1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* |
3 | * Copyright (C) 2017 Free Electrons |
4 | * Copyright (C) 2017 NextThing Co |
5 | * |
6 | * Author: Boris Brezillon <boris.brezillon@free-electrons.com> |
7 | */ |
8 | |
9 | #include <linux/slab.h> |
10 | |
11 | #include "internals.h" |
12 | |
13 | /* |
14 | * Special Micron status bit 3 indicates that the block has been |
15 | * corrected by on-die ECC and should be rewritten. |
16 | */ |
17 | #define NAND_ECC_STATUS_WRITE_RECOMMENDED BIT(3) |
18 | |
19 | /* |
20 | * On chips with 8-bit ECC and additional bit can be used to distinguish |
21 | * cases where a errors were corrected without needing a rewrite |
22 | * |
23 | * Bit 4 Bit 3 Bit 0 Description |
24 | * ----- ----- ----- ----------- |
25 | * 0 0 0 No Errors |
26 | * 0 0 1 Multiple uncorrected errors |
27 | * 0 1 0 4 - 6 errors corrected, recommend rewrite |
28 | * 0 1 1 Reserved |
29 | * 1 0 0 1 - 3 errors corrected |
30 | * 1 0 1 Reserved |
31 | * 1 1 0 7 - 8 errors corrected, recommend rewrite |
32 | */ |
33 | #define NAND_ECC_STATUS_MASK (BIT(4) | BIT(3) | BIT(0)) |
34 | #define NAND_ECC_STATUS_UNCORRECTABLE BIT(0) |
35 | #define NAND_ECC_STATUS_4_6_CORRECTED BIT(3) |
36 | #define NAND_ECC_STATUS_1_3_CORRECTED BIT(4) |
37 | #define NAND_ECC_STATUS_7_8_CORRECTED (BIT(4) | BIT(3)) |
38 | |
39 | struct nand_onfi_vendor_micron { |
40 | u8 two_plane_read; |
41 | u8 read_cache; |
42 | u8 read_unique_id; |
43 | u8 dq_imped; |
44 | u8 dq_imped_num_settings; |
45 | u8 dq_imped_feat_addr; |
46 | u8 rb_pulldown_strength; |
47 | u8 rb_pulldown_strength_feat_addr; |
48 | u8 rb_pulldown_strength_num_settings; |
49 | u8 otp_mode; |
50 | u8 otp_page_start; |
51 | u8 otp_data_prot_addr; |
52 | u8 otp_num_pages; |
53 | u8 otp_feat_addr; |
54 | u8 read_retry_options; |
55 | u8 reserved[72]; |
56 | u8 param_revision; |
57 | } __packed; |
58 | |
59 | struct micron_on_die_ecc { |
60 | bool forced; |
61 | bool enabled; |
62 | void *rawbuf; |
63 | }; |
64 | |
65 | struct micron_nand { |
66 | struct micron_on_die_ecc ecc; |
67 | }; |
68 | |
69 | static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode) |
70 | { |
71 | u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; |
72 | |
73 | return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, subfeature_param: feature); |
74 | } |
75 | |
76 | /* |
77 | * Configure chip properties from Micron vendor-specific ONFI table |
78 | */ |
79 | static int micron_nand_onfi_init(struct nand_chip *chip) |
80 | { |
81 | struct nand_parameters *p = &chip->parameters; |
82 | |
83 | if (p->onfi) { |
84 | struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor; |
85 | |
86 | chip->read_retries = micron->read_retry_options; |
87 | chip->ops.setup_read_retry = micron_nand_setup_read_retry; |
88 | } |
89 | |
90 | if (p->supports_set_get_features) { |
91 | set_bit(ONFI_FEATURE_ADDR_READ_RETRY, addr: p->set_feature_list); |
92 | set_bit(ONFI_FEATURE_ON_DIE_ECC, addr: p->set_feature_list); |
93 | set_bit(ONFI_FEATURE_ADDR_READ_RETRY, addr: p->get_feature_list); |
94 | set_bit(ONFI_FEATURE_ON_DIE_ECC, addr: p->get_feature_list); |
95 | } |
96 | |
97 | return 0; |
98 | } |
99 | |
100 | static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd, |
101 | int section, |
102 | struct mtd_oob_region *oobregion) |
103 | { |
104 | if (section >= 4) |
105 | return -ERANGE; |
106 | |
107 | oobregion->offset = (section * 16) + 8; |
108 | oobregion->length = 8; |
109 | |
110 | return 0; |
111 | } |
112 | |
113 | static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd, |
114 | int section, |
115 | struct mtd_oob_region *oobregion) |
116 | { |
117 | if (section >= 4) |
118 | return -ERANGE; |
119 | |
120 | oobregion->offset = (section * 16) + 2; |
121 | oobregion->length = 6; |
122 | |
123 | return 0; |
124 | } |
125 | |
126 | static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = { |
127 | .ecc = micron_nand_on_die_4_ooblayout_ecc, |
128 | .free = micron_nand_on_die_4_ooblayout_free, |
129 | }; |
130 | |
131 | static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd, |
132 | int section, |
133 | struct mtd_oob_region *oobregion) |
134 | { |
135 | struct nand_chip *chip = mtd_to_nand(mtd); |
136 | |
137 | if (section) |
138 | return -ERANGE; |
139 | |
140 | oobregion->offset = mtd->oobsize - chip->ecc.total; |
141 | oobregion->length = chip->ecc.total; |
142 | |
143 | return 0; |
144 | } |
145 | |
146 | static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd, |
147 | int section, |
148 | struct mtd_oob_region *oobregion) |
149 | { |
150 | struct nand_chip *chip = mtd_to_nand(mtd); |
151 | |
152 | if (section) |
153 | return -ERANGE; |
154 | |
155 | oobregion->offset = 2; |
156 | oobregion->length = mtd->oobsize - chip->ecc.total - 2; |
157 | |
158 | return 0; |
159 | } |
160 | |
161 | static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = { |
162 | .ecc = micron_nand_on_die_8_ooblayout_ecc, |
163 | .free = micron_nand_on_die_8_ooblayout_free, |
164 | }; |
165 | |
166 | static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable) |
167 | { |
168 | struct micron_nand *micron = nand_get_manufacturer_data(chip); |
169 | u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, }; |
170 | int ret; |
171 | |
172 | if (micron->ecc.forced) |
173 | return 0; |
174 | |
175 | if (micron->ecc.enabled == enable) |
176 | return 0; |
177 | |
178 | if (enable) |
179 | feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN; |
180 | |
181 | ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, subfeature_param: feature); |
182 | if (!ret) |
183 | micron->ecc.enabled = enable; |
184 | |
185 | return ret; |
186 | } |
187 | |
188 | static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status, |
189 | void *buf, int page, |
190 | int oob_required) |
191 | { |
192 | struct micron_nand *micron = nand_get_manufacturer_data(chip); |
193 | struct mtd_info *mtd = nand_to_mtd(chip); |
194 | unsigned int step, max_bitflips = 0; |
195 | bool use_datain = false; |
196 | int ret; |
197 | |
198 | if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) { |
199 | if (status & NAND_STATUS_FAIL) |
200 | mtd->ecc_stats.failed++; |
201 | |
202 | return 0; |
203 | } |
204 | |
205 | /* |
206 | * The internal ECC doesn't tell us the number of bitflips that have |
207 | * been corrected, but tells us if it recommends to rewrite the block. |
208 | * If it's the case, we need to read the page in raw mode and compare |
209 | * its content to the corrected version to extract the actual number of |
210 | * bitflips. |
211 | * But before we do that, we must make sure we have all OOB bytes read |
212 | * in non-raw mode, even if the user did not request those bytes. |
213 | */ |
214 | if (!oob_required) { |
215 | /* |
216 | * We first check which operation is supported by the controller |
217 | * before running it. This trick makes it possible to support |
218 | * all controllers, even the most constraints, without almost |
219 | * any performance hit. |
220 | * |
221 | * TODO: could be enhanced to avoid repeating the same check |
222 | * over and over in the fast path. |
223 | */ |
224 | if (!nand_has_exec_op(chip) || |
225 | !nand_read_data_op(chip, buf: chip->oob_poi, len: mtd->oobsize, force_8bit: false, |
226 | check_only: true)) |
227 | use_datain = true; |
228 | |
229 | if (use_datain) |
230 | ret = nand_read_data_op(chip, buf: chip->oob_poi, |
231 | len: mtd->oobsize, force_8bit: false, check_only: false); |
232 | else |
233 | ret = nand_change_read_column_op(chip, offset_in_page: mtd->writesize, |
234 | buf: chip->oob_poi, |
235 | len: mtd->oobsize, force_8bit: false); |
236 | if (ret) |
237 | return ret; |
238 | } |
239 | |
240 | micron_nand_on_die_ecc_setup(chip, enable: false); |
241 | |
242 | ret = nand_read_page_op(chip, page, offset_in_page: 0, buf: micron->ecc.rawbuf, |
243 | len: mtd->writesize + mtd->oobsize); |
244 | if (ret) |
245 | return ret; |
246 | |
247 | for (step = 0; step < chip->ecc.steps; step++) { |
248 | unsigned int offs, i, nbitflips = 0; |
249 | u8 *rawbuf, *corrbuf; |
250 | |
251 | offs = step * chip->ecc.size; |
252 | rawbuf = micron->ecc.rawbuf + offs; |
253 | corrbuf = buf + offs; |
254 | |
255 | for (i = 0; i < chip->ecc.size; i++) |
256 | nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]); |
257 | |
258 | offs = (step * 16) + 4; |
259 | rawbuf = micron->ecc.rawbuf + mtd->writesize + offs; |
260 | corrbuf = chip->oob_poi + offs; |
261 | |
262 | for (i = 0; i < chip->ecc.bytes + 4; i++) |
263 | nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]); |
264 | |
265 | if (WARN_ON(nbitflips > chip->ecc.strength)) |
266 | return -EINVAL; |
267 | |
268 | max_bitflips = max(nbitflips, max_bitflips); |
269 | mtd->ecc_stats.corrected += nbitflips; |
270 | } |
271 | |
272 | return max_bitflips; |
273 | } |
274 | |
275 | static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status) |
276 | { |
277 | struct mtd_info *mtd = nand_to_mtd(chip); |
278 | |
279 | /* |
280 | * With 8/512 we have more information but still don't know precisely |
281 | * how many bit-flips were seen. |
282 | */ |
283 | switch (status & NAND_ECC_STATUS_MASK) { |
284 | case NAND_ECC_STATUS_UNCORRECTABLE: |
285 | mtd->ecc_stats.failed++; |
286 | return 0; |
287 | case NAND_ECC_STATUS_1_3_CORRECTED: |
288 | mtd->ecc_stats.corrected += 3; |
289 | return 3; |
290 | case NAND_ECC_STATUS_4_6_CORRECTED: |
291 | mtd->ecc_stats.corrected += 6; |
292 | /* rewrite recommended */ |
293 | return 6; |
294 | case NAND_ECC_STATUS_7_8_CORRECTED: |
295 | mtd->ecc_stats.corrected += 8; |
296 | /* rewrite recommended */ |
297 | return 8; |
298 | default: |
299 | return 0; |
300 | } |
301 | } |
302 | |
303 | static int |
304 | micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf, |
305 | int oob_required, int page) |
306 | { |
307 | struct mtd_info *mtd = nand_to_mtd(chip); |
308 | bool use_datain = false; |
309 | u8 status; |
310 | int ret, max_bitflips = 0; |
311 | |
312 | ret = micron_nand_on_die_ecc_setup(chip, enable: true); |
313 | if (ret) |
314 | return ret; |
315 | |
316 | ret = nand_read_page_op(chip, page, offset_in_page: 0, NULL, len: 0); |
317 | if (ret) |
318 | goto out; |
319 | |
320 | ret = nand_status_op(chip, status: &status); |
321 | if (ret) |
322 | goto out; |
323 | |
324 | /* |
325 | * We first check which operation is supported by the controller before |
326 | * running it. This trick makes it possible to support all controllers, |
327 | * even the most constraints, without almost any performance hit. |
328 | * |
329 | * TODO: could be enhanced to avoid repeating the same check over and |
330 | * over in the fast path. |
331 | */ |
332 | if (!nand_has_exec_op(chip) || |
333 | !nand_read_data_op(chip, buf, len: mtd->writesize, force_8bit: false, check_only: true)) |
334 | use_datain = true; |
335 | |
336 | if (use_datain) { |
337 | ret = nand_exit_status_op(chip); |
338 | if (ret) |
339 | goto out; |
340 | |
341 | ret = nand_read_data_op(chip, buf, len: mtd->writesize, force_8bit: false, |
342 | check_only: false); |
343 | if (!ret && oob_required) |
344 | ret = nand_read_data_op(chip, buf: chip->oob_poi, |
345 | len: mtd->oobsize, force_8bit: false, check_only: false); |
346 | } else { |
347 | ret = nand_change_read_column_op(chip, offset_in_page: 0, buf, len: mtd->writesize, |
348 | force_8bit: false); |
349 | if (!ret && oob_required) |
350 | ret = nand_change_read_column_op(chip, offset_in_page: mtd->writesize, |
351 | buf: chip->oob_poi, |
352 | len: mtd->oobsize, force_8bit: false); |
353 | } |
354 | |
355 | if (chip->ecc.strength == 4) |
356 | max_bitflips = micron_nand_on_die_ecc_status_4(chip, status, |
357 | buf, page, |
358 | oob_required); |
359 | else |
360 | max_bitflips = micron_nand_on_die_ecc_status_8(chip, status); |
361 | |
362 | out: |
363 | micron_nand_on_die_ecc_setup(chip, enable: false); |
364 | |
365 | return ret ? ret : max_bitflips; |
366 | } |
367 | |
368 | static int |
369 | micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf, |
370 | int oob_required, int page) |
371 | { |
372 | int ret; |
373 | |
374 | ret = micron_nand_on_die_ecc_setup(chip, enable: true); |
375 | if (ret) |
376 | return ret; |
377 | |
378 | ret = nand_write_page_raw(chip, buf, oob_required, page); |
379 | micron_nand_on_die_ecc_setup(chip, enable: false); |
380 | |
381 | return ret; |
382 | } |
383 | |
384 | enum { |
385 | /* The NAND flash doesn't support on-die ECC */ |
386 | MICRON_ON_DIE_UNSUPPORTED, |
387 | |
388 | /* |
389 | * The NAND flash supports on-die ECC and it can be |
390 | * enabled/disabled by a set features command. |
391 | */ |
392 | MICRON_ON_DIE_SUPPORTED, |
393 | |
394 | /* |
395 | * The NAND flash supports on-die ECC, and it cannot be |
396 | * disabled. |
397 | */ |
398 | MICRON_ON_DIE_MANDATORY, |
399 | }; |
400 | |
401 | #define MICRON_ID_INTERNAL_ECC_MASK GENMASK(1, 0) |
402 | #define MICRON_ID_ECC_ENABLED BIT(7) |
403 | |
404 | /* |
405 | * Try to detect if the NAND support on-die ECC. To do this, we enable |
406 | * the feature, and read back if it has been enabled as expected. We |
407 | * also check if it can be disabled, because some Micron NANDs do not |
408 | * allow disabling the on-die ECC and we don't support such NANDs for |
409 | * now. |
410 | * |
411 | * This function also has the side effect of disabling on-die ECC if |
412 | * it had been left enabled by the firmware/bootloader. |
413 | */ |
414 | static int micron_supports_on_die_ecc(struct nand_chip *chip) |
415 | { |
416 | const struct nand_ecc_props *requirements = |
417 | nanddev_get_ecc_requirements(nand: &chip->base); |
418 | u8 id[5]; |
419 | int ret; |
420 | |
421 | if (!chip->parameters.onfi) |
422 | return MICRON_ON_DIE_UNSUPPORTED; |
423 | |
424 | if (nanddev_bits_per_cell(nand: &chip->base) != 1) |
425 | return MICRON_ON_DIE_UNSUPPORTED; |
426 | |
427 | /* |
428 | * We only support on-die ECC of 4/512 or 8/512 |
429 | */ |
430 | if (requirements->strength != 4 && requirements->strength != 8) |
431 | return MICRON_ON_DIE_UNSUPPORTED; |
432 | |
433 | /* 0x2 means on-die ECC is available. */ |
434 | if (chip->id.len != 5 || |
435 | (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2) |
436 | return MICRON_ON_DIE_UNSUPPORTED; |
437 | |
438 | /* |
439 | * It seems that there are devices which do not support ECC officially. |
440 | * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports |
441 | * enabling the ECC feature but don't reflect that to the READ_ID table. |
442 | * So we have to guarantee that we disable the ECC feature directly |
443 | * after we did the READ_ID table command. Later we can evaluate the |
444 | * ECC_ENABLE support. |
445 | */ |
446 | ret = micron_nand_on_die_ecc_setup(chip, enable: true); |
447 | if (ret) |
448 | return MICRON_ON_DIE_UNSUPPORTED; |
449 | |
450 | ret = nand_readid_op(chip, addr: 0, buf: id, len: sizeof(id)); |
451 | if (ret) |
452 | return MICRON_ON_DIE_UNSUPPORTED; |
453 | |
454 | ret = micron_nand_on_die_ecc_setup(chip, enable: false); |
455 | if (ret) |
456 | return MICRON_ON_DIE_UNSUPPORTED; |
457 | |
458 | if (!(id[4] & MICRON_ID_ECC_ENABLED)) |
459 | return MICRON_ON_DIE_UNSUPPORTED; |
460 | |
461 | ret = nand_readid_op(chip, addr: 0, buf: id, len: sizeof(id)); |
462 | if (ret) |
463 | return MICRON_ON_DIE_UNSUPPORTED; |
464 | |
465 | if (id[4] & MICRON_ID_ECC_ENABLED) |
466 | return MICRON_ON_DIE_MANDATORY; |
467 | |
468 | /* |
469 | * We only support on-die ECC of 4/512 or 8/512 |
470 | */ |
471 | if (requirements->strength != 4 && requirements->strength != 8) |
472 | return MICRON_ON_DIE_UNSUPPORTED; |
473 | |
474 | return MICRON_ON_DIE_SUPPORTED; |
475 | } |
476 | |
477 | static int micron_nand_init(struct nand_chip *chip) |
478 | { |
479 | struct nand_device *base = &chip->base; |
480 | const struct nand_ecc_props *requirements = |
481 | nanddev_get_ecc_requirements(nand: base); |
482 | struct mtd_info *mtd = nand_to_mtd(chip); |
483 | struct micron_nand *micron; |
484 | int ondie; |
485 | int ret; |
486 | |
487 | micron = kzalloc(size: sizeof(*micron), GFP_KERNEL); |
488 | if (!micron) |
489 | return -ENOMEM; |
490 | |
491 | nand_set_manufacturer_data(chip, priv: micron); |
492 | |
493 | ret = micron_nand_onfi_init(chip); |
494 | if (ret) |
495 | goto err_free_manuf_data; |
496 | |
497 | chip->options |= NAND_BBM_FIRSTPAGE; |
498 | |
499 | if (mtd->writesize == 2048) |
500 | chip->options |= NAND_BBM_SECONDPAGE; |
501 | |
502 | ondie = micron_supports_on_die_ecc(chip); |
503 | |
504 | if (ondie == MICRON_ON_DIE_MANDATORY && |
505 | chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_DIE) { |
506 | pr_err("On-die ECC forcefully enabled, not supported\n"); |
507 | ret = -EINVAL; |
508 | goto err_free_manuf_data; |
509 | } |
510 | |
511 | if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE) { |
512 | if (ondie == MICRON_ON_DIE_UNSUPPORTED) { |
513 | pr_err("On-die ECC selected but not supported\n"); |
514 | ret = -EINVAL; |
515 | goto err_free_manuf_data; |
516 | } |
517 | |
518 | if (ondie == MICRON_ON_DIE_MANDATORY) { |
519 | micron->ecc.forced = true; |
520 | micron->ecc.enabled = true; |
521 | } |
522 | |
523 | /* |
524 | * In case of 4bit on-die ECC, we need a buffer to store a |
525 | * page dumped in raw mode so that we can compare its content |
526 | * to the same page after ECC correction happened and extract |
527 | * the real number of bitflips from this comparison. |
528 | * That's not needed for 8-bit ECC, because the status expose |
529 | * a better approximation of the number of bitflips in a page. |
530 | */ |
531 | if (requirements->strength == 4) { |
532 | micron->ecc.rawbuf = kmalloc(size: mtd->writesize + |
533 | mtd->oobsize, |
534 | GFP_KERNEL); |
535 | if (!micron->ecc.rawbuf) { |
536 | ret = -ENOMEM; |
537 | goto err_free_manuf_data; |
538 | } |
539 | } |
540 | |
541 | if (requirements->strength == 4) |
542 | mtd_set_ooblayout(mtd, |
543 | ooblayout: µn_nand_on_die_4_ooblayout_ops); |
544 | else |
545 | mtd_set_ooblayout(mtd, |
546 | ooblayout: µn_nand_on_die_8_ooblayout_ops); |
547 | |
548 | chip->ecc.bytes = requirements->strength * 2; |
549 | chip->ecc.size = 512; |
550 | chip->ecc.strength = requirements->strength; |
551 | chip->ecc.algo = NAND_ECC_ALGO_BCH; |
552 | chip->ecc.read_page = micron_nand_read_page_on_die_ecc; |
553 | chip->ecc.write_page = micron_nand_write_page_on_die_ecc; |
554 | |
555 | if (ondie == MICRON_ON_DIE_MANDATORY) { |
556 | chip->ecc.read_page_raw = nand_read_page_raw_notsupp; |
557 | chip->ecc.write_page_raw = nand_write_page_raw_notsupp; |
558 | } else { |
559 | if (!chip->ecc.read_page_raw) |
560 | chip->ecc.read_page_raw = nand_read_page_raw; |
561 | if (!chip->ecc.write_page_raw) |
562 | chip->ecc.write_page_raw = nand_write_page_raw; |
563 | } |
564 | } |
565 | |
566 | return 0; |
567 | |
568 | err_free_manuf_data: |
569 | kfree(objp: micron->ecc.rawbuf); |
570 | kfree(objp: micron); |
571 | |
572 | return ret; |
573 | } |
574 | |
575 | static void micron_nand_cleanup(struct nand_chip *chip) |
576 | { |
577 | struct micron_nand *micron = nand_get_manufacturer_data(chip); |
578 | |
579 | kfree(objp: micron->ecc.rawbuf); |
580 | kfree(objp: micron); |
581 | } |
582 | |
583 | static void micron_fixup_onfi_param_page(struct nand_chip *chip, |
584 | struct nand_onfi_params *p) |
585 | { |
586 | /* |
587 | * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the |
588 | * revision number field of the ONFI parameter page. Assume ONFI |
589 | * version 1.0 if the revision number is 00 00. |
590 | */ |
591 | if (le16_to_cpu(p->revision) == 0) |
592 | p->revision = cpu_to_le16(ONFI_VERSION_1_0); |
593 | } |
594 | |
595 | const struct nand_manufacturer_ops micron_nand_manuf_ops = { |
596 | .init = micron_nand_init, |
597 | .cleanup = micron_nand_cleanup, |
598 | .fixup_onfi_param_page = micron_fixup_onfi_param_page, |
599 | }; |
600 |
Definitions
- nand_onfi_vendor_micron
- micron_on_die_ecc
- micron_nand
- micron_nand_setup_read_retry
- micron_nand_onfi_init
- micron_nand_on_die_4_ooblayout_ecc
- micron_nand_on_die_4_ooblayout_free
- micron_nand_on_die_4_ooblayout_ops
- micron_nand_on_die_8_ooblayout_ecc
- micron_nand_on_die_8_ooblayout_free
- micron_nand_on_die_8_ooblayout_ops
- micron_nand_on_die_ecc_setup
- micron_nand_on_die_ecc_status_4
- micron_nand_on_die_ecc_status_8
- micron_nand_read_page_on_die_ecc
- micron_nand_write_page_on_die_ecc
- micron_supports_on_die_ecc
- micron_nand_init
- micron_nand_cleanup
- micron_fixup_onfi_param_page
Improve your Profiling and Debugging skills
Find out more