| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * This file contains an ECC algorithm that detects and corrects 1 bit |
| 4 | * errors in a 256 byte block of data. |
| 5 | * |
| 6 | * Copyright © 2008 Koninklijke Philips Electronics NV. |
| 7 | * Author: Frans Meulenbroeks |
| 8 | * |
| 9 | * Completely replaces the previous ECC implementation which was written by: |
| 10 | * Steven J. Hill (sjhill@realitydiluted.com) |
| 11 | * Thomas Gleixner (tglx@linutronix.de) |
| 12 | * |
| 13 | * Information on how this algorithm works and how it was developed |
| 14 | * can be found in Documentation/driver-api/mtd/nand_ecc.rst |
| 15 | */ |
| 16 | |
| 17 | #include <linux/types.h> |
| 18 | #include <linux/kernel.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/mtd/nand.h> |
| 21 | #include <linux/mtd/nand-ecc-sw-hamming.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <asm/byteorder.h> |
| 24 | |
| 25 | /* |
| 26 | * invparity is a 256 byte table that contains the odd parity |
| 27 | * for each byte. So if the number of bits in a byte is even, |
| 28 | * the array element is 1, and when the number of bits is odd |
| 29 | * the array eleemnt is 0. |
| 30 | */ |
| 31 | static const char invparity[256] = { |
| 32 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 33 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 34 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 35 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 36 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 37 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 38 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 39 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 40 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 41 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 42 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 43 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 44 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 45 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 46 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 47 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 |
| 48 | }; |
| 49 | |
| 50 | /* |
| 51 | * bitsperbyte contains the number of bits per byte |
| 52 | * this is only used for testing and repairing parity |
| 53 | * (a precalculated value slightly improves performance) |
| 54 | */ |
| 55 | static const char bitsperbyte[256] = { |
| 56 | 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, |
| 57 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
| 58 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
| 59 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
| 60 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
| 61 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
| 62 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
| 63 | 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
| 64 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
| 65 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
| 66 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
| 67 | 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
| 68 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
| 69 | 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
| 70 | 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
| 71 | 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, |
| 72 | }; |
| 73 | |
| 74 | /* |
| 75 | * addressbits is a lookup table to filter out the bits from the xor-ed |
| 76 | * ECC data that identify the faulty location. |
| 77 | * this is only used for repairing parity |
| 78 | * see the comments in nand_ecc_sw_hamming_correct for more details |
| 79 | */ |
| 80 | static const char addressbits[256] = { |
| 81 | 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
| 82 | 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
| 83 | 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
| 84 | 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
| 85 | 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
| 86 | 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
| 87 | 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
| 88 | 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
| 89 | 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
| 90 | 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
| 91 | 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
| 92 | 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
| 93 | 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
| 94 | 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
| 95 | 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
| 96 | 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
| 97 | 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, |
| 98 | 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, |
| 99 | 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, |
| 100 | 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, |
| 101 | 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, |
| 102 | 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, |
| 103 | 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, |
| 104 | 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, |
| 105 | 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, |
| 106 | 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, |
| 107 | 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, |
| 108 | 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, |
| 109 | 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, |
| 110 | 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, |
| 111 | 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, |
| 112 | 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f |
| 113 | }; |
| 114 | |
| 115 | int ecc_sw_hamming_calculate(const unsigned char *buf, unsigned int step_size, |
| 116 | unsigned char *code, bool sm_order) |
| 117 | { |
| 118 | const u32 *bp = (uint32_t *)buf; |
| 119 | const u32 eccsize_mult = (step_size == 256) ? 1 : 2; |
| 120 | /* current value in buffer */ |
| 121 | u32 cur; |
| 122 | /* rp0..rp17 are the various accumulated parities (per byte) */ |
| 123 | u32 rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7, rp8, rp9, rp10, rp11, rp12, |
| 124 | rp13, rp14, rp15, rp16, rp17; |
| 125 | /* Cumulative parity for all data */ |
| 126 | u32 par; |
| 127 | /* Cumulative parity at the end of the loop (rp12, rp14, rp16) */ |
| 128 | u32 tmppar; |
| 129 | int i; |
| 130 | |
| 131 | par = 0; |
| 132 | rp4 = 0; |
| 133 | rp6 = 0; |
| 134 | rp8 = 0; |
| 135 | rp10 = 0; |
| 136 | rp12 = 0; |
| 137 | rp14 = 0; |
| 138 | rp16 = 0; |
| 139 | rp17 = 0; |
| 140 | |
| 141 | /* |
| 142 | * The loop is unrolled a number of times; |
| 143 | * This avoids if statements to decide on which rp value to update |
| 144 | * Also we process the data by longwords. |
| 145 | * Note: passing unaligned data might give a performance penalty. |
| 146 | * It is assumed that the buffers are aligned. |
| 147 | * tmppar is the cumulative sum of this iteration. |
| 148 | * needed for calculating rp12, rp14, rp16 and par |
| 149 | * also used as a performance improvement for rp6, rp8 and rp10 |
| 150 | */ |
| 151 | for (i = 0; i < eccsize_mult << 2; i++) { |
| 152 | cur = *bp++; |
| 153 | tmppar = cur; |
| 154 | rp4 ^= cur; |
| 155 | cur = *bp++; |
| 156 | tmppar ^= cur; |
| 157 | rp6 ^= tmppar; |
| 158 | cur = *bp++; |
| 159 | tmppar ^= cur; |
| 160 | rp4 ^= cur; |
| 161 | cur = *bp++; |
| 162 | tmppar ^= cur; |
| 163 | rp8 ^= tmppar; |
| 164 | |
| 165 | cur = *bp++; |
| 166 | tmppar ^= cur; |
| 167 | rp4 ^= cur; |
| 168 | rp6 ^= cur; |
| 169 | cur = *bp++; |
| 170 | tmppar ^= cur; |
| 171 | rp6 ^= cur; |
| 172 | cur = *bp++; |
| 173 | tmppar ^= cur; |
| 174 | rp4 ^= cur; |
| 175 | cur = *bp++; |
| 176 | tmppar ^= cur; |
| 177 | rp10 ^= tmppar; |
| 178 | |
| 179 | cur = *bp++; |
| 180 | tmppar ^= cur; |
| 181 | rp4 ^= cur; |
| 182 | rp6 ^= cur; |
| 183 | rp8 ^= cur; |
| 184 | cur = *bp++; |
| 185 | tmppar ^= cur; |
| 186 | rp6 ^= cur; |
| 187 | rp8 ^= cur; |
| 188 | cur = *bp++; |
| 189 | tmppar ^= cur; |
| 190 | rp4 ^= cur; |
| 191 | rp8 ^= cur; |
| 192 | cur = *bp++; |
| 193 | tmppar ^= cur; |
| 194 | rp8 ^= cur; |
| 195 | |
| 196 | cur = *bp++; |
| 197 | tmppar ^= cur; |
| 198 | rp4 ^= cur; |
| 199 | rp6 ^= cur; |
| 200 | cur = *bp++; |
| 201 | tmppar ^= cur; |
| 202 | rp6 ^= cur; |
| 203 | cur = *bp++; |
| 204 | tmppar ^= cur; |
| 205 | rp4 ^= cur; |
| 206 | cur = *bp++; |
| 207 | tmppar ^= cur; |
| 208 | |
| 209 | par ^= tmppar; |
| 210 | if ((i & 0x1) == 0) |
| 211 | rp12 ^= tmppar; |
| 212 | if ((i & 0x2) == 0) |
| 213 | rp14 ^= tmppar; |
| 214 | if (eccsize_mult == 2 && (i & 0x4) == 0) |
| 215 | rp16 ^= tmppar; |
| 216 | } |
| 217 | |
| 218 | /* |
| 219 | * handle the fact that we use longword operations |
| 220 | * we'll bring rp4..rp14..rp16 back to single byte entities by |
| 221 | * shifting and xoring first fold the upper and lower 16 bits, |
| 222 | * then the upper and lower 8 bits. |
| 223 | */ |
| 224 | rp4 ^= (rp4 >> 16); |
| 225 | rp4 ^= (rp4 >> 8); |
| 226 | rp4 &= 0xff; |
| 227 | rp6 ^= (rp6 >> 16); |
| 228 | rp6 ^= (rp6 >> 8); |
| 229 | rp6 &= 0xff; |
| 230 | rp8 ^= (rp8 >> 16); |
| 231 | rp8 ^= (rp8 >> 8); |
| 232 | rp8 &= 0xff; |
| 233 | rp10 ^= (rp10 >> 16); |
| 234 | rp10 ^= (rp10 >> 8); |
| 235 | rp10 &= 0xff; |
| 236 | rp12 ^= (rp12 >> 16); |
| 237 | rp12 ^= (rp12 >> 8); |
| 238 | rp12 &= 0xff; |
| 239 | rp14 ^= (rp14 >> 16); |
| 240 | rp14 ^= (rp14 >> 8); |
| 241 | rp14 &= 0xff; |
| 242 | if (eccsize_mult == 2) { |
| 243 | rp16 ^= (rp16 >> 16); |
| 244 | rp16 ^= (rp16 >> 8); |
| 245 | rp16 &= 0xff; |
| 246 | } |
| 247 | |
| 248 | /* |
| 249 | * we also need to calculate the row parity for rp0..rp3 |
| 250 | * This is present in par, because par is now |
| 251 | * rp3 rp3 rp2 rp2 in little endian and |
| 252 | * rp2 rp2 rp3 rp3 in big endian |
| 253 | * as well as |
| 254 | * rp1 rp0 rp1 rp0 in little endian and |
| 255 | * rp0 rp1 rp0 rp1 in big endian |
| 256 | * First calculate rp2 and rp3 |
| 257 | */ |
| 258 | #ifdef __BIG_ENDIAN |
| 259 | rp2 = (par >> 16); |
| 260 | rp2 ^= (rp2 >> 8); |
| 261 | rp2 &= 0xff; |
| 262 | rp3 = par & 0xffff; |
| 263 | rp3 ^= (rp3 >> 8); |
| 264 | rp3 &= 0xff; |
| 265 | #else |
| 266 | rp3 = (par >> 16); |
| 267 | rp3 ^= (rp3 >> 8); |
| 268 | rp3 &= 0xff; |
| 269 | rp2 = par & 0xffff; |
| 270 | rp2 ^= (rp2 >> 8); |
| 271 | rp2 &= 0xff; |
| 272 | #endif |
| 273 | |
| 274 | /* reduce par to 16 bits then calculate rp1 and rp0 */ |
| 275 | par ^= (par >> 16); |
| 276 | #ifdef __BIG_ENDIAN |
| 277 | rp0 = (par >> 8) & 0xff; |
| 278 | rp1 = (par & 0xff); |
| 279 | #else |
| 280 | rp1 = (par >> 8) & 0xff; |
| 281 | rp0 = (par & 0xff); |
| 282 | #endif |
| 283 | |
| 284 | /* finally reduce par to 8 bits */ |
| 285 | par ^= (par >> 8); |
| 286 | par &= 0xff; |
| 287 | |
| 288 | /* |
| 289 | * and calculate rp5..rp15..rp17 |
| 290 | * note that par = rp4 ^ rp5 and due to the commutative property |
| 291 | * of the ^ operator we can say: |
| 292 | * rp5 = (par ^ rp4); |
| 293 | * The & 0xff seems superfluous, but benchmarking learned that |
| 294 | * leaving it out gives slightly worse results. No idea why, probably |
| 295 | * it has to do with the way the pipeline in pentium is organized. |
| 296 | */ |
| 297 | rp5 = (par ^ rp4) & 0xff; |
| 298 | rp7 = (par ^ rp6) & 0xff; |
| 299 | rp9 = (par ^ rp8) & 0xff; |
| 300 | rp11 = (par ^ rp10) & 0xff; |
| 301 | rp13 = (par ^ rp12) & 0xff; |
| 302 | rp15 = (par ^ rp14) & 0xff; |
| 303 | if (eccsize_mult == 2) |
| 304 | rp17 = (par ^ rp16) & 0xff; |
| 305 | |
| 306 | /* |
| 307 | * Finally calculate the ECC bits. |
| 308 | * Again here it might seem that there are performance optimisations |
| 309 | * possible, but benchmarks showed that on the system this is developed |
| 310 | * the code below is the fastest |
| 311 | */ |
| 312 | if (sm_order) { |
| 313 | code[0] = (invparity[rp7] << 7) | (invparity[rp6] << 6) | |
| 314 | (invparity[rp5] << 5) | (invparity[rp4] << 4) | |
| 315 | (invparity[rp3] << 3) | (invparity[rp2] << 2) | |
| 316 | (invparity[rp1] << 1) | (invparity[rp0]); |
| 317 | code[1] = (invparity[rp15] << 7) | (invparity[rp14] << 6) | |
| 318 | (invparity[rp13] << 5) | (invparity[rp12] << 4) | |
| 319 | (invparity[rp11] << 3) | (invparity[rp10] << 2) | |
| 320 | (invparity[rp9] << 1) | (invparity[rp8]); |
| 321 | } else { |
| 322 | code[1] = (invparity[rp7] << 7) | (invparity[rp6] << 6) | |
| 323 | (invparity[rp5] << 5) | (invparity[rp4] << 4) | |
| 324 | (invparity[rp3] << 3) | (invparity[rp2] << 2) | |
| 325 | (invparity[rp1] << 1) | (invparity[rp0]); |
| 326 | code[0] = (invparity[rp15] << 7) | (invparity[rp14] << 6) | |
| 327 | (invparity[rp13] << 5) | (invparity[rp12] << 4) | |
| 328 | (invparity[rp11] << 3) | (invparity[rp10] << 2) | |
| 329 | (invparity[rp9] << 1) | (invparity[rp8]); |
| 330 | } |
| 331 | |
| 332 | if (eccsize_mult == 1) |
| 333 | code[2] = |
| 334 | (invparity[par & 0xf0] << 7) | |
| 335 | (invparity[par & 0x0f] << 6) | |
| 336 | (invparity[par & 0xcc] << 5) | |
| 337 | (invparity[par & 0x33] << 4) | |
| 338 | (invparity[par & 0xaa] << 3) | |
| 339 | (invparity[par & 0x55] << 2) | |
| 340 | 3; |
| 341 | else |
| 342 | code[2] = |
| 343 | (invparity[par & 0xf0] << 7) | |
| 344 | (invparity[par & 0x0f] << 6) | |
| 345 | (invparity[par & 0xcc] << 5) | |
| 346 | (invparity[par & 0x33] << 4) | |
| 347 | (invparity[par & 0xaa] << 3) | |
| 348 | (invparity[par & 0x55] << 2) | |
| 349 | (invparity[rp17] << 1) | |
| 350 | (invparity[rp16] << 0); |
| 351 | |
| 352 | return 0; |
| 353 | } |
| 354 | EXPORT_SYMBOL(ecc_sw_hamming_calculate); |
| 355 | |
| 356 | /** |
| 357 | * nand_ecc_sw_hamming_calculate - Calculate 3-byte ECC for 256/512-byte block |
| 358 | * @nand: NAND device |
| 359 | * @buf: Input buffer with raw data |
| 360 | * @code: Output buffer with ECC |
| 361 | */ |
| 362 | int nand_ecc_sw_hamming_calculate(struct nand_device *nand, |
| 363 | const unsigned char *buf, unsigned char *code) |
| 364 | { |
| 365 | struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; |
| 366 | unsigned int step_size = nand->ecc.ctx.conf.step_size; |
| 367 | bool sm_order = engine_conf ? engine_conf->sm_order : false; |
| 368 | |
| 369 | return ecc_sw_hamming_calculate(buf, step_size, code, sm_order); |
| 370 | } |
| 371 | EXPORT_SYMBOL(nand_ecc_sw_hamming_calculate); |
| 372 | |
| 373 | int ecc_sw_hamming_correct(unsigned char *buf, unsigned char *read_ecc, |
| 374 | unsigned char *calc_ecc, unsigned int step_size, |
| 375 | bool sm_order) |
| 376 | { |
| 377 | const u32 eccsize_mult = step_size >> 8; |
| 378 | unsigned char b0, b1, b2, bit_addr; |
| 379 | unsigned int byte_addr; |
| 380 | |
| 381 | /* |
| 382 | * b0 to b2 indicate which bit is faulty (if any) |
| 383 | * we might need the xor result more than once, |
| 384 | * so keep them in a local var |
| 385 | */ |
| 386 | if (sm_order) { |
| 387 | b0 = read_ecc[0] ^ calc_ecc[0]; |
| 388 | b1 = read_ecc[1] ^ calc_ecc[1]; |
| 389 | } else { |
| 390 | b0 = read_ecc[1] ^ calc_ecc[1]; |
| 391 | b1 = read_ecc[0] ^ calc_ecc[0]; |
| 392 | } |
| 393 | |
| 394 | b2 = read_ecc[2] ^ calc_ecc[2]; |
| 395 | |
| 396 | /* check if there are any bitfaults */ |
| 397 | |
| 398 | /* repeated if statements are slightly more efficient than switch ... */ |
| 399 | /* ordered in order of likelihood */ |
| 400 | |
| 401 | if ((b0 | b1 | b2) == 0) |
| 402 | return 0; /* no error */ |
| 403 | |
| 404 | if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) && |
| 405 | (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) && |
| 406 | ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) || |
| 407 | (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) { |
| 408 | /* single bit error */ |
| 409 | /* |
| 410 | * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty |
| 411 | * byte, cp 5/3/1 indicate the faulty bit. |
| 412 | * A lookup table (called addressbits) is used to filter |
| 413 | * the bits from the byte they are in. |
| 414 | * A marginal optimisation is possible by having three |
| 415 | * different lookup tables. |
| 416 | * One as we have now (for b0), one for b2 |
| 417 | * (that would avoid the >> 1), and one for b1 (with all values |
| 418 | * << 4). However it was felt that introducing two more tables |
| 419 | * hardly justify the gain. |
| 420 | * |
| 421 | * The b2 shift is there to get rid of the lowest two bits. |
| 422 | * We could also do addressbits[b2] >> 1 but for the |
| 423 | * performance it does not make any difference |
| 424 | */ |
| 425 | if (eccsize_mult == 1) |
| 426 | byte_addr = (addressbits[b1] << 4) + addressbits[b0]; |
| 427 | else |
| 428 | byte_addr = (addressbits[b2 & 0x3] << 8) + |
| 429 | (addressbits[b1] << 4) + addressbits[b0]; |
| 430 | bit_addr = addressbits[b2 >> 2]; |
| 431 | /* flip the bit */ |
| 432 | buf[byte_addr] ^= (1 << bit_addr); |
| 433 | return 1; |
| 434 | |
| 435 | } |
| 436 | /* count nr of bits; use table lookup, faster than calculating it */ |
| 437 | if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) |
| 438 | return 1; /* error in ECC data; no action needed */ |
| 439 | |
| 440 | pr_err("%s: uncorrectable ECC error\n" , __func__); |
| 441 | return -EBADMSG; |
| 442 | } |
| 443 | EXPORT_SYMBOL(ecc_sw_hamming_correct); |
| 444 | |
| 445 | /** |
| 446 | * nand_ecc_sw_hamming_correct - Detect and correct bit error(s) |
| 447 | * @nand: NAND device |
| 448 | * @buf: Raw data read from the chip |
| 449 | * @read_ecc: ECC bytes read from the chip |
| 450 | * @calc_ecc: ECC calculated from the raw data |
| 451 | * |
| 452 | * Detect and correct up to 1 bit error per 256/512-byte block. |
| 453 | */ |
| 454 | int nand_ecc_sw_hamming_correct(struct nand_device *nand, unsigned char *buf, |
| 455 | unsigned char *read_ecc, |
| 456 | unsigned char *calc_ecc) |
| 457 | { |
| 458 | struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; |
| 459 | unsigned int step_size = nand->ecc.ctx.conf.step_size; |
| 460 | bool sm_order = engine_conf ? engine_conf->sm_order : false; |
| 461 | |
| 462 | return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc, step_size, |
| 463 | sm_order); |
| 464 | } |
| 465 | EXPORT_SYMBOL(nand_ecc_sw_hamming_correct); |
| 466 | |
| 467 | int nand_ecc_sw_hamming_init_ctx(struct nand_device *nand) |
| 468 | { |
| 469 | struct nand_ecc_props *conf = &nand->ecc.ctx.conf; |
| 470 | struct nand_ecc_sw_hamming_conf *engine_conf; |
| 471 | struct mtd_info *mtd = nanddev_to_mtd(nand); |
| 472 | int ret; |
| 473 | |
| 474 | if (!mtd->ooblayout) { |
| 475 | switch (mtd->oobsize) { |
| 476 | case 8: |
| 477 | case 16: |
| 478 | mtd_set_ooblayout(mtd, ooblayout: nand_get_small_page_ooblayout()); |
| 479 | break; |
| 480 | case 64: |
| 481 | case 128: |
| 482 | mtd_set_ooblayout(mtd, |
| 483 | ooblayout: nand_get_large_page_hamming_ooblayout()); |
| 484 | break; |
| 485 | default: |
| 486 | return -ENOTSUPP; |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | conf->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; |
| 491 | conf->algo = NAND_ECC_ALGO_HAMMING; |
| 492 | conf->step_size = nand->ecc.user_conf.step_size; |
| 493 | conf->strength = 1; |
| 494 | |
| 495 | /* Use the strongest configuration by default */ |
| 496 | if (conf->step_size != 256 && conf->step_size != 512) |
| 497 | conf->step_size = 256; |
| 498 | |
| 499 | engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL); |
| 500 | if (!engine_conf) |
| 501 | return -ENOMEM; |
| 502 | |
| 503 | ret = nand_ecc_init_req_tweaking(ctx: &engine_conf->req_ctx, nand); |
| 504 | if (ret) |
| 505 | goto free_engine_conf; |
| 506 | |
| 507 | engine_conf->code_size = 3; |
| 508 | engine_conf->calc_buf = kzalloc(mtd->oobsize, GFP_KERNEL); |
| 509 | engine_conf->code_buf = kzalloc(mtd->oobsize, GFP_KERNEL); |
| 510 | if (!engine_conf->calc_buf || !engine_conf->code_buf) { |
| 511 | ret = -ENOMEM; |
| 512 | goto free_bufs; |
| 513 | } |
| 514 | |
| 515 | nand->ecc.ctx.priv = engine_conf; |
| 516 | nand->ecc.ctx.nsteps = mtd->writesize / conf->step_size; |
| 517 | nand->ecc.ctx.total = nand->ecc.ctx.nsteps * engine_conf->code_size; |
| 518 | |
| 519 | return 0; |
| 520 | |
| 521 | free_bufs: |
| 522 | nand_ecc_cleanup_req_tweaking(ctx: &engine_conf->req_ctx); |
| 523 | kfree(objp: engine_conf->calc_buf); |
| 524 | kfree(objp: engine_conf->code_buf); |
| 525 | free_engine_conf: |
| 526 | kfree(objp: engine_conf); |
| 527 | |
| 528 | return ret; |
| 529 | } |
| 530 | EXPORT_SYMBOL(nand_ecc_sw_hamming_init_ctx); |
| 531 | |
| 532 | void nand_ecc_sw_hamming_cleanup_ctx(struct nand_device *nand) |
| 533 | { |
| 534 | struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; |
| 535 | |
| 536 | if (engine_conf) { |
| 537 | nand_ecc_cleanup_req_tweaking(ctx: &engine_conf->req_ctx); |
| 538 | kfree(objp: engine_conf->calc_buf); |
| 539 | kfree(objp: engine_conf->code_buf); |
| 540 | kfree(objp: engine_conf); |
| 541 | } |
| 542 | } |
| 543 | EXPORT_SYMBOL(nand_ecc_sw_hamming_cleanup_ctx); |
| 544 | |
| 545 | static int nand_ecc_sw_hamming_prepare_io_req(struct nand_device *nand, |
| 546 | struct nand_page_io_req *req) |
| 547 | { |
| 548 | struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; |
| 549 | struct mtd_info *mtd = nanddev_to_mtd(nand); |
| 550 | int eccsize = nand->ecc.ctx.conf.step_size; |
| 551 | int eccbytes = engine_conf->code_size; |
| 552 | int eccsteps = nand->ecc.ctx.nsteps; |
| 553 | int total = nand->ecc.ctx.total; |
| 554 | u8 *ecccalc = engine_conf->calc_buf; |
| 555 | const u8 *data; |
| 556 | int i; |
| 557 | |
| 558 | /* Nothing to do for a raw operation */ |
| 559 | if (req->mode == MTD_OPS_RAW) |
| 560 | return 0; |
| 561 | |
| 562 | /* This engine does not provide BBM/free OOB bytes protection */ |
| 563 | if (!req->datalen) |
| 564 | return 0; |
| 565 | |
| 566 | nand_ecc_tweak_req(ctx: &engine_conf->req_ctx, req); |
| 567 | |
| 568 | /* No more preparation for page read */ |
| 569 | if (req->type == NAND_PAGE_READ) |
| 570 | return 0; |
| 571 | |
| 572 | /* Preparation for page write: derive the ECC bytes and place them */ |
| 573 | for (i = 0, data = req->databuf.out; |
| 574 | eccsteps; |
| 575 | eccsteps--, i += eccbytes, data += eccsize) |
| 576 | nand_ecc_sw_hamming_calculate(nand, data, &ecccalc[i]); |
| 577 | |
| 578 | return mtd_ooblayout_set_eccbytes(mtd, eccbuf: ecccalc, oobbuf: (void *)req->oobbuf.out, |
| 579 | start: 0, nbytes: total); |
| 580 | } |
| 581 | |
| 582 | static int nand_ecc_sw_hamming_finish_io_req(struct nand_device *nand, |
| 583 | struct nand_page_io_req *req) |
| 584 | { |
| 585 | struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv; |
| 586 | struct mtd_info *mtd = nanddev_to_mtd(nand); |
| 587 | int eccsize = nand->ecc.ctx.conf.step_size; |
| 588 | int total = nand->ecc.ctx.total; |
| 589 | int eccbytes = engine_conf->code_size; |
| 590 | int eccsteps = nand->ecc.ctx.nsteps; |
| 591 | u8 *ecccalc = engine_conf->calc_buf; |
| 592 | u8 *ecccode = engine_conf->code_buf; |
| 593 | unsigned int max_bitflips = 0; |
| 594 | u8 *data = req->databuf.in; |
| 595 | int i, ret; |
| 596 | |
| 597 | /* Nothing to do for a raw operation */ |
| 598 | if (req->mode == MTD_OPS_RAW) |
| 599 | return 0; |
| 600 | |
| 601 | /* This engine does not provide BBM/free OOB bytes protection */ |
| 602 | if (!req->datalen) |
| 603 | return 0; |
| 604 | |
| 605 | /* No more preparation for page write */ |
| 606 | if (req->type == NAND_PAGE_WRITE) { |
| 607 | nand_ecc_restore_req(ctx: &engine_conf->req_ctx, req); |
| 608 | return 0; |
| 609 | } |
| 610 | |
| 611 | /* Finish a page read: retrieve the (raw) ECC bytes*/ |
| 612 | ret = mtd_ooblayout_get_eccbytes(mtd, eccbuf: ecccode, oobbuf: req->oobbuf.in, start: 0, |
| 613 | nbytes: total); |
| 614 | if (ret) |
| 615 | return ret; |
| 616 | |
| 617 | /* Calculate the ECC bytes */ |
| 618 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, data += eccsize) |
| 619 | nand_ecc_sw_hamming_calculate(nand, data, &ecccalc[i]); |
| 620 | |
| 621 | /* Finish a page read: compare and correct */ |
| 622 | for (eccsteps = nand->ecc.ctx.nsteps, i = 0, data = req->databuf.in; |
| 623 | eccsteps; |
| 624 | eccsteps--, i += eccbytes, data += eccsize) { |
| 625 | int stat = nand_ecc_sw_hamming_correct(nand, data, |
| 626 | &ecccode[i], |
| 627 | &ecccalc[i]); |
| 628 | if (stat < 0) { |
| 629 | mtd->ecc_stats.failed++; |
| 630 | } else { |
| 631 | mtd->ecc_stats.corrected += stat; |
| 632 | max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| 633 | } |
| 634 | } |
| 635 | |
| 636 | nand_ecc_restore_req(ctx: &engine_conf->req_ctx, req); |
| 637 | |
| 638 | return max_bitflips; |
| 639 | } |
| 640 | |
| 641 | static const struct nand_ecc_engine_ops nand_ecc_sw_hamming_engine_ops = { |
| 642 | .init_ctx = nand_ecc_sw_hamming_init_ctx, |
| 643 | .cleanup_ctx = nand_ecc_sw_hamming_cleanup_ctx, |
| 644 | .prepare_io_req = nand_ecc_sw_hamming_prepare_io_req, |
| 645 | .finish_io_req = nand_ecc_sw_hamming_finish_io_req, |
| 646 | }; |
| 647 | |
| 648 | static struct nand_ecc_engine nand_ecc_sw_hamming_engine = { |
| 649 | .ops = &nand_ecc_sw_hamming_engine_ops, |
| 650 | }; |
| 651 | |
| 652 | struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void) |
| 653 | { |
| 654 | return &nand_ecc_sw_hamming_engine; |
| 655 | } |
| 656 | EXPORT_SYMBOL(nand_ecc_sw_hamming_get_engine); |
| 657 | |
| 658 | MODULE_LICENSE("GPL" ); |
| 659 | MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>" ); |
| 660 | MODULE_DESCRIPTION("NAND software Hamming ECC support" ); |
| 661 | |