| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Copyright (C) 2017 Free Electrons |
| 4 | * Copyright (C) 2017 NextThing Co |
| 5 | * |
| 6 | * Author: Boris Brezillon <boris.brezillon@free-electrons.com> |
| 7 | */ |
| 8 | |
| 9 | #include <linux/slab.h> |
| 10 | |
| 11 | #include "internals.h" |
| 12 | |
| 13 | /* |
| 14 | * Special Micron status bit 3 indicates that the block has been |
| 15 | * corrected by on-die ECC and should be rewritten. |
| 16 | */ |
| 17 | #define NAND_ECC_STATUS_WRITE_RECOMMENDED BIT(3) |
| 18 | |
| 19 | /* |
| 20 | * On chips with 8-bit ECC and additional bit can be used to distinguish |
| 21 | * cases where a errors were corrected without needing a rewrite |
| 22 | * |
| 23 | * Bit 4 Bit 3 Bit 0 Description |
| 24 | * ----- ----- ----- ----------- |
| 25 | * 0 0 0 No Errors |
| 26 | * 0 0 1 Multiple uncorrected errors |
| 27 | * 0 1 0 4 - 6 errors corrected, recommend rewrite |
| 28 | * 0 1 1 Reserved |
| 29 | * 1 0 0 1 - 3 errors corrected |
| 30 | * 1 0 1 Reserved |
| 31 | * 1 1 0 7 - 8 errors corrected, recommend rewrite |
| 32 | */ |
| 33 | #define NAND_ECC_STATUS_MASK (BIT(4) | BIT(3) | BIT(0)) |
| 34 | #define NAND_ECC_STATUS_UNCORRECTABLE BIT(0) |
| 35 | #define NAND_ECC_STATUS_4_6_CORRECTED BIT(3) |
| 36 | #define NAND_ECC_STATUS_1_3_CORRECTED BIT(4) |
| 37 | #define NAND_ECC_STATUS_7_8_CORRECTED (BIT(4) | BIT(3)) |
| 38 | |
| 39 | struct nand_onfi_vendor_micron { |
| 40 | u8 two_plane_read; |
| 41 | u8 read_cache; |
| 42 | u8 read_unique_id; |
| 43 | u8 dq_imped; |
| 44 | u8 dq_imped_num_settings; |
| 45 | u8 dq_imped_feat_addr; |
| 46 | u8 rb_pulldown_strength; |
| 47 | u8 rb_pulldown_strength_feat_addr; |
| 48 | u8 rb_pulldown_strength_num_settings; |
| 49 | u8 otp_mode; |
| 50 | u8 otp_page_start; |
| 51 | u8 otp_data_prot_addr; |
| 52 | u8 otp_num_pages; |
| 53 | u8 otp_feat_addr; |
| 54 | u8 read_retry_options; |
| 55 | u8 reserved[72]; |
| 56 | u8 param_revision; |
| 57 | } __packed; |
| 58 | |
| 59 | struct micron_on_die_ecc { |
| 60 | bool forced; |
| 61 | bool enabled; |
| 62 | void *rawbuf; |
| 63 | }; |
| 64 | |
| 65 | struct micron_nand { |
| 66 | struct micron_on_die_ecc ecc; |
| 67 | }; |
| 68 | |
| 69 | static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode) |
| 70 | { |
| 71 | u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; |
| 72 | |
| 73 | return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, subfeature_param: feature); |
| 74 | } |
| 75 | |
| 76 | /* |
| 77 | * Configure chip properties from Micron vendor-specific ONFI table |
| 78 | */ |
| 79 | static int micron_nand_onfi_init(struct nand_chip *chip) |
| 80 | { |
| 81 | struct nand_parameters *p = &chip->parameters; |
| 82 | |
| 83 | if (p->onfi) { |
| 84 | struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor; |
| 85 | |
| 86 | chip->read_retries = micron->read_retry_options; |
| 87 | chip->ops.setup_read_retry = micron_nand_setup_read_retry; |
| 88 | } |
| 89 | |
| 90 | if (p->supports_set_get_features) { |
| 91 | set_bit(ONFI_FEATURE_ADDR_READ_RETRY, addr: p->set_feature_list); |
| 92 | set_bit(ONFI_FEATURE_ON_DIE_ECC, addr: p->set_feature_list); |
| 93 | set_bit(ONFI_FEATURE_ADDR_READ_RETRY, addr: p->get_feature_list); |
| 94 | set_bit(ONFI_FEATURE_ON_DIE_ECC, addr: p->get_feature_list); |
| 95 | } |
| 96 | |
| 97 | return 0; |
| 98 | } |
| 99 | |
| 100 | static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd, |
| 101 | int section, |
| 102 | struct mtd_oob_region *oobregion) |
| 103 | { |
| 104 | if (section >= 4) |
| 105 | return -ERANGE; |
| 106 | |
| 107 | oobregion->offset = (section * 16) + 8; |
| 108 | oobregion->length = 8; |
| 109 | |
| 110 | return 0; |
| 111 | } |
| 112 | |
| 113 | static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd, |
| 114 | int section, |
| 115 | struct mtd_oob_region *oobregion) |
| 116 | { |
| 117 | if (section >= 4) |
| 118 | return -ERANGE; |
| 119 | |
| 120 | oobregion->offset = (section * 16) + 2; |
| 121 | oobregion->length = 6; |
| 122 | |
| 123 | return 0; |
| 124 | } |
| 125 | |
| 126 | static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = { |
| 127 | .ecc = micron_nand_on_die_4_ooblayout_ecc, |
| 128 | .free = micron_nand_on_die_4_ooblayout_free, |
| 129 | }; |
| 130 | |
| 131 | static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd, |
| 132 | int section, |
| 133 | struct mtd_oob_region *oobregion) |
| 134 | { |
| 135 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 136 | |
| 137 | if (section) |
| 138 | return -ERANGE; |
| 139 | |
| 140 | oobregion->offset = mtd->oobsize - chip->ecc.total; |
| 141 | oobregion->length = chip->ecc.total; |
| 142 | |
| 143 | return 0; |
| 144 | } |
| 145 | |
| 146 | static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd, |
| 147 | int section, |
| 148 | struct mtd_oob_region *oobregion) |
| 149 | { |
| 150 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 151 | |
| 152 | if (section) |
| 153 | return -ERANGE; |
| 154 | |
| 155 | oobregion->offset = 2; |
| 156 | oobregion->length = mtd->oobsize - chip->ecc.total - 2; |
| 157 | |
| 158 | return 0; |
| 159 | } |
| 160 | |
| 161 | static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = { |
| 162 | .ecc = micron_nand_on_die_8_ooblayout_ecc, |
| 163 | .free = micron_nand_on_die_8_ooblayout_free, |
| 164 | }; |
| 165 | |
| 166 | static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable) |
| 167 | { |
| 168 | struct micron_nand *micron = nand_get_manufacturer_data(chip); |
| 169 | u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, }; |
| 170 | int ret; |
| 171 | |
| 172 | if (micron->ecc.forced) |
| 173 | return 0; |
| 174 | |
| 175 | if (micron->ecc.enabled == enable) |
| 176 | return 0; |
| 177 | |
| 178 | if (enable) |
| 179 | feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN; |
| 180 | |
| 181 | ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, subfeature_param: feature); |
| 182 | if (!ret) |
| 183 | micron->ecc.enabled = enable; |
| 184 | |
| 185 | return ret; |
| 186 | } |
| 187 | |
| 188 | static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status, |
| 189 | void *buf, int page, |
| 190 | int oob_required) |
| 191 | { |
| 192 | struct micron_nand *micron = nand_get_manufacturer_data(chip); |
| 193 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 194 | unsigned int step, max_bitflips = 0; |
| 195 | bool use_datain = false; |
| 196 | int ret; |
| 197 | |
| 198 | if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) { |
| 199 | if (status & NAND_STATUS_FAIL) |
| 200 | mtd->ecc_stats.failed++; |
| 201 | |
| 202 | return 0; |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * The internal ECC doesn't tell us the number of bitflips that have |
| 207 | * been corrected, but tells us if it recommends to rewrite the block. |
| 208 | * If it's the case, we need to read the page in raw mode and compare |
| 209 | * its content to the corrected version to extract the actual number of |
| 210 | * bitflips. |
| 211 | * But before we do that, we must make sure we have all OOB bytes read |
| 212 | * in non-raw mode, even if the user did not request those bytes. |
| 213 | */ |
| 214 | if (!oob_required) { |
| 215 | /* |
| 216 | * We first check which operation is supported by the controller |
| 217 | * before running it. This trick makes it possible to support |
| 218 | * all controllers, even the most constraints, without almost |
| 219 | * any performance hit. |
| 220 | * |
| 221 | * TODO: could be enhanced to avoid repeating the same check |
| 222 | * over and over in the fast path. |
| 223 | */ |
| 224 | if (!nand_has_exec_op(chip) || |
| 225 | !nand_read_data_op(chip, buf: chip->oob_poi, len: mtd->oobsize, force_8bit: false, |
| 226 | check_only: true)) |
| 227 | use_datain = true; |
| 228 | |
| 229 | if (use_datain) |
| 230 | ret = nand_read_data_op(chip, buf: chip->oob_poi, |
| 231 | len: mtd->oobsize, force_8bit: false, check_only: false); |
| 232 | else |
| 233 | ret = nand_change_read_column_op(chip, offset_in_page: mtd->writesize, |
| 234 | buf: chip->oob_poi, |
| 235 | len: mtd->oobsize, force_8bit: false); |
| 236 | if (ret) |
| 237 | return ret; |
| 238 | } |
| 239 | |
| 240 | micron_nand_on_die_ecc_setup(chip, enable: false); |
| 241 | |
| 242 | ret = nand_read_page_op(chip, page, offset_in_page: 0, buf: micron->ecc.rawbuf, |
| 243 | len: mtd->writesize + mtd->oobsize); |
| 244 | if (ret) |
| 245 | return ret; |
| 246 | |
| 247 | for (step = 0; step < chip->ecc.steps; step++) { |
| 248 | unsigned int offs, i, nbitflips = 0; |
| 249 | u8 *rawbuf, *corrbuf; |
| 250 | |
| 251 | offs = step * chip->ecc.size; |
| 252 | rawbuf = micron->ecc.rawbuf + offs; |
| 253 | corrbuf = buf + offs; |
| 254 | |
| 255 | for (i = 0; i < chip->ecc.size; i++) |
| 256 | nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]); |
| 257 | |
| 258 | offs = (step * 16) + 4; |
| 259 | rawbuf = micron->ecc.rawbuf + mtd->writesize + offs; |
| 260 | corrbuf = chip->oob_poi + offs; |
| 261 | |
| 262 | for (i = 0; i < chip->ecc.bytes + 4; i++) |
| 263 | nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]); |
| 264 | |
| 265 | if (WARN_ON(nbitflips > chip->ecc.strength)) |
| 266 | return -EINVAL; |
| 267 | |
| 268 | max_bitflips = max(nbitflips, max_bitflips); |
| 269 | mtd->ecc_stats.corrected += nbitflips; |
| 270 | } |
| 271 | |
| 272 | return max_bitflips; |
| 273 | } |
| 274 | |
| 275 | static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status) |
| 276 | { |
| 277 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 278 | |
| 279 | /* |
| 280 | * With 8/512 we have more information but still don't know precisely |
| 281 | * how many bit-flips were seen. |
| 282 | */ |
| 283 | switch (status & NAND_ECC_STATUS_MASK) { |
| 284 | case NAND_ECC_STATUS_UNCORRECTABLE: |
| 285 | mtd->ecc_stats.failed++; |
| 286 | return 0; |
| 287 | case NAND_ECC_STATUS_1_3_CORRECTED: |
| 288 | mtd->ecc_stats.corrected += 3; |
| 289 | return 3; |
| 290 | case NAND_ECC_STATUS_4_6_CORRECTED: |
| 291 | mtd->ecc_stats.corrected += 6; |
| 292 | /* rewrite recommended */ |
| 293 | return 6; |
| 294 | case NAND_ECC_STATUS_7_8_CORRECTED: |
| 295 | mtd->ecc_stats.corrected += 8; |
| 296 | /* rewrite recommended */ |
| 297 | return 8; |
| 298 | default: |
| 299 | return 0; |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | static int |
| 304 | micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf, |
| 305 | int oob_required, int page) |
| 306 | { |
| 307 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 308 | bool use_datain = false; |
| 309 | u8 status; |
| 310 | int ret, max_bitflips = 0; |
| 311 | |
| 312 | ret = micron_nand_on_die_ecc_setup(chip, enable: true); |
| 313 | if (ret) |
| 314 | return ret; |
| 315 | |
| 316 | ret = nand_read_page_op(chip, page, offset_in_page: 0, NULL, len: 0); |
| 317 | if (ret) |
| 318 | goto out; |
| 319 | |
| 320 | ret = nand_status_op(chip, status: &status); |
| 321 | if (ret) |
| 322 | goto out; |
| 323 | |
| 324 | /* |
| 325 | * We first check which operation is supported by the controller before |
| 326 | * running it. This trick makes it possible to support all controllers, |
| 327 | * even the most constraints, without almost any performance hit. |
| 328 | * |
| 329 | * TODO: could be enhanced to avoid repeating the same check over and |
| 330 | * over in the fast path. |
| 331 | */ |
| 332 | if (!nand_has_exec_op(chip) || |
| 333 | !nand_read_data_op(chip, buf, len: mtd->writesize, force_8bit: false, check_only: true)) |
| 334 | use_datain = true; |
| 335 | |
| 336 | if (use_datain) { |
| 337 | ret = nand_exit_status_op(chip); |
| 338 | if (ret) |
| 339 | goto out; |
| 340 | |
| 341 | ret = nand_read_data_op(chip, buf, len: mtd->writesize, force_8bit: false, |
| 342 | check_only: false); |
| 343 | if (!ret && oob_required) |
| 344 | ret = nand_read_data_op(chip, buf: chip->oob_poi, |
| 345 | len: mtd->oobsize, force_8bit: false, check_only: false); |
| 346 | } else { |
| 347 | ret = nand_change_read_column_op(chip, offset_in_page: 0, buf, len: mtd->writesize, |
| 348 | force_8bit: false); |
| 349 | if (!ret && oob_required) |
| 350 | ret = nand_change_read_column_op(chip, offset_in_page: mtd->writesize, |
| 351 | buf: chip->oob_poi, |
| 352 | len: mtd->oobsize, force_8bit: false); |
| 353 | } |
| 354 | |
| 355 | if (chip->ecc.strength == 4) |
| 356 | max_bitflips = micron_nand_on_die_ecc_status_4(chip, status, |
| 357 | buf, page, |
| 358 | oob_required); |
| 359 | else |
| 360 | max_bitflips = micron_nand_on_die_ecc_status_8(chip, status); |
| 361 | |
| 362 | out: |
| 363 | micron_nand_on_die_ecc_setup(chip, enable: false); |
| 364 | |
| 365 | return ret ? ret : max_bitflips; |
| 366 | } |
| 367 | |
| 368 | static int |
| 369 | micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf, |
| 370 | int oob_required, int page) |
| 371 | { |
| 372 | int ret; |
| 373 | |
| 374 | ret = micron_nand_on_die_ecc_setup(chip, enable: true); |
| 375 | if (ret) |
| 376 | return ret; |
| 377 | |
| 378 | ret = nand_write_page_raw(chip, buf, oob_required, page); |
| 379 | micron_nand_on_die_ecc_setup(chip, enable: false); |
| 380 | |
| 381 | return ret; |
| 382 | } |
| 383 | |
| 384 | enum { |
| 385 | /* The NAND flash doesn't support on-die ECC */ |
| 386 | MICRON_ON_DIE_UNSUPPORTED, |
| 387 | |
| 388 | /* |
| 389 | * The NAND flash supports on-die ECC and it can be |
| 390 | * enabled/disabled by a set features command. |
| 391 | */ |
| 392 | MICRON_ON_DIE_SUPPORTED, |
| 393 | |
| 394 | /* |
| 395 | * The NAND flash supports on-die ECC, and it cannot be |
| 396 | * disabled. |
| 397 | */ |
| 398 | MICRON_ON_DIE_MANDATORY, |
| 399 | }; |
| 400 | |
| 401 | #define MICRON_ID_INTERNAL_ECC_MASK GENMASK(1, 0) |
| 402 | #define MICRON_ID_ECC_ENABLED BIT(7) |
| 403 | |
| 404 | /* |
| 405 | * Try to detect if the NAND support on-die ECC. To do this, we enable |
| 406 | * the feature, and read back if it has been enabled as expected. We |
| 407 | * also check if it can be disabled, because some Micron NANDs do not |
| 408 | * allow disabling the on-die ECC and we don't support such NANDs for |
| 409 | * now. |
| 410 | * |
| 411 | * This function also has the side effect of disabling on-die ECC if |
| 412 | * it had been left enabled by the firmware/bootloader. |
| 413 | */ |
| 414 | static int micron_supports_on_die_ecc(struct nand_chip *chip) |
| 415 | { |
| 416 | const struct nand_ecc_props *requirements = |
| 417 | nanddev_get_ecc_requirements(nand: &chip->base); |
| 418 | u8 id[5]; |
| 419 | int ret; |
| 420 | |
| 421 | if (!chip->parameters.onfi) |
| 422 | return MICRON_ON_DIE_UNSUPPORTED; |
| 423 | |
| 424 | if (nanddev_bits_per_cell(nand: &chip->base) != 1) |
| 425 | return MICRON_ON_DIE_UNSUPPORTED; |
| 426 | |
| 427 | /* |
| 428 | * We only support on-die ECC of 4/512 or 8/512 |
| 429 | */ |
| 430 | if (requirements->strength != 4 && requirements->strength != 8) |
| 431 | return MICRON_ON_DIE_UNSUPPORTED; |
| 432 | |
| 433 | /* 0x2 means on-die ECC is available. */ |
| 434 | if (chip->id.len != 5 || |
| 435 | (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2) |
| 436 | return MICRON_ON_DIE_UNSUPPORTED; |
| 437 | |
| 438 | /* |
| 439 | * It seems that there are devices which do not support ECC officially. |
| 440 | * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports |
| 441 | * enabling the ECC feature but don't reflect that to the READ_ID table. |
| 442 | * So we have to guarantee that we disable the ECC feature directly |
| 443 | * after we did the READ_ID table command. Later we can evaluate the |
| 444 | * ECC_ENABLE support. |
| 445 | */ |
| 446 | ret = micron_nand_on_die_ecc_setup(chip, enable: true); |
| 447 | if (ret) |
| 448 | return MICRON_ON_DIE_UNSUPPORTED; |
| 449 | |
| 450 | ret = nand_readid_op(chip, addr: 0, buf: id, len: sizeof(id)); |
| 451 | if (ret) |
| 452 | return MICRON_ON_DIE_UNSUPPORTED; |
| 453 | |
| 454 | ret = micron_nand_on_die_ecc_setup(chip, enable: false); |
| 455 | if (ret) |
| 456 | return MICRON_ON_DIE_UNSUPPORTED; |
| 457 | |
| 458 | if (!(id[4] & MICRON_ID_ECC_ENABLED)) |
| 459 | return MICRON_ON_DIE_UNSUPPORTED; |
| 460 | |
| 461 | ret = nand_readid_op(chip, addr: 0, buf: id, len: sizeof(id)); |
| 462 | if (ret) |
| 463 | return MICRON_ON_DIE_UNSUPPORTED; |
| 464 | |
| 465 | if (id[4] & MICRON_ID_ECC_ENABLED) |
| 466 | return MICRON_ON_DIE_MANDATORY; |
| 467 | |
| 468 | /* |
| 469 | * We only support on-die ECC of 4/512 or 8/512 |
| 470 | */ |
| 471 | if (requirements->strength != 4 && requirements->strength != 8) |
| 472 | return MICRON_ON_DIE_UNSUPPORTED; |
| 473 | |
| 474 | return MICRON_ON_DIE_SUPPORTED; |
| 475 | } |
| 476 | |
| 477 | static int micron_nand_init(struct nand_chip *chip) |
| 478 | { |
| 479 | struct nand_device *base = &chip->base; |
| 480 | const struct nand_ecc_props *requirements = |
| 481 | nanddev_get_ecc_requirements(nand: base); |
| 482 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 483 | struct micron_nand *micron; |
| 484 | int ondie; |
| 485 | int ret; |
| 486 | |
| 487 | micron = kzalloc(sizeof(*micron), GFP_KERNEL); |
| 488 | if (!micron) |
| 489 | return -ENOMEM; |
| 490 | |
| 491 | nand_set_manufacturer_data(chip, priv: micron); |
| 492 | |
| 493 | ret = micron_nand_onfi_init(chip); |
| 494 | if (ret) |
| 495 | goto err_free_manuf_data; |
| 496 | |
| 497 | chip->options |= NAND_BBM_FIRSTPAGE; |
| 498 | |
| 499 | if (mtd->writesize == 2048) |
| 500 | chip->options |= NAND_BBM_SECONDPAGE; |
| 501 | |
| 502 | ondie = micron_supports_on_die_ecc(chip); |
| 503 | |
| 504 | if (ondie == MICRON_ON_DIE_MANDATORY && |
| 505 | chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_DIE) { |
| 506 | pr_err("On-die ECC forcefully enabled, not supported\n" ); |
| 507 | ret = -EINVAL; |
| 508 | goto err_free_manuf_data; |
| 509 | } |
| 510 | |
| 511 | if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE) { |
| 512 | if (ondie == MICRON_ON_DIE_UNSUPPORTED) { |
| 513 | pr_err("On-die ECC selected but not supported\n" ); |
| 514 | ret = -EINVAL; |
| 515 | goto err_free_manuf_data; |
| 516 | } |
| 517 | |
| 518 | if (ondie == MICRON_ON_DIE_MANDATORY) { |
| 519 | micron->ecc.forced = true; |
| 520 | micron->ecc.enabled = true; |
| 521 | } |
| 522 | |
| 523 | /* |
| 524 | * In case of 4bit on-die ECC, we need a buffer to store a |
| 525 | * page dumped in raw mode so that we can compare its content |
| 526 | * to the same page after ECC correction happened and extract |
| 527 | * the real number of bitflips from this comparison. |
| 528 | * That's not needed for 8-bit ECC, because the status expose |
| 529 | * a better approximation of the number of bitflips in a page. |
| 530 | */ |
| 531 | if (requirements->strength == 4) { |
| 532 | micron->ecc.rawbuf = kmalloc(mtd->writesize + |
| 533 | mtd->oobsize, |
| 534 | GFP_KERNEL); |
| 535 | if (!micron->ecc.rawbuf) { |
| 536 | ret = -ENOMEM; |
| 537 | goto err_free_manuf_data; |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | if (requirements->strength == 4) |
| 542 | mtd_set_ooblayout(mtd, |
| 543 | ooblayout: µn_nand_on_die_4_ooblayout_ops); |
| 544 | else |
| 545 | mtd_set_ooblayout(mtd, |
| 546 | ooblayout: µn_nand_on_die_8_ooblayout_ops); |
| 547 | |
| 548 | chip->ecc.bytes = requirements->strength * 2; |
| 549 | chip->ecc.size = 512; |
| 550 | chip->ecc.strength = requirements->strength; |
| 551 | chip->ecc.algo = NAND_ECC_ALGO_BCH; |
| 552 | chip->ecc.read_page = micron_nand_read_page_on_die_ecc; |
| 553 | chip->ecc.write_page = micron_nand_write_page_on_die_ecc; |
| 554 | |
| 555 | if (ondie == MICRON_ON_DIE_MANDATORY) { |
| 556 | chip->ecc.read_page_raw = nand_read_page_raw_notsupp; |
| 557 | chip->ecc.write_page_raw = nand_write_page_raw_notsupp; |
| 558 | } else { |
| 559 | if (!chip->ecc.read_page_raw) |
| 560 | chip->ecc.read_page_raw = nand_read_page_raw; |
| 561 | if (!chip->ecc.write_page_raw) |
| 562 | chip->ecc.write_page_raw = nand_write_page_raw; |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | return 0; |
| 567 | |
| 568 | err_free_manuf_data: |
| 569 | kfree(objp: micron->ecc.rawbuf); |
| 570 | kfree(objp: micron); |
| 571 | |
| 572 | return ret; |
| 573 | } |
| 574 | |
| 575 | static void micron_nand_cleanup(struct nand_chip *chip) |
| 576 | { |
| 577 | struct micron_nand *micron = nand_get_manufacturer_data(chip); |
| 578 | |
| 579 | kfree(objp: micron->ecc.rawbuf); |
| 580 | kfree(objp: micron); |
| 581 | } |
| 582 | |
| 583 | static void micron_fixup_onfi_param_page(struct nand_chip *chip, |
| 584 | struct nand_onfi_params *p) |
| 585 | { |
| 586 | /* |
| 587 | * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the |
| 588 | * revision number field of the ONFI parameter page. Assume ONFI |
| 589 | * version 1.0 if the revision number is 00 00. |
| 590 | */ |
| 591 | if (le16_to_cpu(p->revision) == 0) |
| 592 | p->revision = cpu_to_le16(ONFI_VERSION_1_0); |
| 593 | } |
| 594 | |
| 595 | const struct nand_manufacturer_ops micron_nand_manuf_ops = { |
| 596 | .init = micron_nand_init, |
| 597 | .cleanup = micron_nand_cleanup, |
| 598 | .fixup_onfi_param_page = micron_fixup_onfi_param_page, |
| 599 | }; |
| 600 | |