1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* |
3 | * This file contains an ECC algorithm that detects and corrects 1 bit |
4 | * errors in a 256 byte block of data. |
5 | * |
6 | * Copyright © 2008 Koninklijke Philips Electronics NV. |
7 | * Author: Frans Meulenbroeks |
8 | * |
9 | * Completely replaces the previous ECC implementation which was written by: |
10 | * Steven J. Hill (sjhill@realitydiluted.com) |
11 | * Thomas Gleixner (tglx@linutronix.de) |
12 | * |
13 | * Information on how this algorithm works and how it was developed |
14 | * can be found in Documentation/driver-api/mtd/nand_ecc.rst |
15 | */ |
16 | |
17 | #include <linux/types.h> |
18 | #include <linux/kernel.h> |
19 | #include <linux/module.h> |
20 | #include <linux/mtd/nand.h> |
21 | #include <linux/mtd/nand-ecc-sw-hamming.h> |
22 | #include <linux/slab.h> |
23 | #include <asm/byteorder.h> |
24 | |
25 | /* |
26 | * invparity is a 256 byte table that contains the odd parity |
27 | * for each byte. So if the number of bits in a byte is even, |
28 | * the array element is 1, and when the number of bits is odd |
29 | * the array eleemnt is 0. |
30 | */ |
31 | static const char invparity[256] = { |
32 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
33 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
34 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
35 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
36 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
37 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
38 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
39 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
40 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
41 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
42 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
43 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
44 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
45 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
46 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
47 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 |
48 | }; |
49 | |
50 | /* |
51 | * bitsperbyte contains the number of bits per byte |
52 | * this is only used for testing and repairing parity |
53 | * (a precalculated value slightly improves performance) |
54 | */ |
55 | static const char bitsperbyte[256] = { |
56 | 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, |
57 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
58 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
59 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
60 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
61 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
62 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
63 | 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
64 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
65 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
66 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
67 | 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
68 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
69 | 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
70 | 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
71 | 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, |
72 | }; |
73 | |
74 | /* |
75 | * addressbits is a lookup table to filter out the bits from the xor-ed |
76 | * ECC data that identify the faulty location. |
77 | * this is only used for repairing parity |
78 | * see the comments in nand_ecc_sw_hamming_correct for more details |
79 | */ |
80 | static const char addressbits[256] = { |
81 | 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
82 | 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
83 | 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
84 | 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
85 | 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
86 | 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
87 | 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
88 | 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
89 | 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
90 | 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
91 | 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
92 | 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
93 | 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
94 | 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
95 | 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
96 | 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
97 | 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, |
98 | 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, |
99 | 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, |
100 | 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, |
101 | 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, |
102 | 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, |
103 | 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, |
104 | 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, |
105 | 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, |
106 | 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, |
107 | 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, |
108 | 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, |
109 | 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, |
110 | 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, |
111 | 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, |
112 | 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f |
113 | }; |
114 | |
115 | int ecc_sw_hamming_calculate(const unsigned char *buf, unsigned int step_size, |
116 | unsigned char *code, bool sm_order) |
117 | { |
118 | const u32 *bp = (uint32_t *)buf; |
119 | const u32 eccsize_mult = (step_size == 256) ? 1 : 2; |
120 | /* current value in buffer */ |
121 | u32 cur; |
122 | /* rp0..rp17 are the various accumulated parities (per byte) */ |
123 | u32 rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7, rp8, rp9, rp10, rp11, rp12, |
124 | rp13, rp14, rp15, rp16, rp17; |
125 | /* Cumulative parity for all data */ |
126 | u32 par; |
127 | /* Cumulative parity at the end of the loop (rp12, rp14, rp16) */ |
128 | u32 tmppar; |
129 | int i; |
130 | |
131 | par = 0; |
132 | rp4 = 0; |
133 | rp6 = 0; |
134 | rp8 = 0; |
135 | rp10 = 0; |
136 | rp12 = 0; |
137 | rp14 = 0; |
138 | rp16 = 0; |
139 | rp17 = 0; |
140 | |
141 | /* |
142 | * The loop is unrolled a number of times; |
143 | * This avoids if statements to decide on which rp value to update |
144 | * Also we process the data by longwords. |
145 | * Note: passing unaligned data might give a performance penalty. |
146 | * It is assumed that the buffers are aligned. |
147 | * tmppar is the cumulative sum of this iteration. |
148 | * needed for calculating rp12, rp14, rp16 and par |
149 | * also used as a performance improvement for rp6, rp8 and rp10 |
150 | */ |
151 | for (i = 0; i < eccsize_mult << 2; i++) { |
152 | cur = *bp++; |
153 | tmppar = cur; |
154 | rp4 ^= cur; |
155 | cur = *bp++; |
156 | tmppar ^= cur; |
157 | rp6 ^= tmppar; |
158 | cur = *bp++; |
159 | tmppar ^= cur; |
160 | rp4 ^= cur; |
161 | cur = *bp++; |
162 | tmppar ^= cur; |
163 | rp8 ^= tmppar; |
164 | |
165 | cur = *bp++; |
166 | tmppar ^= cur; |
167 | rp4 ^= cur; |
168 | rp6 ^= cur; |
169 | cur = *bp++; |
170 | tmppar ^= cur; |
171 | rp6 ^= cur; |
172 | cur = *bp++; |
173 | tmppar ^= cur; |
174 | rp4 ^= cur; |
175 | cur = *bp++; |
176 | tmppar ^= cur; |
177 | rp10 ^= tmppar; |
178 | |
179 | cur = *bp++; |
180 | tmppar ^= cur; |
181 | rp4 ^= cur; |
182 | rp6 ^= cur; |
183 | rp8 ^= cur; |
184 | cur = *bp++; |
185 | tmppar ^= cur; |
186 | rp6 ^= cur; |
187 | rp8 ^= cur; |
188 | cur = *bp++; |
189 | tmppar ^= cur; |
190 | rp4 ^= cur; |
191 | rp8 ^= cur; |
192 | cur = *bp++; |
193 | tmppar ^= cur; |
194 | rp8 ^= cur; |
195 | |
196 | cur = *bp++; |
197 | tmppar ^= cur; |
198 | rp4 ^= cur; |
199 | rp6 ^= cur; |
200 | cur = *bp++; |
201 | tmppar ^= cur; |
202 | rp6 ^= cur; |
203 | cur = *bp++; |
204 | tmppar ^= cur; |
205 | rp4 ^= cur; |
206 | cur = *bp++; |
207 | tmppar ^= cur; |
208 | |
209 | par ^= tmppar; |
210 | if ((i & 0x1) == 0) |
211 | rp12 ^= tmppar; |
212 | if ((i & 0x2) == 0) |
213 | rp14 ^= tmppar; |
214 | if (eccsize_mult == 2 && (i & 0x4) == 0) |
215 | rp16 ^= tmppar; |
216 | } |
217 | |
218 | /* |
219 | * handle the fact that we use longword operations |
220 | * we'll bring rp4..rp14..rp16 back to single byte entities by |
221 | * shifting and xoring first fold the upper and lower 16 bits, |
222 | * then the upper and lower 8 bits. |
223 | */ |
224 | rp4 ^= (rp4 >> 16); |
225 | rp4 ^= (rp4 >> 8); |
226 | rp4 &= 0xff; |
227 | rp6 ^= (rp6 >> 16); |
228 | rp6 ^= (rp6 >> 8); |
229 | rp6 &= 0xff; |
230 | rp8 ^= (rp8 >> 16); |
231 | rp8 ^= (rp8 >> 8); |
232 | rp8 &= 0xff; |
233 | rp10 ^= (rp10 >> 16); |
234 | rp10 ^= (rp10 >> 8); |
235 | rp10 &= 0xff; |
236 | rp12 ^= (rp12 >> 16); |
237 | rp12 ^= (rp12 >> 8); |
238 | rp12 &= 0xff; |
239 | rp14 ^= (rp14 >> 16); |
240 | rp14 ^= (rp14 >> 8); |
241 | rp14 &= 0xff; |
242 | if (eccsize_mult == 2) { |
243 | rp16 ^= (rp16 >> 16); |
244 | rp16 ^= (rp16 >> 8); |
245 | rp16 &= 0xff; |
246 | } |
247 | |
248 | /* |
249 | * we also need to calculate the row parity for rp0..rp3 |
250 | * This is present in par, because par is now |
251 | * rp3 rp3 rp2 rp2 in little endian and |
252 | * rp2 rp2 rp3 rp3 in big endian |
253 | * as well as |
254 | * rp1 rp0 rp1 rp0 in little endian and |
255 | * rp0 rp1 rp0 rp1 in big endian |
256 | * First calculate rp2 and rp3 |
257 | */ |
258 | #ifdef __BIG_ENDIAN |
259 | rp2 = (par >> 16); |
260 | rp2 ^= (rp2 >> 8); |
261 | rp2 &= 0xff; |
262 | rp3 = par & 0xffff; |
263 | rp3 ^= (rp3 >> 8); |
264 | rp3 &= 0xff; |
265 | #else |
266 | rp3 = (par >> 16); |
267 | rp3 ^= (rp3 >> 8); |
268 | rp3 &= 0xff; |
269 | rp2 = par & 0xffff; |
270 | rp2 ^= (rp2 >> 8); |
271 | rp2 &= 0xff; |
272 | #endif |
273 | |
274 | /* reduce par to 16 bits then calculate rp1 and rp0 */ |
275 | par ^= (par >> 16); |
276 | #ifdef __BIG_ENDIAN |
277 | rp0 = (par >> 8) & 0xff; |
278 | rp1 = (par & 0xff); |
279 | #else |
280 | rp1 = (par >> 8) & 0xff; |
281 | rp0 = (par & 0xff); |
282 | #endif |
283 | |
284 | /* finally reduce par to 8 bits */ |
285 | par ^= (par >> 8); |
286 | par &= 0xff; |
287 | |
288 | /* |
289 | * and calculate rp5..rp15..rp17 |
290 | * note that par = rp4 ^ rp5 and due to the commutative property |
291 | * of the ^ operator we can say: |
292 | * rp5 = (par ^ rp4); |
293 | * The & 0xff seems superfluous, but benchmarking learned that |
294 | * leaving it out gives slightly worse results. No idea why, probably |
295 | * it has to do with the way the pipeline in pentium is organized. |
296 | */ |
297 | rp5 = (par ^ rp4) & 0xff; |
298 | rp7 = (par ^ rp6) & 0xff; |
299 | rp9 = (par ^ rp8) & 0xff; |
300 | rp11 = (par ^ rp10) & 0xff; |
301 | rp13 = (par ^ rp12) & 0xff; |
302 | rp15 = (par ^ rp14) & 0xff; |
303 | if (eccsize_mult == 2) |
304 | rp17 = (par ^ rp16) & 0xff; |
305 | |
306 | /* |
307 | * Finally calculate the ECC bits. |
308 | * Again here it might seem that there are performance optimisations |
309 | * possible, but benchmarks showed that on the system this is developed |
310 | * the code below is the fastest |
311 | */ |
312 | if (sm_order) { |
313 | code[0] = (invparity[rp7] << 7) | (invparity[rp6] << 6) | |
314 | (invparity[rp5] << 5) | (invparity[rp4] << 4) | |
315 | (invparity[rp3] << 3) | (invparity[rp2] << 2) | |
316 | (invparity[rp1] << 1) | (invparity[rp0]); |
317 | code[1] = (invparity[rp15] << 7) | (invparity[rp14] << 6) | |
318 | (invparity[rp13] << 5) | (invparity[rp12] << 4) | |
319 | (invparity[rp11] << 3) | (invparity[rp10] << 2) | |
320 | (invparity[rp9] << 1) | (invparity[rp8]); |
321 | } else { |
322 | code[1] = (invparity[rp7] << 7) | (invparity[rp6] << 6) | |
323 | (invparity[rp5] << 5) | (invparity[rp4] << 4) | |
324 | (invparity[rp3] << 3) | (invparity[rp2] << 2) | |
325 | (invparity[rp1] << 1) | (invparity[rp0]); |
326 | code[0] = (invparity[rp15] << 7) | (invparity[rp14] << 6) | |
327 | (invparity[rp13] << 5) | (invparity[rp12] << 4) | |
328 | (invparity[rp11] << 3) | (invparity[rp10] << 2) | |
329 | (invparity[rp9] << 1) | (invparity[rp8]); |
330 | } |
331 | |
332 | if (eccsize_mult == 1) |
333 | code[2] = |
334 | (invparity[par & 0xf0] << 7) | |
335 | (invparity[par & 0x0f] << 6) | |
336 | (invparity[par & 0xcc] << 5) | |
337 | (invparity[par & 0x33] << 4) | |
338 | (invparity[par & 0xaa] << 3) | |
339 | (invparity[par & 0x55] << 2) | |
340 | 3; |
341 | else |
342 | code[2] = |
343 | (invparity[par & 0xf0] << 7) | |
344 | (invparity[par & 0x0f] << 6) | |
345 | (invparity[par & 0xcc] << 5) | |
346 | (invparity[par & 0x33] << 4) | |
347 | (invparity[par & 0xaa] << 3) | |
348 | (invparity[par & 0x55] << 2) | |
349 | (invparity[rp17] << 1) | |
350 | (invparity[rp16] << 0); |
351 | |
352 | return 0; |
353 | } |
354 | EXPORT_SYMBOL(ecc_sw_hamming_calculate); |
355 | |
356 | /** |
357 | * nand_ecc_sw_hamming_calculate - Calculate 3-byte ECC for 256/512-byte block |
358 | * @nand: NAND device |
359 | * @buf: Input buffer with raw data |
360 | * @code: Output buffer with ECC |
361 | */ |
362 | int nand_ecc_sw_hamming_calculate(struct nand_device *nand, |
363 | const unsigned char *buf, unsigned char *code) |
364 | { |
365 | struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; |
366 | unsigned int step_size = nand->ecc.ctx.conf.step_size; |
367 | bool sm_order = engine_conf ? engine_conf->sm_order : false; |
368 | |
369 | return ecc_sw_hamming_calculate(buf, step_size, code, sm_order); |
370 | } |
371 | EXPORT_SYMBOL(nand_ecc_sw_hamming_calculate); |
372 | |
373 | int ecc_sw_hamming_correct(unsigned char *buf, unsigned char *read_ecc, |
374 | unsigned char *calc_ecc, unsigned int step_size, |
375 | bool sm_order) |
376 | { |
377 | const u32 eccsize_mult = step_size >> 8; |
378 | unsigned char b0, b1, b2, bit_addr; |
379 | unsigned int byte_addr; |
380 | |
381 | /* |
382 | * b0 to b2 indicate which bit is faulty (if any) |
383 | * we might need the xor result more than once, |
384 | * so keep them in a local var |
385 | */ |
386 | if (sm_order) { |
387 | b0 = read_ecc[0] ^ calc_ecc[0]; |
388 | b1 = read_ecc[1] ^ calc_ecc[1]; |
389 | } else { |
390 | b0 = read_ecc[1] ^ calc_ecc[1]; |
391 | b1 = read_ecc[0] ^ calc_ecc[0]; |
392 | } |
393 | |
394 | b2 = read_ecc[2] ^ calc_ecc[2]; |
395 | |
396 | /* check if there are any bitfaults */ |
397 | |
398 | /* repeated if statements are slightly more efficient than switch ... */ |
399 | /* ordered in order of likelihood */ |
400 | |
401 | if ((b0 | b1 | b2) == 0) |
402 | return 0; /* no error */ |
403 | |
404 | if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) && |
405 | (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) && |
406 | ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) || |
407 | (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) { |
408 | /* single bit error */ |
409 | /* |
410 | * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty |
411 | * byte, cp 5/3/1 indicate the faulty bit. |
412 | * A lookup table (called addressbits) is used to filter |
413 | * the bits from the byte they are in. |
414 | * A marginal optimisation is possible by having three |
415 | * different lookup tables. |
416 | * One as we have now (for b0), one for b2 |
417 | * (that would avoid the >> 1), and one for b1 (with all values |
418 | * << 4). However it was felt that introducing two more tables |
419 | * hardly justify the gain. |
420 | * |
421 | * The b2 shift is there to get rid of the lowest two bits. |
422 | * We could also do addressbits[b2] >> 1 but for the |
423 | * performance it does not make any difference |
424 | */ |
425 | if (eccsize_mult == 1) |
426 | byte_addr = (addressbits[b1] << 4) + addressbits[b0]; |
427 | else |
428 | byte_addr = (addressbits[b2 & 0x3] << 8) + |
429 | (addressbits[b1] << 4) + addressbits[b0]; |
430 | bit_addr = addressbits[b2 >> 2]; |
431 | /* flip the bit */ |
432 | buf[byte_addr] ^= (1 << bit_addr); |
433 | return 1; |
434 | |
435 | } |
436 | /* count nr of bits; use table lookup, faster than calculating it */ |
437 | if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) |
438 | return 1; /* error in ECC data; no action needed */ |
439 | |
440 | pr_err("%s: uncorrectable ECC error\n", __func__); |
441 | return -EBADMSG; |
442 | } |
443 | EXPORT_SYMBOL(ecc_sw_hamming_correct); |
444 | |
445 | /** |
446 | * nand_ecc_sw_hamming_correct - Detect and correct bit error(s) |
447 | * @nand: NAND device |
448 | * @buf: Raw data read from the chip |
449 | * @read_ecc: ECC bytes read from the chip |
450 | * @calc_ecc: ECC calculated from the raw data |
451 | * |
452 | * Detect and correct up to 1 bit error per 256/512-byte block. |
453 | */ |
454 | int nand_ecc_sw_hamming_correct(struct nand_device *nand, unsigned char *buf, |
455 | unsigned char *read_ecc, |
456 | unsigned char *calc_ecc) |
457 | { |
458 | struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; |
459 | unsigned int step_size = nand->ecc.ctx.conf.step_size; |
460 | bool sm_order = engine_conf ? engine_conf->sm_order : false; |
461 | |
462 | return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc, step_size, |
463 | sm_order); |
464 | } |
465 | EXPORT_SYMBOL(nand_ecc_sw_hamming_correct); |
466 | |
467 | int nand_ecc_sw_hamming_init_ctx(struct nand_device *nand) |
468 | { |
469 | struct nand_ecc_props *conf = &nand->ecc.ctx.conf; |
470 | struct nand_ecc_sw_hamming_conf *engine_conf; |
471 | struct mtd_info *mtd = nanddev_to_mtd(nand); |
472 | int ret; |
473 | |
474 | if (!mtd->ooblayout) { |
475 | switch (mtd->oobsize) { |
476 | case 8: |
477 | case 16: |
478 | mtd_set_ooblayout(mtd, ooblayout: nand_get_small_page_ooblayout()); |
479 | break; |
480 | case 64: |
481 | case 128: |
482 | mtd_set_ooblayout(mtd, |
483 | ooblayout: nand_get_large_page_hamming_ooblayout()); |
484 | break; |
485 | default: |
486 | return -ENOTSUPP; |
487 | } |
488 | } |
489 | |
490 | conf->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; |
491 | conf->algo = NAND_ECC_ALGO_HAMMING; |
492 | conf->step_size = nand->ecc.user_conf.step_size; |
493 | conf->strength = 1; |
494 | |
495 | /* Use the strongest configuration by default */ |
496 | if (conf->step_size != 256 && conf->step_size != 512) |
497 | conf->step_size = 256; |
498 | |
499 | engine_conf = kzalloc(size: sizeof(*engine_conf), GFP_KERNEL); |
500 | if (!engine_conf) |
501 | return -ENOMEM; |
502 | |
503 | ret = nand_ecc_init_req_tweaking(ctx: &engine_conf->req_ctx, nand); |
504 | if (ret) |
505 | goto free_engine_conf; |
506 | |
507 | engine_conf->code_size = 3; |
508 | engine_conf->calc_buf = kzalloc(size: mtd->oobsize, GFP_KERNEL); |
509 | engine_conf->code_buf = kzalloc(size: mtd->oobsize, GFP_KERNEL); |
510 | if (!engine_conf->calc_buf || !engine_conf->code_buf) { |
511 | ret = -ENOMEM; |
512 | goto free_bufs; |
513 | } |
514 | |
515 | nand->ecc.ctx.priv = engine_conf; |
516 | nand->ecc.ctx.nsteps = mtd->writesize / conf->step_size; |
517 | nand->ecc.ctx.total = nand->ecc.ctx.nsteps * engine_conf->code_size; |
518 | |
519 | return 0; |
520 | |
521 | free_bufs: |
522 | nand_ecc_cleanup_req_tweaking(ctx: &engine_conf->req_ctx); |
523 | kfree(objp: engine_conf->calc_buf); |
524 | kfree(objp: engine_conf->code_buf); |
525 | free_engine_conf: |
526 | kfree(objp: engine_conf); |
527 | |
528 | return ret; |
529 | } |
530 | EXPORT_SYMBOL(nand_ecc_sw_hamming_init_ctx); |
531 | |
532 | void nand_ecc_sw_hamming_cleanup_ctx(struct nand_device *nand) |
533 | { |
534 | struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; |
535 | |
536 | if (engine_conf) { |
537 | nand_ecc_cleanup_req_tweaking(ctx: &engine_conf->req_ctx); |
538 | kfree(objp: engine_conf->calc_buf); |
539 | kfree(objp: engine_conf->code_buf); |
540 | kfree(objp: engine_conf); |
541 | } |
542 | } |
543 | EXPORT_SYMBOL(nand_ecc_sw_hamming_cleanup_ctx); |
544 | |
545 | static int nand_ecc_sw_hamming_prepare_io_req(struct nand_device *nand, |
546 | struct nand_page_io_req *req) |
547 | { |
548 | struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; |
549 | struct mtd_info *mtd = nanddev_to_mtd(nand); |
550 | int eccsize = nand->ecc.ctx.conf.step_size; |
551 | int eccbytes = engine_conf->code_size; |
552 | int eccsteps = nand->ecc.ctx.nsteps; |
553 | int total = nand->ecc.ctx.total; |
554 | u8 *ecccalc = engine_conf->calc_buf; |
555 | const u8 *data; |
556 | int i; |
557 | |
558 | /* Nothing to do for a raw operation */ |
559 | if (req->mode == MTD_OPS_RAW) |
560 | return 0; |
561 | |
562 | /* This engine does not provide BBM/free OOB bytes protection */ |
563 | if (!req->datalen) |
564 | return 0; |
565 | |
566 | nand_ecc_tweak_req(ctx: &engine_conf->req_ctx, req); |
567 | |
568 | /* No more preparation for page read */ |
569 | if (req->type == NAND_PAGE_READ) |
570 | return 0; |
571 | |
572 | /* Preparation for page write: derive the ECC bytes and place them */ |
573 | for (i = 0, data = req->databuf.out; |
574 | eccsteps; |
575 | eccsteps--, i += eccbytes, data += eccsize) |
576 | nand_ecc_sw_hamming_calculate(nand, data, &ecccalc[i]); |
577 | |
578 | return mtd_ooblayout_set_eccbytes(mtd, eccbuf: ecccalc, oobbuf: (void *)req->oobbuf.out, |
579 | start: 0, nbytes: total); |
580 | } |
581 | |
582 | static int nand_ecc_sw_hamming_finish_io_req(struct nand_device *nand, |
583 | struct nand_page_io_req *req) |
584 | { |
585 | struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; |
586 | struct mtd_info *mtd = nanddev_to_mtd(nand); |
587 | int eccsize = nand->ecc.ctx.conf.step_size; |
588 | int total = nand->ecc.ctx.total; |
589 | int eccbytes = engine_conf->code_size; |
590 | int eccsteps = nand->ecc.ctx.nsteps; |
591 | u8 *ecccalc = engine_conf->calc_buf; |
592 | u8 *ecccode = engine_conf->code_buf; |
593 | unsigned int max_bitflips = 0; |
594 | u8 *data = req->databuf.in; |
595 | int i, ret; |
596 | |
597 | /* Nothing to do for a raw operation */ |
598 | if (req->mode == MTD_OPS_RAW) |
599 | return 0; |
600 | |
601 | /* This engine does not provide BBM/free OOB bytes protection */ |
602 | if (!req->datalen) |
603 | return 0; |
604 | |
605 | /* No more preparation for page write */ |
606 | if (req->type == NAND_PAGE_WRITE) { |
607 | nand_ecc_restore_req(ctx: &engine_conf->req_ctx, req); |
608 | return 0; |
609 | } |
610 | |
611 | /* Finish a page read: retrieve the (raw) ECC bytes*/ |
612 | ret = mtd_ooblayout_get_eccbytes(mtd, eccbuf: ecccode, oobbuf: req->oobbuf.in, start: 0, |
613 | nbytes: total); |
614 | if (ret) |
615 | return ret; |
616 | |
617 | /* Calculate the ECC bytes */ |
618 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, data += eccsize) |
619 | nand_ecc_sw_hamming_calculate(nand, data, &ecccalc[i]); |
620 | |
621 | /* Finish a page read: compare and correct */ |
622 | for (eccsteps = nand->ecc.ctx.nsteps, i = 0, data = req->databuf.in; |
623 | eccsteps; |
624 | eccsteps--, i += eccbytes, data += eccsize) { |
625 | int stat = nand_ecc_sw_hamming_correct(nand, data, |
626 | &ecccode[i], |
627 | &ecccalc[i]); |
628 | if (stat < 0) { |
629 | mtd->ecc_stats.failed++; |
630 | } else { |
631 | mtd->ecc_stats.corrected += stat; |
632 | max_bitflips = max_t(unsigned int, max_bitflips, stat); |
633 | } |
634 | } |
635 | |
636 | nand_ecc_restore_req(ctx: &engine_conf->req_ctx, req); |
637 | |
638 | return max_bitflips; |
639 | } |
640 | |
641 | static struct nand_ecc_engine_ops nand_ecc_sw_hamming_engine_ops = { |
642 | .init_ctx = nand_ecc_sw_hamming_init_ctx, |
643 | .cleanup_ctx = nand_ecc_sw_hamming_cleanup_ctx, |
644 | .prepare_io_req = nand_ecc_sw_hamming_prepare_io_req, |
645 | .finish_io_req = nand_ecc_sw_hamming_finish_io_req, |
646 | }; |
647 | |
648 | static struct nand_ecc_engine nand_ecc_sw_hamming_engine = { |
649 | .ops = &nand_ecc_sw_hamming_engine_ops, |
650 | }; |
651 | |
652 | struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void) |
653 | { |
654 | return &nand_ecc_sw_hamming_engine; |
655 | } |
656 | EXPORT_SYMBOL(nand_ecc_sw_hamming_get_engine); |
657 | |
658 | MODULE_LICENSE("GPL"); |
659 | MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>"); |
660 | MODULE_DESCRIPTION("NAND software Hamming ECC support"); |
661 |
Definitions
- invparity
- bitsperbyte
- addressbits
- ecc_sw_hamming_calculate
- nand_ecc_sw_hamming_calculate
- ecc_sw_hamming_correct
- nand_ecc_sw_hamming_correct
- nand_ecc_sw_hamming_init_ctx
- nand_ecc_sw_hamming_cleanup_ctx
- nand_ecc_sw_hamming_prepare_io_req
- nand_ecc_sw_hamming_finish_io_req
- nand_ecc_sw_hamming_engine_ops
- nand_ecc_sw_hamming_engine
Improve your Profiling and Debugging skills
Find out more