. This
1506 * description includes a reference to the associated limit attributes.
1507 */
1508struct pmbus_sensor_attr {
1509 u16 reg; /* sensor register */
1510 u16 gbit; /* generic status bit */
1511 u8 nlimit; /* # of limit registers */
1512 enum pmbus_sensor_classes class;/* sensor class */
1513 const char *label; /* sensor label */
1514 bool paged; /* true if paged sensor */
1515 bool update; /* true if update needed */
1516 bool compare; /* true if compare function needed */
1517 u32 func; /* sensor mask */
1518 u32 sfunc; /* sensor status mask */
1519 int sreg; /* status register */
1520 const struct pmbus_limit_attr *limit;/* limit registers */
1521};
1522
1523/*
1524 * Add a set of limit attributes and, if supported, the associated
1525 * alarm attributes.
1526 * returns 0 if no alarm register found, 1 if an alarm register was found,
1527 * < 0 on errors.
1528 */
1529static int pmbus_add_limit_attrs(struct i2c_client *client,
1530 struct pmbus_data *data,
1531 const struct pmbus_driver_info *info,
1532 const char *name, int index, int page,
1533 struct pmbus_sensor *base,
1534 const struct pmbus_sensor_attr *attr)
1535{
1536 const struct pmbus_limit_attr *l = attr->limit;
1537 int nlimit = attr->nlimit;
1538 int have_alarm = 0;
1539 int i, ret;
1540 struct pmbus_sensor *curr;
1541
1542 for (i = 0; i < nlimit; i++) {
1543 if (pmbus_check_word_register(client, page, l->reg)) {
1544 curr = pmbus_add_sensor(data, name, type: l->attr, seq: index,
1545 page, phase: 0xff, reg: l->reg, class: attr->class,
1546 update: attr->update || l->update,
1547 readonly: false, convert: true);
1548 if (!curr)
1549 return -ENOMEM;
1550 if (l->sbit && (info->func[page] & attr->sfunc)) {
1551 ret = pmbus_add_boolean(data, name,
1552 type: l->alarm, seq: index,
1553 s1: attr->compare ? l->low ? curr : base
1554 : NULL,
1555 s2: attr->compare ? l->low ? base : curr
1556 : NULL,
1557 page, reg: attr->sreg, mask: l->sbit);
1558 if (ret)
1559 return ret;
1560 have_alarm = 1;
1561 }
1562 }
1563 l++;
1564 }
1565 return have_alarm;
1566}
1567
1568static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1569 struct pmbus_data *data,
1570 const struct pmbus_driver_info *info,
1571 const char *name,
1572 int index, int page, int phase,
1573 const struct pmbus_sensor_attr *attr,
1574 bool paged)
1575{
1576 struct pmbus_sensor *base;
1577 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1578 int ret;
1579
1580 if (attr->label) {
1581 ret = pmbus_add_label(data, name, seq: index, lstring: attr->label,
1582 index: paged ? page + 1 : 0, phase);
1583 if (ret)
1584 return ret;
1585 }
1586 base = pmbus_add_sensor(data, name, type: "input", seq: index, page, phase,
1587 reg: attr->reg, class: attr->class, update: true, readonly: true, convert: true);
1588 if (!base)
1589 return -ENOMEM;
1590 /* No limit and alarm attributes for phase specific sensors */
1591 if (attr->sfunc && phase == 0xff) {
1592 ret = pmbus_add_limit_attrs(client, data, info, name,
1593 index, page, base, attr);
1594 if (ret < 0)
1595 return ret;
1596 /*
1597 * Add generic alarm attribute only if there are no individual
1598 * alarm attributes, if there is a global alarm bit, and if
1599 * the generic status register (word or byte, depending on
1600 * which global bit is set) for this page is accessible.
1601 */
1602 if (!ret && attr->gbit &&
1603 (!upper || data->has_status_word) &&
1604 pmbus_check_status_register(client, page)) {
1605 ret = pmbus_add_boolean(data, name, type: "alarm", seq: index,
1606 NULL, NULL,
1607 page, reg: PMBUS_STATUS_WORD,
1608 mask: attr->gbit);
1609 if (ret)
1610 return ret;
1611 }
1612 }
1613 return 0;
1614}
1615
1616static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1617 const struct pmbus_sensor_attr *attr)
1618{
1619 int p;
1620
1621 if (attr->paged)
1622 return true;
1623
1624 /*
1625 * Some attributes may be present on more than one page despite
1626 * not being marked with the paged attribute. If that is the case,
1627 * then treat the sensor as being paged and add the page suffix to the
1628 * attribute name.
1629 * We don't just add the paged attribute to all such attributes, in
1630 * order to maintain the un-suffixed labels in the case where the
1631 * attribute is only on page 0.
1632 */
1633 for (p = 1; p < info->pages; p++) {
1634 if (info->func[p] & attr->func)
1635 return true;
1636 }
1637 return false;
1638}
1639
1640static int pmbus_add_sensor_attrs(struct i2c_client *client,
1641 struct pmbus_data *data,
1642 const char *name,
1643 const struct pmbus_sensor_attr *attrs,
1644 int nattrs)
1645{
1646 const struct pmbus_driver_info *info = data->info;
1647 int index, i;
1648 int ret;
1649
1650 index = 1;
1651 for (i = 0; i < nattrs; i++) {
1652 int page, pages;
1653 bool paged = pmbus_sensor_is_paged(info, attr: attrs);
1654
1655 pages = paged ? info->pages : 1;
1656 for (page = 0; page < pages; page++) {
1657 if (info->func[page] & attrs->func) {
1658 ret = pmbus_add_sensor_attrs_one(client, data, info,
1659 name, index, page,
1660 phase: 0xff, attr: attrs, paged);
1661 if (ret)
1662 return ret;
1663 index++;
1664 }
1665 if (info->phases[page]) {
1666 int phase;
1667
1668 for (phase = 0; phase < info->phases[page];
1669 phase++) {
1670 if (!(info->pfunc[phase] & attrs->func))
1671 continue;
1672 ret = pmbus_add_sensor_attrs_one(client,
1673 data, info, name, index, page,
1674 phase, attr: attrs, paged);
1675 if (ret)
1676 return ret;
1677 index++;
1678 }
1679 }
1680 }
1681 attrs++;
1682 }
1683 return 0;
1684}
1685
1686static const struct pmbus_limit_attr vin_limit_attrs[] = {
1687 {
1688 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1689 .attr = "min",
1690 .alarm = "min_alarm",
1691 .sbit = PB_VOLTAGE_UV_WARNING,
1692 }, {
1693 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1694 .attr = "lcrit",
1695 .alarm = "lcrit_alarm",
1696 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1697 }, {
1698 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1699 .attr = "max",
1700 .alarm = "max_alarm",
1701 .sbit = PB_VOLTAGE_OV_WARNING,
1702 }, {
1703 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1704 .attr = "crit",
1705 .alarm = "crit_alarm",
1706 .sbit = PB_VOLTAGE_OV_FAULT,
1707 }, {
1708 .reg = PMBUS_VIRT_READ_VIN_AVG,
1709 .update = true,
1710 .attr = "average",
1711 }, {
1712 .reg = PMBUS_VIRT_READ_VIN_MIN,
1713 .update = true,
1714 .attr = "lowest",
1715 }, {
1716 .reg = PMBUS_VIRT_READ_VIN_MAX,
1717 .update = true,
1718 .attr = "highest",
1719 }, {
1720 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1721 .attr = "reset_history",
1722 }, {
1723 .reg = PMBUS_MFR_VIN_MIN,
1724 .attr = "rated_min",
1725 }, {
1726 .reg = PMBUS_MFR_VIN_MAX,
1727 .attr = "rated_max",
1728 },
1729};
1730
1731static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1732 {
1733 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1734 .attr = "min",
1735 .alarm = "min_alarm",
1736 .sbit = PB_VOLTAGE_UV_WARNING,
1737 }, {
1738 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1739 .attr = "lcrit",
1740 .alarm = "lcrit_alarm",
1741 .sbit = PB_VOLTAGE_UV_FAULT,
1742 }, {
1743 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1744 .attr = "max",
1745 .alarm = "max_alarm",
1746 .sbit = PB_VOLTAGE_OV_WARNING,
1747 }, {
1748 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1749 .attr = "crit",
1750 .alarm = "crit_alarm",
1751 .sbit = PB_VOLTAGE_OV_FAULT,
1752 }
1753};
1754
1755static const struct pmbus_limit_attr vout_limit_attrs[] = {
1756 {
1757 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1758 .attr = "min",
1759 .alarm = "min_alarm",
1760 .sbit = PB_VOLTAGE_UV_WARNING,
1761 }, {
1762 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1763 .attr = "lcrit",
1764 .alarm = "lcrit_alarm",
1765 .sbit = PB_VOLTAGE_UV_FAULT,
1766 }, {
1767 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1768 .attr = "max",
1769 .alarm = "max_alarm",
1770 .sbit = PB_VOLTAGE_OV_WARNING,
1771 }, {
1772 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1773 .attr = "crit",
1774 .alarm = "crit_alarm",
1775 .sbit = PB_VOLTAGE_OV_FAULT,
1776 }, {
1777 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1778 .update = true,
1779 .attr = "average",
1780 }, {
1781 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1782 .update = true,
1783 .attr = "lowest",
1784 }, {
1785 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1786 .update = true,
1787 .attr = "highest",
1788 }, {
1789 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1790 .attr = "reset_history",
1791 }, {
1792 .reg = PMBUS_MFR_VOUT_MIN,
1793 .attr = "rated_min",
1794 }, {
1795 .reg = PMBUS_MFR_VOUT_MAX,
1796 .attr = "rated_max",
1797 },
1798};
1799
1800static const struct pmbus_sensor_attr voltage_attributes[] = {
1801 {
1802 .reg = PMBUS_READ_VIN,
1803 .class = PSC_VOLTAGE_IN,
1804 .label = "vin",
1805 .func = PMBUS_HAVE_VIN,
1806 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1807 .sreg = PMBUS_STATUS_INPUT,
1808 .gbit = PB_STATUS_VIN_UV,
1809 .limit = vin_limit_attrs,
1810 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1811 }, {
1812 .reg = PMBUS_VIRT_READ_VMON,
1813 .class = PSC_VOLTAGE_IN,
1814 .label = "vmon",
1815 .func = PMBUS_HAVE_VMON,
1816 .sfunc = PMBUS_HAVE_STATUS_VMON,
1817 .sreg = PMBUS_VIRT_STATUS_VMON,
1818 .limit = vmon_limit_attrs,
1819 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1820 }, {
1821 .reg = PMBUS_READ_VCAP,
1822 .class = PSC_VOLTAGE_IN,
1823 .label = "vcap",
1824 .func = PMBUS_HAVE_VCAP,
1825 }, {
1826 .reg = PMBUS_READ_VOUT,
1827 .class = PSC_VOLTAGE_OUT,
1828 .label = "vout",
1829 .paged = true,
1830 .func = PMBUS_HAVE_VOUT,
1831 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1832 .sreg = PMBUS_STATUS_VOUT,
1833 .gbit = PB_STATUS_VOUT_OV,
1834 .limit = vout_limit_attrs,
1835 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1836 }
1837};
1838
1839/* Current attributes */
1840
1841static const struct pmbus_limit_attr iin_limit_attrs[] = {
1842 {
1843 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1844 .attr = "max",
1845 .alarm = "max_alarm",
1846 .sbit = PB_IIN_OC_WARNING,
1847 }, {
1848 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1849 .attr = "crit",
1850 .alarm = "crit_alarm",
1851 .sbit = PB_IIN_OC_FAULT,
1852 }, {
1853 .reg = PMBUS_VIRT_READ_IIN_AVG,
1854 .update = true,
1855 .attr = "average",
1856 }, {
1857 .reg = PMBUS_VIRT_READ_IIN_MIN,
1858 .update = true,
1859 .attr = "lowest",
1860 }, {
1861 .reg = PMBUS_VIRT_READ_IIN_MAX,
1862 .update = true,
1863 .attr = "highest",
1864 }, {
1865 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1866 .attr = "reset_history",
1867 }, {
1868 .reg = PMBUS_MFR_IIN_MAX,
1869 .attr = "rated_max",
1870 },
1871};
1872
1873static const struct pmbus_limit_attr iout_limit_attrs[] = {
1874 {
1875 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1876 .attr = "max",
1877 .alarm = "max_alarm",
1878 .sbit = PB_IOUT_OC_WARNING,
1879 }, {
1880 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1881 .attr = "lcrit",
1882 .alarm = "lcrit_alarm",
1883 .sbit = PB_IOUT_UC_FAULT,
1884 }, {
1885 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1886 .attr = "crit",
1887 .alarm = "crit_alarm",
1888 .sbit = PB_IOUT_OC_FAULT,
1889 }, {
1890 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1891 .update = true,
1892 .attr = "average",
1893 }, {
1894 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1895 .update = true,
1896 .attr = "lowest",
1897 }, {
1898 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1899 .update = true,
1900 .attr = "highest",
1901 }, {
1902 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1903 .attr = "reset_history",
1904 }, {
1905 .reg = PMBUS_MFR_IOUT_MAX,
1906 .attr = "rated_max",
1907 },
1908};
1909
1910static const struct pmbus_sensor_attr current_attributes[] = {
1911 {
1912 .reg = PMBUS_READ_IIN,
1913 .class = PSC_CURRENT_IN,
1914 .label = "iin",
1915 .func = PMBUS_HAVE_IIN,
1916 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1917 .sreg = PMBUS_STATUS_INPUT,
1918 .gbit = PB_STATUS_INPUT,
1919 .limit = iin_limit_attrs,
1920 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1921 }, {
1922 .reg = PMBUS_READ_IOUT,
1923 .class = PSC_CURRENT_OUT,
1924 .label = "iout",
1925 .paged = true,
1926 .func = PMBUS_HAVE_IOUT,
1927 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1928 .sreg = PMBUS_STATUS_IOUT,
1929 .gbit = PB_STATUS_IOUT_OC,
1930 .limit = iout_limit_attrs,
1931 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1932 }
1933};
1934
1935/* Power attributes */
1936
1937static const struct pmbus_limit_attr pin_limit_attrs[] = {
1938 {
1939 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1940 .attr = "max",
1941 .alarm = "alarm",
1942 .sbit = PB_PIN_OP_WARNING,
1943 }, {
1944 .reg = PMBUS_VIRT_READ_PIN_AVG,
1945 .update = true,
1946 .attr = "average",
1947 }, {
1948 .reg = PMBUS_VIRT_READ_PIN_MIN,
1949 .update = true,
1950 .attr = "input_lowest",
1951 }, {
1952 .reg = PMBUS_VIRT_READ_PIN_MAX,
1953 .update = true,
1954 .attr = "input_highest",
1955 }, {
1956 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1957 .attr = "reset_history",
1958 }, {
1959 .reg = PMBUS_MFR_PIN_MAX,
1960 .attr = "rated_max",
1961 },
1962};
1963
1964static const struct pmbus_limit_attr pout_limit_attrs[] = {
1965 {
1966 .reg = PMBUS_POUT_MAX,
1967 .attr = "cap",
1968 .alarm = "cap_alarm",
1969 .sbit = PB_POWER_LIMITING,
1970 }, {
1971 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1972 .attr = "max",
1973 .alarm = "max_alarm",
1974 .sbit = PB_POUT_OP_WARNING,
1975 }, {
1976 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1977 .attr = "crit",
1978 .alarm = "crit_alarm",
1979 .sbit = PB_POUT_OP_FAULT,
1980 }, {
1981 .reg = PMBUS_VIRT_READ_POUT_AVG,
1982 .update = true,
1983 .attr = "average",
1984 }, {
1985 .reg = PMBUS_VIRT_READ_POUT_MIN,
1986 .update = true,
1987 .attr = "input_lowest",
1988 }, {
1989 .reg = PMBUS_VIRT_READ_POUT_MAX,
1990 .update = true,
1991 .attr = "input_highest",
1992 }, {
1993 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1994 .attr = "reset_history",
1995 }, {
1996 .reg = PMBUS_MFR_POUT_MAX,
1997 .attr = "rated_max",
1998 },
1999};
2000
2001static const struct pmbus_sensor_attr power_attributes[] = {
2002 {
2003 .reg = PMBUS_READ_PIN,
2004 .class = PSC_POWER,
2005 .label = "pin",
2006 .func = PMBUS_HAVE_PIN,
2007 .sfunc = PMBUS_HAVE_STATUS_INPUT,
2008 .sreg = PMBUS_STATUS_INPUT,
2009 .gbit = PB_STATUS_INPUT,
2010 .limit = pin_limit_attrs,
2011 .nlimit = ARRAY_SIZE(pin_limit_attrs),
2012 }, {
2013 .reg = PMBUS_READ_POUT,
2014 .class = PSC_POWER,
2015 .label = "pout",
2016 .paged = true,
2017 .func = PMBUS_HAVE_POUT,
2018 .sfunc = PMBUS_HAVE_STATUS_IOUT,
2019 .sreg = PMBUS_STATUS_IOUT,
2020 .limit = pout_limit_attrs,
2021 .nlimit = ARRAY_SIZE(pout_limit_attrs),
2022 }
2023};
2024
2025/* Temperature atributes */
2026
2027static const struct pmbus_limit_attr temp_limit_attrs[] = {
2028 {
2029 .reg = PMBUS_UT_WARN_LIMIT,
2030 .low = true,
2031 .attr = "min",
2032 .alarm = "min_alarm",
2033 .sbit = PB_TEMP_UT_WARNING,
2034 }, {
2035 .reg = PMBUS_UT_FAULT_LIMIT,
2036 .low = true,
2037 .attr = "lcrit",
2038 .alarm = "lcrit_alarm",
2039 .sbit = PB_TEMP_UT_FAULT,
2040 }, {
2041 .reg = PMBUS_OT_WARN_LIMIT,
2042 .attr = "max",
2043 .alarm = "max_alarm",
2044 .sbit = PB_TEMP_OT_WARNING,
2045 }, {
2046 .reg = PMBUS_OT_FAULT_LIMIT,
2047 .attr = "crit",
2048 .alarm = "crit_alarm",
2049 .sbit = PB_TEMP_OT_FAULT,
2050 }, {
2051 .reg = PMBUS_VIRT_READ_TEMP_MIN,
2052 .attr = "lowest",
2053 }, {
2054 .reg = PMBUS_VIRT_READ_TEMP_AVG,
2055 .attr = "average",
2056 }, {
2057 .reg = PMBUS_VIRT_READ_TEMP_MAX,
2058 .attr = "highest",
2059 }, {
2060 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
2061 .attr = "reset_history",
2062 }, {
2063 .reg = PMBUS_MFR_MAX_TEMP_1,
2064 .attr = "rated_max",
2065 },
2066};
2067
2068static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2069 {
2070 .reg = PMBUS_UT_WARN_LIMIT,
2071 .low = true,
2072 .attr = "min",
2073 .alarm = "min_alarm",
2074 .sbit = PB_TEMP_UT_WARNING,
2075 }, {
2076 .reg = PMBUS_UT_FAULT_LIMIT,
2077 .low = true,
2078 .attr = "lcrit",
2079 .alarm = "lcrit_alarm",
2080 .sbit = PB_TEMP_UT_FAULT,
2081 }, {
2082 .reg = PMBUS_OT_WARN_LIMIT,
2083 .attr = "max",
2084 .alarm = "max_alarm",
2085 .sbit = PB_TEMP_OT_WARNING,
2086 }, {
2087 .reg = PMBUS_OT_FAULT_LIMIT,
2088 .attr = "crit",
2089 .alarm = "crit_alarm",
2090 .sbit = PB_TEMP_OT_FAULT,
2091 }, {
2092 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
2093 .attr = "lowest",
2094 }, {
2095 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
2096 .attr = "average",
2097 }, {
2098 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
2099 .attr = "highest",
2100 }, {
2101 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2102 .attr = "reset_history",
2103 }, {
2104 .reg = PMBUS_MFR_MAX_TEMP_2,
2105 .attr = "rated_max",
2106 },
2107};
2108
2109static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2110 {
2111 .reg = PMBUS_UT_WARN_LIMIT,
2112 .low = true,
2113 .attr = "min",
2114 .alarm = "min_alarm",
2115 .sbit = PB_TEMP_UT_WARNING,
2116 }, {
2117 .reg = PMBUS_UT_FAULT_LIMIT,
2118 .low = true,
2119 .attr = "lcrit",
2120 .alarm = "lcrit_alarm",
2121 .sbit = PB_TEMP_UT_FAULT,
2122 }, {
2123 .reg = PMBUS_OT_WARN_LIMIT,
2124 .attr = "max",
2125 .alarm = "max_alarm",
2126 .sbit = PB_TEMP_OT_WARNING,
2127 }, {
2128 .reg = PMBUS_OT_FAULT_LIMIT,
2129 .attr = "crit",
2130 .alarm = "crit_alarm",
2131 .sbit = PB_TEMP_OT_FAULT,
2132 }, {
2133 .reg = PMBUS_MFR_MAX_TEMP_3,
2134 .attr = "rated_max",
2135 },
2136};
2137
2138static const struct pmbus_sensor_attr temp_attributes[] = {
2139 {
2140 .reg = PMBUS_READ_TEMPERATURE_1,
2141 .class = PSC_TEMPERATURE,
2142 .paged = true,
2143 .update = true,
2144 .compare = true,
2145 .func = PMBUS_HAVE_TEMP,
2146 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2147 .sreg = PMBUS_STATUS_TEMPERATURE,
2148 .gbit = PB_STATUS_TEMPERATURE,
2149 .limit = temp_limit_attrs,
2150 .nlimit = ARRAY_SIZE(temp_limit_attrs),
2151 }, {
2152 .reg = PMBUS_READ_TEMPERATURE_2,
2153 .class = PSC_TEMPERATURE,
2154 .paged = true,
2155 .update = true,
2156 .compare = true,
2157 .func = PMBUS_HAVE_TEMP2,
2158 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2159 .sreg = PMBUS_STATUS_TEMPERATURE,
2160 .gbit = PB_STATUS_TEMPERATURE,
2161 .limit = temp_limit_attrs2,
2162 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
2163 }, {
2164 .reg = PMBUS_READ_TEMPERATURE_3,
2165 .class = PSC_TEMPERATURE,
2166 .paged = true,
2167 .update = true,
2168 .compare = true,
2169 .func = PMBUS_HAVE_TEMP3,
2170 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2171 .sreg = PMBUS_STATUS_TEMPERATURE,
2172 .gbit = PB_STATUS_TEMPERATURE,
2173 .limit = temp_limit_attrs3,
2174 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
2175 }
2176};
2177
2178static const int pmbus_fan_registers[] = {
2179 PMBUS_READ_FAN_SPEED_1,
2180 PMBUS_READ_FAN_SPEED_2,
2181 PMBUS_READ_FAN_SPEED_3,
2182 PMBUS_READ_FAN_SPEED_4
2183};
2184
2185static const int pmbus_fan_status_registers[] = {
2186 PMBUS_STATUS_FAN_12,
2187 PMBUS_STATUS_FAN_12,
2188 PMBUS_STATUS_FAN_34,
2189 PMBUS_STATUS_FAN_34
2190};
2191
2192static const u32 pmbus_fan_flags[] = {
2193 PMBUS_HAVE_FAN12,
2194 PMBUS_HAVE_FAN12,
2195 PMBUS_HAVE_FAN34,
2196 PMBUS_HAVE_FAN34
2197};
2198
2199static const u32 pmbus_fan_status_flags[] = {
2200 PMBUS_HAVE_STATUS_FAN12,
2201 PMBUS_HAVE_STATUS_FAN12,
2202 PMBUS_HAVE_STATUS_FAN34,
2203 PMBUS_HAVE_STATUS_FAN34
2204};
2205
2206/* Fans */
2207
2208/* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
2209static int pmbus_add_fan_ctrl(struct i2c_client *client,
2210 struct pmbus_data *data, int index, int page,
2211 int id, u8 config)
2212{
2213 struct pmbus_sensor *sensor;
2214
2215 sensor = pmbus_add_sensor(data, name: "fan", type: "target", seq: index, page,
2216 phase: 0xff, reg: PMBUS_VIRT_FAN_TARGET_1 + id, class: PSC_FAN,
2217 update: false, readonly: false, convert: true);
2218
2219 if (!sensor)
2220 return -ENOMEM;
2221
2222 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2223 (data->info->func[page] & PMBUS_HAVE_PWM34)))
2224 return 0;
2225
2226 sensor = pmbus_add_sensor(data, name: "pwm", NULL, seq: index, page,
2227 phase: 0xff, reg: PMBUS_VIRT_PWM_1 + id, class: PSC_PWM,
2228 update: false, readonly: false, convert: true);
2229
2230 if (!sensor)
2231 return -ENOMEM;
2232
2233 sensor = pmbus_add_sensor(data, name: "pwm", type: "enable", seq: index, page,
2234 phase: 0xff, reg: PMBUS_VIRT_PWM_ENABLE_1 + id, class: PSC_PWM,
2235 update: true, readonly: false, convert: false);
2236
2237 if (!sensor)
2238 return -ENOMEM;
2239
2240 return 0;
2241}
2242
2243static int pmbus_add_fan_attributes(struct i2c_client *client,
2244 struct pmbus_data *data)
2245{
2246 const struct pmbus_driver_info *info = data->info;
2247 int index = 1;
2248 int page;
2249 int ret;
2250
2251 for (page = 0; page < info->pages; page++) {
2252 int f;
2253
2254 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2255 int regval;
2256
2257 if (!(info->func[page] & pmbus_fan_flags[f]))
2258 break;
2259
2260 if (!pmbus_check_word_register(client, page,
2261 pmbus_fan_registers[f]))
2262 break;
2263
2264 /*
2265 * Skip fan if not installed.
2266 * Each fan configuration register covers multiple fans,
2267 * so we have to do some magic.
2268 */
2269 regval = _pmbus_read_byte_data(client, page,
2270 reg: pmbus_fan_config_registers[f]);
2271 if (regval < 0 ||
2272 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2273 continue;
2274
2275 if (pmbus_add_sensor(data, name: "fan", type: "input", seq: index,
2276 page, phase: 0xff, reg: pmbus_fan_registers[f],
2277 class: PSC_FAN, update: true, readonly: true, convert: true) == NULL)
2278 return -ENOMEM;
2279
2280 /* Fan control */
2281 if (pmbus_check_word_register(client, page,
2282 pmbus_fan_command_registers[f])) {
2283 ret = pmbus_add_fan_ctrl(client, data, index,
2284 page, id: f, config: regval);
2285 if (ret < 0)
2286 return ret;
2287 }
2288
2289 /*
2290 * Each fan status register covers multiple fans,
2291 * so we have to do some magic.
2292 */
2293 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2294 pmbus_check_byte_register(client,
2295 page, pmbus_fan_status_registers[f])) {
2296 int reg;
2297
2298 if (f > 1) /* fan 3, 4 */
2299 reg = PMBUS_STATUS_FAN_34;
2300 else
2301 reg = PMBUS_STATUS_FAN_12;
2302 ret = pmbus_add_boolean(data, name: "fan",
2303 type: "alarm", seq: index, NULL, NULL, page, reg,
2304 PB_FAN_FAN1_WARNING >> (f & 1));
2305 if (ret)
2306 return ret;
2307 ret = pmbus_add_boolean(data, name: "fan",
2308 type: "fault", seq: index, NULL, NULL, page, reg,
2309 PB_FAN_FAN1_FAULT >> (f & 1));
2310 if (ret)
2311 return ret;
2312 }
2313 index++;
2314 }
2315 }
2316 return 0;
2317}
2318
2319struct pmbus_samples_attr {
2320 int reg;
2321 char *name;
2322};
2323
2324struct pmbus_samples_reg {
2325 int page;
2326 struct pmbus_samples_attr *attr;
2327 struct device_attribute dev_attr;
2328};
2329
2330static struct pmbus_samples_attr pmbus_samples_registers[] = {
2331 {
2332 .reg = PMBUS_VIRT_SAMPLES,
2333 .name = "samples",
2334 }, {
2335 .reg = PMBUS_VIRT_IN_SAMPLES,
2336 .name = "in_samples",
2337 }, {
2338 .reg = PMBUS_VIRT_CURR_SAMPLES,
2339 .name = "curr_samples",
2340 }, {
2341 .reg = PMBUS_VIRT_POWER_SAMPLES,
2342 .name = "power_samples",
2343 }, {
2344 .reg = PMBUS_VIRT_TEMP_SAMPLES,
2345 .name = "temp_samples",
2346 }
2347};
2348
2349#define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2350
2351static ssize_t pmbus_show_samples(struct device *dev,
2352 struct device_attribute *devattr, char *buf)
2353{
2354 int val;
2355 struct i2c_client *client = to_i2c_client(dev->parent);
2356 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2357 struct pmbus_data *data = i2c_get_clientdata(client);
2358
2359 mutex_lock(&data->update_lock);
2360 val = _pmbus_read_word_data(client, page: reg->page, phase: 0xff, reg: reg->attr->reg);
2361 mutex_unlock(lock: &data->update_lock);
2362 if (val < 0)
2363 return val;
2364
2365 return sysfs_emit(buf, fmt: "%d\n", val);
2366}
2367
2368static ssize_t pmbus_set_samples(struct device *dev,
2369 struct device_attribute *devattr,
2370 const char *buf, size_t count)
2371{
2372 int ret;
2373 long val;
2374 struct i2c_client *client = to_i2c_client(dev->parent);
2375 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2376 struct pmbus_data *data = i2c_get_clientdata(client);
2377
2378 if (kstrtol(s: buf, base: 0, res: &val) < 0)
2379 return -EINVAL;
2380
2381 mutex_lock(&data->update_lock);
2382 ret = _pmbus_write_word_data(client, page: reg->page, reg: reg->attr->reg, word: val);
2383 mutex_unlock(lock: &data->update_lock);
2384
2385 return ret ? : count;
2386}
2387
2388static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2389 struct pmbus_samples_attr *attr)
2390{
2391 struct pmbus_samples_reg *reg;
2392
2393 reg = devm_kzalloc(dev: data->dev, size: sizeof(*reg), GFP_KERNEL);
2394 if (!reg)
2395 return -ENOMEM;
2396
2397 reg->attr = attr;
2398 reg->page = page;
2399
2400 pmbus_dev_attr_init(dev_attr: &reg->dev_attr, name: attr->name, mode: 0644,
2401 show: pmbus_show_samples, store: pmbus_set_samples);
2402
2403 return pmbus_add_attribute(data, attr: &reg->dev_attr.attr);
2404}
2405
2406static int pmbus_add_samples_attributes(struct i2c_client *client,
2407 struct pmbus_data *data)
2408{
2409 const struct pmbus_driver_info *info = data->info;
2410 int s;
2411
2412 if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2413 return 0;
2414
2415 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2416 struct pmbus_samples_attr *attr;
2417 int ret;
2418
2419 attr = &pmbus_samples_registers[s];
2420 if (!pmbus_check_word_register(client, 0, attr->reg))
2421 continue;
2422
2423 ret = pmbus_add_samples_attr(data, page: 0, attr);
2424 if (ret)
2425 return ret;
2426 }
2427
2428 return 0;
2429}
2430
2431static int pmbus_find_attributes(struct i2c_client *client,
2432 struct pmbus_data *data)
2433{
2434 int ret;
2435
2436 /* Voltage sensors */
2437 ret = pmbus_add_sensor_attrs(client, data, name: "in", attrs: voltage_attributes,
2438 ARRAY_SIZE(voltage_attributes));
2439 if (ret)
2440 return ret;
2441
2442 /* Current sensors */
2443 ret = pmbus_add_sensor_attrs(client, data, name: "curr", attrs: current_attributes,
2444 ARRAY_SIZE(current_attributes));
2445 if (ret)
2446 return ret;
2447
2448 /* Power sensors */
2449 ret = pmbus_add_sensor_attrs(client, data, name: "power", attrs: power_attributes,
2450 ARRAY_SIZE(power_attributes));
2451 if (ret)
2452 return ret;
2453
2454 /* Temperature sensors */
2455 ret = pmbus_add_sensor_attrs(client, data, name: "temp", attrs: temp_attributes,
2456 ARRAY_SIZE(temp_attributes));
2457 if (ret)
2458 return ret;
2459
2460 /* Fans */
2461 ret = pmbus_add_fan_attributes(client, data);
2462 if (ret)
2463 return ret;
2464
2465 ret = pmbus_add_samples_attributes(client, data);
2466 return ret;
2467}
2468
2469/*
2470 * The pmbus_class_attr_map structure maps one sensor class to
2471 * it's corresponding sensor attributes array.
2472 */
2473struct pmbus_class_attr_map {
2474 enum pmbus_sensor_classes class;
2475 int nattr;
2476 const struct pmbus_sensor_attr *attr;
2477};
2478
2479static const struct pmbus_class_attr_map class_attr_map[] = {
2480 {
2481 .class = PSC_VOLTAGE_IN,
2482 .attr = voltage_attributes,
2483 .nattr = ARRAY_SIZE(voltage_attributes),
2484 }, {
2485 .class = PSC_VOLTAGE_OUT,
2486 .attr = voltage_attributes,
2487 .nattr = ARRAY_SIZE(voltage_attributes),
2488 }, {
2489 .class = PSC_CURRENT_IN,
2490 .attr = current_attributes,
2491 .nattr = ARRAY_SIZE(current_attributes),
2492 }, {
2493 .class = PSC_CURRENT_OUT,
2494 .attr = current_attributes,
2495 .nattr = ARRAY_SIZE(current_attributes),
2496 }, {
2497 .class = PSC_POWER,
2498 .attr = power_attributes,
2499 .nattr = ARRAY_SIZE(power_attributes),
2500 }, {
2501 .class = PSC_TEMPERATURE,
2502 .attr = temp_attributes,
2503 .nattr = ARRAY_SIZE(temp_attributes),
2504 }
2505};
2506
2507/*
2508 * Read the coefficients for direct mode.
2509 */
2510static int pmbus_read_coefficients(struct i2c_client *client,
2511 struct pmbus_driver_info *info,
2512 const struct pmbus_sensor_attr *attr)
2513{
2514 int rv;
2515 union i2c_smbus_data data;
2516 enum pmbus_sensor_classes class = attr->class;
2517 s8 R;
2518 s16 m, b;
2519
2520 data.block[0] = 2;
2521 data.block[1] = attr->reg;
2522 data.block[2] = 0x01;
2523
2524 pmbus_wait(client);
2525 rv = i2c_smbus_xfer(adapter: client->adapter, addr: client->addr, flags: client->flags,
2526 I2C_SMBUS_WRITE, command: PMBUS_COEFFICIENTS,
2527 I2C_SMBUS_BLOCK_PROC_CALL, data: &data);
2528 pmbus_update_ts(client, PMBUS_OP_WRITE);
2529
2530 if (rv < 0)
2531 return rv;
2532
2533 if (data.block[0] != 5)
2534 return -EIO;
2535
2536 m = data.block[1] | (data.block[2] << 8);
2537 b = data.block[3] | (data.block[4] << 8);
2538 R = data.block[5];
2539 info->m[class] = m;
2540 info->b[class] = b;
2541 info->R[class] = R;
2542
2543 return rv;
2544}
2545
2546static int pmbus_init_coefficients(struct i2c_client *client,
2547 struct pmbus_driver_info *info)
2548{
2549 int i, n, ret = -EINVAL;
2550 const struct pmbus_class_attr_map *map;
2551 const struct pmbus_sensor_attr *attr;
2552
2553 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2554 map = &class_attr_map[i];
2555 if (info->format[map->class] != direct)
2556 continue;
2557 for (n = 0; n < map->nattr; n++) {
2558 attr = &map->attr[n];
2559 if (map->class != attr->class)
2560 continue;
2561 ret = pmbus_read_coefficients(client, info, attr);
2562 if (ret >= 0)
2563 break;
2564 }
2565 if (ret < 0) {
2566 dev_err(&client->dev,
2567 "No coefficients found for sensor class %d\n",
2568 map->class);
2569 return -EINVAL;
2570 }
2571 }
2572
2573 return 0;
2574}
2575
2576/*
2577 * Identify chip parameters.
2578 * This function is called for all chips.
2579 */
2580static int pmbus_identify_common(struct i2c_client *client,
2581 struct pmbus_data *data, int page)
2582{
2583 int vout_mode = -1;
2584
2585 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2586 vout_mode = _pmbus_read_byte_data(client, page,
2587 reg: PMBUS_VOUT_MODE);
2588 if (vout_mode >= 0 && vout_mode != 0xff) {
2589 /*
2590 * Not all chips support the VOUT_MODE command,
2591 * so a failure to read it is not an error.
2592 */
2593 switch (vout_mode >> 5) {
2594 case 0: /* linear mode */
2595 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2596 return -ENODEV;
2597
2598 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2599 break;
2600 case 1: /* VID mode */
2601 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2602 return -ENODEV;
2603 break;
2604 case 2: /* direct mode */
2605 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2606 return -ENODEV;
2607 break;
2608 case 3: /* ieee 754 half precision */
2609 if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2610 return -ENODEV;
2611 break;
2612 default:
2613 return -ENODEV;
2614 }
2615 }
2616
2617 return 0;
2618}
2619
2620static int pmbus_read_status_byte(struct i2c_client *client, int page)
2621{
2622 return _pmbus_read_byte_data(client, page, reg: PMBUS_STATUS_BYTE);
2623}
2624
2625static int pmbus_read_status_word(struct i2c_client *client, int page)
2626{
2627 return _pmbus_read_word_data(client, page, phase: 0xff, reg: PMBUS_STATUS_WORD);
2628}
2629
2630/* PEC attribute support */
2631
2632static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2633 char *buf)
2634{
2635 struct i2c_client *client = to_i2c_client(dev);
2636
2637 return sysfs_emit(buf, fmt: "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2638}
2639
2640static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2641 const char *buf, size_t count)
2642{
2643 struct i2c_client *client = to_i2c_client(dev);
2644 bool enable;
2645 int err;
2646
2647 err = kstrtobool(s: buf, res: &enable);
2648 if (err < 0)
2649 return err;
2650
2651 if (enable)
2652 client->flags |= I2C_CLIENT_PEC;
2653 else
2654 client->flags &= ~I2C_CLIENT_PEC;
2655
2656 return count;
2657}
2658
2659static DEVICE_ATTR_RW(pec);
2660
2661static void pmbus_remove_pec(void *dev)
2662{
2663 device_remove_file(dev, attr: &dev_attr_pec);
2664}
2665
2666static void pmbus_init_wp(struct i2c_client *client, struct pmbus_data *data)
2667{
2668 int ret;
2669
2670 switch (wp) {
2671 case 0:
2672 _pmbus_write_byte_data(client, page: -1,
2673 reg: PMBUS_WRITE_PROTECT, value: 0);
2674 break;
2675
2676 case 1:
2677 _pmbus_write_byte_data(client, page: -1,
2678 reg: PMBUS_WRITE_PROTECT, PB_WP_VOUT);
2679 break;
2680
2681 case 2:
2682 _pmbus_write_byte_data(client, page: -1,
2683 reg: PMBUS_WRITE_PROTECT, PB_WP_OP);
2684 break;
2685
2686 case 3:
2687 _pmbus_write_byte_data(client, page: -1,
2688 reg: PMBUS_WRITE_PROTECT, PB_WP_ALL);
2689 break;
2690
2691 default:
2692 /* Ignore the other values */
2693 break;
2694 }
2695
2696 ret = _pmbus_read_byte_data(client, page: -1, reg: PMBUS_WRITE_PROTECT);
2697 if (ret < 0)
2698 return;
2699
2700 switch (ret & PB_WP_ANY) {
2701 case PB_WP_ALL:
2702 data->flags |= PMBUS_OP_PROTECTED;
2703 fallthrough;
2704 case PB_WP_OP:
2705 data->flags |= PMBUS_VOUT_PROTECTED;
2706 fallthrough;
2707 case PB_WP_VOUT:
2708 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2709 break;
2710
2711 default:
2712 break;
2713 }
2714}
2715
2716static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2717 struct pmbus_driver_info *info)
2718{
2719 struct device *dev = &client->dev;
2720 int page, ret;
2721
2722 /*
2723 * Figure out if PEC is enabled before accessing any other register.
2724 * Make sure PEC is disabled, will be enabled later if needed.
2725 */
2726 client->flags &= ~I2C_CLIENT_PEC;
2727
2728 /* Enable PEC if the controller and bus supports it */
2729 if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2730 pmbus_wait(client);
2731 ret = i2c_smbus_read_byte_data(client, command: PMBUS_CAPABILITY);
2732 pmbus_update_ts(client, op: 0);
2733
2734 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2735 if (i2c_check_functionality(adap: client->adapter, I2C_FUNC_SMBUS_PEC))
2736 client->flags |= I2C_CLIENT_PEC;
2737 }
2738 }
2739
2740 /*
2741 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2742 * to use PMBUS_STATUS_BYTE instead if that is the case.
2743 * Bail out if both registers are not supported.
2744 */
2745 data->read_status = pmbus_read_status_word;
2746 pmbus_wait(client);
2747 ret = i2c_smbus_read_word_data(client, command: PMBUS_STATUS_WORD);
2748 pmbus_update_ts(client, op: 0);
2749
2750 if (ret < 0 || ret == 0xffff) {
2751 data->read_status = pmbus_read_status_byte;
2752 pmbus_wait(client);
2753 ret = i2c_smbus_read_byte_data(client, command: PMBUS_STATUS_BYTE);
2754 pmbus_update_ts(client, op: 0);
2755
2756 if (ret < 0 || ret == 0xff) {
2757 dev_err(dev, "PMBus status register not found\n");
2758 return -ENODEV;
2759 }
2760 } else {
2761 data->has_status_word = true;
2762 }
2763
2764 /*
2765 * Check if the chip is write protected. If it is, we can not clear
2766 * faults, and we should not try it. Also, in that case, writes into
2767 * limit registers need to be disabled.
2768 */
2769 if (!(data->flags & PMBUS_NO_WRITE_PROTECT))
2770 pmbus_init_wp(client, data);
2771
2772 ret = i2c_smbus_read_byte_data(client, command: PMBUS_REVISION);
2773 if (ret >= 0)
2774 data->revision = ret;
2775
2776 if (data->info->pages)
2777 pmbus_clear_faults(client);
2778 else
2779 pmbus_clear_fault_page(client, page: -1);
2780
2781 if (info->identify) {
2782 ret = (*info->identify)(client, info);
2783 if (ret < 0) {
2784 dev_err(dev, "Chip identification failed\n");
2785 return ret;
2786 }
2787 }
2788
2789 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2790 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2791 return -ENODEV;
2792 }
2793
2794 for (page = 0; page < info->pages; page++) {
2795 ret = pmbus_identify_common(client, data, page);
2796 if (ret < 0) {
2797 dev_err(dev, "Failed to identify chip capabilities\n");
2798 return ret;
2799 }
2800 }
2801
2802 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2803 if (!i2c_check_functionality(adap: client->adapter,
2804 I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2805 return -ENODEV;
2806
2807 ret = pmbus_init_coefficients(client, info);
2808 if (ret < 0)
2809 return ret;
2810 }
2811
2812 if (client->flags & I2C_CLIENT_PEC) {
2813 /*
2814 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2815 * chip support PEC. Add 'pec' attribute to client device to let
2816 * the user control it.
2817 */
2818 ret = device_create_file(device: dev, entry: &dev_attr_pec);
2819 if (ret)
2820 return ret;
2821 ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2822 if (ret)
2823 return ret;
2824 }
2825
2826 return 0;
2827}
2828
2829/* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2830struct pmbus_status_assoc {
2831 int pflag, rflag, eflag;
2832};
2833
2834/* PMBus->regulator bit mappings for a PMBus status register */
2835struct pmbus_status_category {
2836 int func;
2837 int reg;
2838 const struct pmbus_status_assoc *bits; /* zero-terminated */
2839};
2840
2841static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2842 {
2843 .func = PMBUS_HAVE_STATUS_VOUT,
2844 .reg = PMBUS_STATUS_VOUT,
2845 .bits = (const struct pmbus_status_assoc[]) {
2846 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2847 REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2848 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE,
2849 REGULATOR_EVENT_UNDER_VOLTAGE },
2850 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2851 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2852 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT,
2853 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2854 { },
2855 },
2856 }, {
2857 .func = PMBUS_HAVE_STATUS_IOUT,
2858 .reg = PMBUS_STATUS_IOUT,
2859 .bits = (const struct pmbus_status_assoc[]) {
2860 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN,
2861 REGULATOR_EVENT_OVER_CURRENT_WARN },
2862 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2863 REGULATOR_EVENT_OVER_CURRENT },
2864 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2865 REGULATOR_EVENT_OVER_CURRENT },
2866 { },
2867 },
2868 }, {
2869 .func = PMBUS_HAVE_STATUS_TEMP,
2870 .reg = PMBUS_STATUS_TEMPERATURE,
2871 .bits = (const struct pmbus_status_assoc[]) {
2872 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN,
2873 REGULATOR_EVENT_OVER_TEMP_WARN },
2874 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP,
2875 REGULATOR_EVENT_OVER_TEMP },
2876 { },
2877 },
2878 },
2879};
2880
2881static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2882{
2883 int ret;
2884
2885 ret = _pmbus_read_byte_data(client, page, reg: PMBUS_OPERATION);
2886
2887 if (ret < 0)
2888 return ret;
2889
2890 return !!(ret & PB_OPERATION_CONTROL_ON);
2891}
2892
2893static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2894{
2895 struct pmbus_data *data = i2c_get_clientdata(client);
2896 int ret;
2897
2898 mutex_lock(&data->update_lock);
2899 ret = _pmbus_is_enabled(client, page);
2900 mutex_unlock(lock: &data->update_lock);
2901
2902 return ret;
2903}
2904
2905#define to_dev_attr(_dev_attr) \
2906 container_of(_dev_attr, struct device_attribute, attr)
2907
2908static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2909{
2910 int i;
2911
2912 for (i = 0; i < data->num_attributes; i++) {
2913 struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2914 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2915 int index = attr->index;
2916 u16 smask = pb_index_to_mask(index);
2917 u8 spage = pb_index_to_page(index);
2918 u16 sreg = pb_index_to_reg(index);
2919
2920 if (reg == sreg && page == spage && (smask & flags)) {
2921 dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2922 sysfs_notify(kobj: &data->dev->kobj, NULL, attr: da->attr.name);
2923 kobject_uevent(kobj: &data->dev->kobj, action: KOBJ_CHANGE);
2924 flags &= ~smask;
2925 }
2926
2927 if (!flags)
2928 break;
2929 }
2930}
2931
2932static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2933 unsigned int *event, bool notify)
2934{
2935 int i, status;
2936 const struct pmbus_status_category *cat;
2937 const struct pmbus_status_assoc *bit;
2938 struct device *dev = data->dev;
2939 struct i2c_client *client = to_i2c_client(dev);
2940 int func = data->info->func[page];
2941
2942 *flags = 0;
2943 *event = 0;
2944
2945 for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2946 cat = &pmbus_status_flag_map[i];
2947 if (!(func & cat->func))
2948 continue;
2949
2950 status = _pmbus_read_byte_data(client, page, reg: cat->reg);
2951 if (status < 0)
2952 return status;
2953
2954 for (bit = cat->bits; bit->pflag; bit++)
2955 if (status & bit->pflag) {
2956 *flags |= bit->rflag;
2957 *event |= bit->eflag;
2958 }
2959
2960 if (notify && status)
2961 pmbus_notify(data, page, reg: cat->reg, flags: status);
2962 }
2963
2964 /*
2965 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2966 * bits. Some of the other bits are tempting (especially for cases
2967 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2968 * functionality), but there's an unfortunate ambiguity in that
2969 * they're defined as indicating a fault *or* a warning, so we can't
2970 * easily determine whether to report REGULATOR_ERROR_<foo> or
2971 * REGULATOR_ERROR_<foo>_WARN.
2972 */
2973 status = pmbus_get_status(client, page, reg: PMBUS_STATUS_WORD);
2974 if (status < 0)
2975 return status;
2976
2977 if (_pmbus_is_enabled(client, page)) {
2978 if (status & PB_STATUS_OFF) {
2979 *flags |= REGULATOR_ERROR_FAIL;
2980 *event |= REGULATOR_EVENT_FAIL;
2981 }
2982
2983 if (status & PB_STATUS_POWER_GOOD_N) {
2984 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2985 *event |= REGULATOR_EVENT_REGULATION_OUT;
2986 }
2987 }
2988 /*
2989 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2990 * defined strictly as fault indicators (not warnings).
2991 */
2992 if (status & PB_STATUS_IOUT_OC) {
2993 *flags |= REGULATOR_ERROR_OVER_CURRENT;
2994 *event |= REGULATOR_EVENT_OVER_CURRENT;
2995 }
2996 if (status & PB_STATUS_VOUT_OV) {
2997 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2998 *event |= REGULATOR_EVENT_FAIL;
2999 }
3000
3001 /*
3002 * If we haven't discovered any thermal faults or warnings via
3003 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
3004 * a (conservative) best-effort interpretation.
3005 */
3006 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
3007 (status & PB_STATUS_TEMPERATURE)) {
3008 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
3009 *event |= REGULATOR_EVENT_OVER_TEMP_WARN;
3010 }
3011
3012 return 0;
3013}
3014
3015static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
3016 unsigned int *event, bool notify)
3017{
3018 int ret;
3019
3020 mutex_lock(&data->update_lock);
3021 ret = _pmbus_get_flags(data, page, flags, event, notify);
3022 mutex_unlock(lock: &data->update_lock);
3023
3024 return ret;
3025}
3026
3027#if IS_ENABLED(CONFIG_REGULATOR)
3028static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
3029{
3030 struct device *dev = rdev_get_dev(rdev);
3031 struct i2c_client *client = to_i2c_client(dev->parent);
3032
3033 return pmbus_is_enabled(client, page: rdev_get_id(rdev));
3034}
3035
3036static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
3037{
3038 struct device *dev = rdev_get_dev(rdev);
3039 struct i2c_client *client = to_i2c_client(dev->parent);
3040 struct pmbus_data *data = i2c_get_clientdata(client);
3041 u8 page = rdev_get_id(rdev);
3042 int ret;
3043
3044 mutex_lock(&data->update_lock);
3045 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
3046 PB_OPERATION_CONTROL_ON,
3047 enable ? PB_OPERATION_CONTROL_ON : 0);
3048 mutex_unlock(lock: &data->update_lock);
3049
3050 return ret;
3051}
3052
3053static int pmbus_regulator_enable(struct regulator_dev *rdev)
3054{
3055 return _pmbus_regulator_on_off(rdev, enable: 1);
3056}
3057
3058static int pmbus_regulator_disable(struct regulator_dev *rdev)
3059{
3060 return _pmbus_regulator_on_off(rdev, enable: 0);
3061}
3062
3063static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
3064{
3065 struct device *dev = rdev_get_dev(rdev);
3066 struct i2c_client *client = to_i2c_client(dev->parent);
3067 struct pmbus_data *data = i2c_get_clientdata(client);
3068 int event;
3069
3070 return pmbus_get_flags(data, page: rdev_get_id(rdev), flags, event: &event, notify: false);
3071}
3072
3073static int pmbus_regulator_get_status(struct regulator_dev *rdev)
3074{
3075 struct device *dev = rdev_get_dev(rdev);
3076 struct i2c_client *client = to_i2c_client(dev->parent);
3077 struct pmbus_data *data = i2c_get_clientdata(client);
3078 u8 page = rdev_get_id(rdev);
3079 int status, ret;
3080 int event;
3081
3082 mutex_lock(&data->update_lock);
3083 status = pmbus_get_status(client, page, reg: PMBUS_STATUS_WORD);
3084 if (status < 0) {
3085 ret = status;
3086 goto unlock;
3087 }
3088
3089 if (status & PB_STATUS_OFF) {
3090 ret = REGULATOR_STATUS_OFF;
3091 goto unlock;
3092 }
3093
3094 /* If regulator is ON & reports power good then return ON */
3095 if (!(status & PB_STATUS_POWER_GOOD_N)) {
3096 ret = REGULATOR_STATUS_ON;
3097 goto unlock;
3098 }
3099
3100 ret = _pmbus_get_flags(data, page: rdev_get_id(rdev), flags: &status, event: &event, notify: false);
3101 if (ret)
3102 goto unlock;
3103
3104 if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
3105 REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
3106 ret = REGULATOR_STATUS_ERROR;
3107 goto unlock;
3108 }
3109
3110 ret = REGULATOR_STATUS_UNDEFINED;
3111
3112unlock:
3113 mutex_unlock(lock: &data->update_lock);
3114 return ret;
3115}
3116
3117static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
3118{
3119 struct pmbus_data *data = i2c_get_clientdata(client);
3120 struct pmbus_sensor s = {
3121 .page = page,
3122 .class = PSC_VOLTAGE_OUT,
3123 .convert = true,
3124 .data = -1,
3125 };
3126
3127 if (data->vout_low[page] < 0) {
3128 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3129 s.data = _pmbus_read_word_data(client, page, phase: 0xff,
3130 reg: PMBUS_MFR_VOUT_MIN);
3131 if (s.data < 0) {
3132 s.data = _pmbus_read_word_data(client, page, phase: 0xff,
3133 reg: PMBUS_VOUT_MARGIN_LOW);
3134 if (s.data < 0)
3135 return s.data;
3136 }
3137 data->vout_low[page] = pmbus_reg2data(data, sensor: &s);
3138 }
3139
3140 return data->vout_low[page];
3141}
3142
3143static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3144{
3145 struct pmbus_data *data = i2c_get_clientdata(client);
3146 struct pmbus_sensor s = {
3147 .page = page,
3148 .class = PSC_VOLTAGE_OUT,
3149 .convert = true,
3150 .data = -1,
3151 };
3152
3153 if (data->vout_high[page] < 0) {
3154 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3155 s.data = _pmbus_read_word_data(client, page, phase: 0xff,
3156 reg: PMBUS_MFR_VOUT_MAX);
3157 if (s.data < 0) {
3158 s.data = _pmbus_read_word_data(client, page, phase: 0xff,
3159 reg: PMBUS_VOUT_MARGIN_HIGH);
3160 if (s.data < 0)
3161 return s.data;
3162 }
3163 data->vout_high[page] = pmbus_reg2data(data, sensor: &s);
3164 }
3165
3166 return data->vout_high[page];
3167}
3168
3169static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3170{
3171 struct device *dev = rdev_get_dev(rdev);
3172 struct i2c_client *client = to_i2c_client(dev->parent);
3173 struct pmbus_data *data = i2c_get_clientdata(client);
3174 struct pmbus_sensor s = {
3175 .page = rdev_get_id(rdev),
3176 .class = PSC_VOLTAGE_OUT,
3177 .convert = true,
3178 };
3179
3180 s.data = _pmbus_read_word_data(client, page: s.page, phase: 0xff, reg: PMBUS_READ_VOUT);
3181 if (s.data < 0)
3182 return s.data;
3183
3184 return (int)pmbus_reg2data(data, sensor: &s) * 1000; /* unit is uV */
3185}
3186
3187static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3188 int max_uv, unsigned int *selector)
3189{
3190 struct device *dev = rdev_get_dev(rdev);
3191 struct i2c_client *client = to_i2c_client(dev->parent);
3192 struct pmbus_data *data = i2c_get_clientdata(client);
3193 struct pmbus_sensor s = {
3194 .page = rdev_get_id(rdev),
3195 .class = PSC_VOLTAGE_OUT,
3196 .convert = true,
3197 .data = -1,
3198 };
3199 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3200 int low, high;
3201
3202 *selector = 0;
3203
3204 low = pmbus_regulator_get_low_margin(client, page: s.page);
3205 if (low < 0)
3206 return low;
3207
3208 high = pmbus_regulator_get_high_margin(client, page: s.page);
3209 if (high < 0)
3210 return high;
3211
3212 /* Make sure we are within margins */
3213 if (low > val)
3214 val = low;
3215 if (high < val)
3216 val = high;
3217
3218 val = pmbus_data2reg(data, sensor: &s, val);
3219
3220 return _pmbus_write_word_data(client, page: s.page, reg: PMBUS_VOUT_COMMAND, word: (u16)val);
3221}
3222
3223static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3224 unsigned int selector)
3225{
3226 struct device *dev = rdev_get_dev(rdev);
3227 struct i2c_client *client = to_i2c_client(dev->parent);
3228 struct pmbus_data *data = i2c_get_clientdata(client);
3229 int val, low, high;
3230
3231 if (data->flags & PMBUS_VOUT_PROTECTED)
3232 return 0;
3233
3234 if (selector >= rdev->desc->n_voltages ||
3235 selector < rdev->desc->linear_min_sel)
3236 return -EINVAL;
3237
3238 selector -= rdev->desc->linear_min_sel;
3239 val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3240 (rdev->desc->uV_step * selector), 1000); /* convert to mV */
3241
3242 low = pmbus_regulator_get_low_margin(client, page: rdev_get_id(rdev));
3243 if (low < 0)
3244 return low;
3245
3246 high = pmbus_regulator_get_high_margin(client, page: rdev_get_id(rdev));
3247 if (high < 0)
3248 return high;
3249
3250 if (val >= low && val <= high)
3251 return val * 1000; /* unit is uV */
3252
3253 return 0;
3254}
3255
3256const struct regulator_ops pmbus_regulator_ops = {
3257 .enable = pmbus_regulator_enable,
3258 .disable = pmbus_regulator_disable,
3259 .is_enabled = pmbus_regulator_is_enabled,
3260 .get_error_flags = pmbus_regulator_get_error_flags,
3261 .get_status = pmbus_regulator_get_status,
3262 .get_voltage = pmbus_regulator_get_voltage,
3263 .set_voltage = pmbus_regulator_set_voltage,
3264 .list_voltage = pmbus_regulator_list_voltage,
3265};
3266EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, "PMBUS");
3267
3268int pmbus_regulator_init_cb(struct regulator_dev *rdev,
3269 struct regulator_config *config)
3270{
3271 struct pmbus_data *data = config->driver_data;
3272 struct regulation_constraints *constraints = rdev->constraints;
3273
3274 if (data->flags & PMBUS_OP_PROTECTED)
3275 constraints->valid_ops_mask &= ~REGULATOR_CHANGE_STATUS;
3276
3277 if (data->flags & PMBUS_VOUT_PROTECTED)
3278 constraints->valid_ops_mask &= ~REGULATOR_CHANGE_VOLTAGE;
3279
3280 return 0;
3281}
3282EXPORT_SYMBOL_NS_GPL(pmbus_regulator_init_cb, "PMBUS");
3283
3284static int pmbus_regulator_register(struct pmbus_data *data)
3285{
3286 struct device *dev = data->dev;
3287 const struct pmbus_driver_info *info = data->info;
3288 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3289 int i;
3290
3291 data->rdevs = devm_kzalloc(dev, size: sizeof(struct regulator_dev *) * info->num_regulators,
3292 GFP_KERNEL);
3293 if (!data->rdevs)
3294 return -ENOMEM;
3295
3296 for (i = 0; i < info->num_regulators; i++) {
3297 struct regulator_config config = { };
3298
3299 config.dev = dev;
3300 config.driver_data = data;
3301
3302 if (pdata && pdata->reg_init_data)
3303 config.init_data = &pdata->reg_init_data[i];
3304
3305 data->rdevs[i] = devm_regulator_register(dev, regulator_desc: &info->reg_desc[i],
3306 config: &config);
3307 if (IS_ERR(ptr: data->rdevs[i]))
3308 return dev_err_probe(dev, err: PTR_ERR(ptr: data->rdevs[i]),
3309 fmt: "Failed to register %s regulator\n",
3310 info->reg_desc[i].name);
3311 }
3312
3313 return 0;
3314}
3315
3316static void pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3317{
3318 int j;
3319
3320 for (j = 0; j < data->info->num_regulators; j++) {
3321 if (page == rdev_get_id(rdev: data->rdevs[j])) {
3322 regulator_notifier_call_chain(rdev: data->rdevs[j], event, NULL);
3323 break;
3324 }
3325 }
3326}
3327#else
3328static int pmbus_regulator_register(struct pmbus_data *data)
3329{
3330 return 0;
3331}
3332
3333static void pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3334{
3335}
3336#endif
3337
3338static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3339{
3340 int ret;
3341
3342 ret = _pmbus_write_word_data(client, page, reg: PMBUS_SMBALERT_MASK, word: reg | (val << 8));
3343
3344 /*
3345 * Clear fault systematically in case writing PMBUS_SMBALERT_MASK
3346 * is not supported by the chip.
3347 */
3348 pmbus_clear_fault_page(client, page);
3349
3350 return ret;
3351}
3352
3353static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3354{
3355 struct pmbus_data *data = pdata;
3356 struct i2c_client *client = to_i2c_client(data->dev);
3357 int i, status, event;
3358
3359 mutex_lock(&data->update_lock);
3360 for (i = 0; i < data->info->pages; i++) {
3361 _pmbus_get_flags(data, page: i, flags: &status, event: &event, notify: true);
3362
3363 if (event)
3364 pmbus_regulator_notify(data, page: i, event);
3365 }
3366
3367 pmbus_clear_faults(client);
3368 mutex_unlock(lock: &data->update_lock);
3369
3370 return IRQ_HANDLED;
3371}
3372
3373static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3374{
3375 struct device *dev = &client->dev;
3376 const struct pmbus_status_category *cat;
3377 const struct pmbus_status_assoc *bit;
3378 int i, j, err, func;
3379 u8 mask;
3380
3381 static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3382 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3383 PMBUS_STATUS_FAN_34};
3384
3385 if (!client->irq)
3386 return 0;
3387
3388 for (i = 0; i < data->info->pages; i++) {
3389 func = data->info->func[i];
3390
3391 for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3392 cat = &pmbus_status_flag_map[j];
3393 if (!(func & cat->func))
3394 continue;
3395 mask = 0;
3396 for (bit = cat->bits; bit->pflag; bit++)
3397 mask |= bit->pflag;
3398
3399 err = pmbus_write_smbalert_mask(client, page: i, reg: cat->reg, val: ~mask);
3400 if (err)
3401 dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3402 cat->reg);
3403 }
3404
3405 for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3406 pmbus_write_smbalert_mask(client, page: i, reg: misc_status[j], val: 0xff);
3407 }
3408
3409 /* Register notifiers */
3410 err = devm_request_threaded_irq(dev, irq: client->irq, NULL, thread_fn: pmbus_fault_handler,
3411 IRQF_ONESHOT, devname: "pmbus-irq", dev_id: data);
3412 if (err) {
3413 dev_err(dev, "failed to request an irq %d\n", err);
3414 return err;
3415 }
3416
3417 return 0;
3418}
3419
3420static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
3421
3422static int pmbus_debugfs_get(void *data, u64 *val)
3423{
3424 int rc;
3425 struct pmbus_debugfs_entry *entry = data;
3426 struct pmbus_data *pdata = i2c_get_clientdata(client: entry->client);
3427
3428 rc = mutex_lock_interruptible(&pdata->update_lock);
3429 if (rc)
3430 return rc;
3431 rc = _pmbus_read_byte_data(client: entry->client, page: entry->page, reg: entry->reg);
3432 mutex_unlock(lock: &pdata->update_lock);
3433 if (rc < 0)
3434 return rc;
3435
3436 *val = rc;
3437
3438 return 0;
3439}
3440DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3441 "0x%02llx\n");
3442
3443static int pmbus_debugfs_get_status(void *data, u64 *val)
3444{
3445 int rc;
3446 struct pmbus_debugfs_entry *entry = data;
3447 struct pmbus_data *pdata = i2c_get_clientdata(client: entry->client);
3448
3449 rc = mutex_lock_interruptible(&pdata->update_lock);
3450 if (rc)
3451 return rc;
3452 rc = pdata->read_status(entry->client, entry->page);
3453 mutex_unlock(lock: &pdata->update_lock);
3454 if (rc < 0)
3455 return rc;
3456
3457 *val = rc;
3458
3459 return 0;
3460}
3461DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3462 NULL, "0x%04llx\n");
3463
3464static ssize_t pmbus_debugfs_block_read(struct file *file, char __user *buf,
3465 size_t count, loff_t *ppos)
3466{
3467 int rc;
3468 struct pmbus_debugfs_entry *entry = file->private_data;
3469 struct pmbus_data *pdata = i2c_get_clientdata(client: entry->client);
3470 char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3471
3472 rc = mutex_lock_interruptible(&pdata->update_lock);
3473 if (rc)
3474 return rc;
3475 rc = pmbus_read_block_data(client: entry->client, page: entry->page, reg: entry->reg,
3476 data_buf: data);
3477 mutex_unlock(lock: &pdata->update_lock);
3478 if (rc < 0)
3479 return rc;
3480
3481 /* Add newline at the end of a read data */
3482 data[rc] = '\n';
3483
3484 /* Include newline into the length */
3485 rc += 1;
3486
3487 return simple_read_from_buffer(to: buf, count, ppos, from: data, available: rc);
3488}
3489
3490static const struct file_operations pmbus_debugfs_block_ops = {
3491 .llseek = noop_llseek,
3492 .read = pmbus_debugfs_block_read,
3493 .write = NULL,
3494 .open = simple_open,
3495};
3496
3497static void pmbus_remove_symlink(void *symlink)
3498{
3499 debugfs_remove(dentry: symlink);
3500}
3501
3502struct pmbus_debugfs_data {
3503 u8 reg;
3504 u32 flag;
3505 const char *name;
3506};
3507
3508static const struct pmbus_debugfs_data pmbus_debugfs_block_data[] = {
3509 { .reg = PMBUS_MFR_ID, .name = "mfr_id" },
3510 { .reg = PMBUS_MFR_MODEL, .name = "mfr_model" },
3511 { .reg = PMBUS_MFR_REVISION, .name = "mfr_revision" },
3512 { .reg = PMBUS_MFR_LOCATION, .name = "mfr_location" },
3513 { .reg = PMBUS_MFR_DATE, .name = "mfr_date" },
3514 { .reg = PMBUS_MFR_SERIAL, .name = "mfr_serial" },
3515};
3516
3517static const struct pmbus_debugfs_data pmbus_debugfs_status_data[] = {
3518 { .reg = PMBUS_STATUS_VOUT, .flag = PMBUS_HAVE_STATUS_VOUT, .name = "status%d_vout" },
3519 { .reg = PMBUS_STATUS_IOUT, .flag = PMBUS_HAVE_STATUS_IOUT, .name = "status%d_iout" },
3520 { .reg = PMBUS_STATUS_INPUT, .flag = PMBUS_HAVE_STATUS_INPUT, .name = "status%d_input" },
3521 { .reg = PMBUS_STATUS_TEMPERATURE, .flag = PMBUS_HAVE_STATUS_TEMP,
3522 .name = "status%d_temp" },
3523 { .reg = PMBUS_STATUS_FAN_12, .flag = PMBUS_HAVE_STATUS_FAN12, .name = "status%d_fan12" },
3524 { .reg = PMBUS_STATUS_FAN_34, .flag = PMBUS_HAVE_STATUS_FAN34, .name = "status%d_fan34" },
3525 { .reg = PMBUS_STATUS_CML, .name = "status%d_cml" },
3526 { .reg = PMBUS_STATUS_OTHER, .name = "status%d_other" },
3527 { .reg = PMBUS_STATUS_MFR_SPECIFIC, .name = "status%d_mfr" },
3528};
3529
3530static void pmbus_init_debugfs(struct i2c_client *client,
3531 struct pmbus_data *data)
3532{
3533 struct dentry *symlink_d, *debugfs = client->debugfs;
3534 struct pmbus_debugfs_entry *entries;
3535 const char *pathname, *symlink;
3536 char name[PMBUS_NAME_SIZE];
3537 int page, i, idx = 0;
3538
3539 /*
3540 * client->debugfs may be NULL or an ERR_PTR(). dentry_path_raw()
3541 * does not check if its parameters are valid, so validate
3542 * client->debugfs before using it.
3543 */
3544 if (!pmbus_debugfs_dir || IS_ERR_OR_NULL(ptr: debugfs))
3545 return;
3546
3547 /*
3548 * Backwards compatibility: Create symlink from /pmbus/<hwmon_device>
3549 * to i2c debugfs directory.
3550 */
3551 pathname = dentry_path_raw(debugfs, name, sizeof(name));
3552 if (IS_ERR(ptr: pathname))
3553 return;
3554
3555 /*
3556 * The path returned by dentry_path_raw() starts with '/'. Prepend it
3557 * with ".." to get the symlink relative to the pmbus root directory.
3558 */
3559 symlink = kasprintf(GFP_KERNEL, fmt: "..%s", pathname);
3560 if (!symlink)
3561 return;
3562
3563 symlink_d = debugfs_create_symlink(name: dev_name(dev: data->hwmon_dev),
3564 parent: pmbus_debugfs_dir, dest: symlink);
3565 kfree(objp: symlink);
3566
3567 devm_add_action_or_reset(data->dev, pmbus_remove_symlink, symlink_d);
3568
3569 /*
3570 * Allocate the max possible entries we need.
3571 * device specific:
3572 * ARRAY_SIZE(pmbus_debugfs_block_data) + 2
3573 * page specific:
3574 * ARRAY_SIZE(pmbus_debugfs_status_data) + 1
3575 */
3576 entries = devm_kcalloc(dev: data->dev,
3577 ARRAY_SIZE(pmbus_debugfs_block_data) + 2 +
3578 data->info->pages * (ARRAY_SIZE(pmbus_debugfs_status_data) + 1),
3579 size: sizeof(*entries), GFP_KERNEL);
3580 if (!entries)
3581 return;
3582
3583 /*
3584 * Add device-specific entries.
3585 * Please note that the PMBUS standard allows all registers to be
3586 * page-specific.
3587 * To reduce the number of debugfs entries for devices with many pages
3588 * assume that values of the following registers are the same for all
3589 * pages and report values only for page 0.
3590 */
3591 if (!(data->flags & PMBUS_NO_CAPABILITY) &&
3592 pmbus_check_byte_register(client, 0, PMBUS_CAPABILITY)) {
3593 entries[idx].client = client;
3594 entries[idx].page = 0;
3595 entries[idx].reg = PMBUS_CAPABILITY;
3596 debugfs_create_file("capability", 0444, debugfs,
3597 &entries[idx++],
3598 &pmbus_debugfs_ops);
3599 }
3600 if (pmbus_check_byte_register(client, 0, PMBUS_REVISION)) {
3601 entries[idx].client = client;
3602 entries[idx].page = 0;
3603 entries[idx].reg = PMBUS_REVISION;
3604 debugfs_create_file("pmbus_revision", 0444, debugfs,
3605 &entries[idx++],
3606 &pmbus_debugfs_ops);
3607 }
3608
3609 for (i = 0; i < ARRAY_SIZE(pmbus_debugfs_block_data); i++) {
3610 const struct pmbus_debugfs_data *d = &pmbus_debugfs_block_data[i];
3611
3612 if (pmbus_check_block_register(client, page: 0, reg: d->reg)) {
3613 entries[idx].client = client;
3614 entries[idx].page = 0;
3615 entries[idx].reg = d->reg;
3616 debugfs_create_file(d->name, 0444, debugfs,
3617 &entries[idx++],
3618 &pmbus_debugfs_block_ops);
3619 }
3620 }
3621
3622 /* Add page specific entries */
3623 for (page = 0; page < data->info->pages; ++page) {
3624 /* Check accessibility of status register if it's not page 0 */
3625 if (!page || pmbus_check_status_register(client, page)) {
3626 /* No need to set reg as we have special read op. */
3627 entries[idx].client = client;
3628 entries[idx].page = page;
3629 scnprintf(buf: name, PMBUS_NAME_SIZE, fmt: "status%d", page);
3630 debugfs_create_file(name, 0444, debugfs,
3631 &entries[idx++],
3632 &pmbus_debugfs_ops_status);
3633 }
3634
3635 for (i = 0; i < ARRAY_SIZE(pmbus_debugfs_status_data); i++) {
3636 const struct pmbus_debugfs_data *d =
3637 &pmbus_debugfs_status_data[i];
3638
3639 if ((data->info->func[page] & d->flag) ||
3640 (!d->flag && pmbus_check_byte_register(client, page, d->reg))) {
3641 entries[idx].client = client;
3642 entries[idx].page = page;
3643 entries[idx].reg = d->reg;
3644 scnprintf(buf: name, PMBUS_NAME_SIZE, fmt: d->name, page);
3645 debugfs_create_file(name, 0444, debugfs,
3646 &entries[idx++],
3647 &pmbus_debugfs_ops);
3648 }
3649 }
3650 }
3651}
3652
3653int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3654{
3655 struct device *dev = &client->dev;
3656 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3657 struct pmbus_data *data;
3658 size_t groups_num = 0;
3659 int ret;
3660 int i;
3661 char *name;
3662
3663 if (!info)
3664 return -ENODEV;
3665
3666 if (!i2c_check_functionality(adap: client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3667 | I2C_FUNC_SMBUS_BYTE_DATA
3668 | I2C_FUNC_SMBUS_WORD_DATA))
3669 return -ENODEV;
3670
3671 data = devm_kzalloc(dev, size: sizeof(*data), GFP_KERNEL);
3672 if (!data)
3673 return -ENOMEM;
3674
3675 if (info->groups)
3676 while (info->groups[groups_num])
3677 groups_num++;
3678
3679 data->groups = devm_kcalloc(dev, n: groups_num + 2, size: sizeof(void *),
3680 GFP_KERNEL);
3681 if (!data->groups)
3682 return -ENOMEM;
3683
3684 i2c_set_clientdata(client, data);
3685 mutex_init(&data->update_lock);
3686 data->dev = dev;
3687
3688 if (pdata)
3689 data->flags = pdata->flags;
3690 data->info = info;
3691 data->currpage = -1;
3692 data->currphase = -1;
3693
3694 for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3695 data->vout_low[i] = -1;
3696 data->vout_high[i] = -1;
3697 }
3698
3699 ret = pmbus_init_common(client, data, info);
3700 if (ret < 0)
3701 return ret;
3702
3703 ret = pmbus_find_attributes(client, data);
3704 if (ret)
3705 return ret;
3706
3707 /*
3708 * If there are no attributes, something is wrong.
3709 * Bail out instead of trying to register nothing.
3710 */
3711 if (!data->num_attributes) {
3712 dev_err(dev, "No attributes found\n");
3713 return -ENODEV;
3714 }
3715
3716 name = devm_kstrdup(dev, s: client->name, GFP_KERNEL);
3717 if (!name)
3718 return -ENOMEM;
3719 strreplace(str: name, old: '-', new: '_');
3720
3721 data->groups[0] = &data->group;
3722 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3723 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev, name,
3724 drvdata: data, groups: data->groups);
3725 if (IS_ERR(ptr: data->hwmon_dev)) {
3726 dev_err(dev, "Failed to register hwmon device\n");
3727 return PTR_ERR(ptr: data->hwmon_dev);
3728 }
3729
3730 ret = pmbus_regulator_register(data);
3731 if (ret)
3732 return ret;
3733
3734 ret = pmbus_irq_setup(client, data);
3735 if (ret)
3736 return ret;
3737
3738 pmbus_init_debugfs(client, data);
3739
3740 return 0;
3741}
3742EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, "PMBUS");
3743
3744struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3745{
3746 /*
3747 * client->debugfs may be an ERR_PTR(). Returning that to
3748 * the calling code would potentially require additional
3749 * complexity in the calling code and otherwise add no
3750 * value. Return NULL in that case.
3751 */
3752 if (IS_ERR_OR_NULL(ptr: client->debugfs))
3753 return NULL;
3754 return client->debugfs;
3755}
3756EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, "PMBUS");
3757
3758int pmbus_lock_interruptible(struct i2c_client *client)
3759{
3760 struct pmbus_data *data = i2c_get_clientdata(client);
3761
3762 return mutex_lock_interruptible(&data->update_lock);
3763}
3764EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, "PMBUS");
3765
3766void pmbus_unlock(struct i2c_client *client)
3767{
3768 struct pmbus_data *data = i2c_get_clientdata(client);
3769
3770 mutex_unlock(lock: &data->update_lock);
3771}
3772EXPORT_SYMBOL_NS_GPL(pmbus_unlock, "PMBUS");
3773
3774static int __init pmbus_core_init(void)
3775{
3776 pmbus_debugfs_dir = debugfs_create_dir(name: "pmbus", NULL);
3777 if (IS_ERR(ptr: pmbus_debugfs_dir))
3778 pmbus_debugfs_dir = NULL;
3779
3780 return 0;
3781}
3782
3783static void __exit pmbus_core_exit(void)
3784{
3785 debugfs_remove_recursive(dentry: pmbus_debugfs_dir);
3786}
3787
3788module_init(pmbus_core_init);
3789module_exit(pmbus_core_exit);
3790
3791MODULE_AUTHOR("Guenter Roeck");
3792MODULE_DESCRIPTION("PMBus core driver");
3793MODULE_LICENSE("GPL");
3794

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/drivers/hwmon/pmbus/pmbus_core.c