1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7#include <linux/mtd/spi-nor.h>
8
9#include "core.h"
10
11/* flash_info mfr_flag. Used to read proprietary FSR register. */
12#define USE_FSR BIT(0)
13
14#define SPINOR_OP_MT_DIE_ERASE 0xc4 /* Chip (die) erase opcode */
15#define SPINOR_OP_RDFSR 0x70 /* Read flag status register */
16#define SPINOR_OP_CLFSR 0x50 /* Clear flag status register */
17#define SPINOR_OP_MT_DTR_RD 0xfd /* Fast Read opcode in DTR mode */
18#define SPINOR_OP_MT_RD_ANY_REG 0x85 /* Read volatile register */
19#define SPINOR_OP_MT_WR_ANY_REG 0x81 /* Write volatile register */
20#define SPINOR_REG_MT_CFR0V 0x00 /* For setting octal DTR mode */
21#define SPINOR_REG_MT_CFR1V 0x01 /* For setting dummy cycles */
22#define SPINOR_REG_MT_CFR1V_DEF 0x1f /* Default dummy cycles */
23#define SPINOR_MT_OCT_DTR 0xe7 /* Enable Octal DTR. */
24#define SPINOR_MT_EXSPI 0xff /* Enable Extended SPI (default) */
25
26/* Flag Status Register bits */
27#define FSR_READY BIT(7) /* Device status, 0 = Busy, 1 = Ready */
28#define FSR_E_ERR BIT(5) /* Erase operation status */
29#define FSR_P_ERR BIT(4) /* Program operation status */
30#define FSR_PT_ERR BIT(1) /* Protection error bit */
31
32/* Micron ST SPI NOR flash operations. */
33#define MICRON_ST_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \
34 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 0), \
35 SPI_MEM_OP_ADDR(naddr, addr, 0), \
36 SPI_MEM_OP_NO_DUMMY, \
37 SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
38
39#define MICRON_ST_RDFSR_OP(buf) \
40 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0), \
41 SPI_MEM_OP_NO_ADDR, \
42 SPI_MEM_OP_NO_DUMMY, \
43 SPI_MEM_OP_DATA_IN(1, buf, 0))
44
45#define MICRON_ST_CLFSR_OP \
46 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0), \
47 SPI_MEM_OP_NO_ADDR, \
48 SPI_MEM_OP_NO_DUMMY, \
49 SPI_MEM_OP_NO_DATA)
50
51static int micron_st_nor_octal_dtr_en(struct spi_nor *nor)
52{
53 struct spi_mem_op op;
54 u8 *buf = nor->bouncebuf;
55 int ret;
56 u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
57
58 /* Use 20 dummy cycles for memory array reads. */
59 *buf = 20;
60 op = (struct spi_mem_op)
61 MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
62 SPINOR_REG_MT_CFR1V, 1, buf);
63 ret = spi_nor_write_any_volatile_reg(nor, op: &op, proto: nor->reg_proto);
64 if (ret)
65 return ret;
66
67 buf[0] = SPINOR_MT_OCT_DTR;
68 op = (struct spi_mem_op)
69 MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
70 SPINOR_REG_MT_CFR0V, 1, buf);
71 ret = spi_nor_write_any_volatile_reg(nor, op: &op, proto: nor->reg_proto);
72 if (ret)
73 return ret;
74
75 /* Read flash ID to make sure the switch was successful. */
76 ret = spi_nor_read_id(nor, naddr: 0, ndummy: 8, id: buf, reg_proto: SNOR_PROTO_8_8_8_DTR);
77 if (ret) {
78 dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
79 return ret;
80 }
81
82 if (memcmp(p: buf, q: nor->info->id->bytes, size: nor->info->id->len))
83 return -EINVAL;
84
85 return 0;
86}
87
88static int micron_st_nor_octal_dtr_dis(struct spi_nor *nor)
89{
90 struct spi_mem_op op;
91 u8 *buf = nor->bouncebuf;
92 int ret;
93
94 /*
95 * The register is 1-byte wide, but 1-byte transactions are not allowed
96 * in 8D-8D-8D mode. The next register is the dummy cycle configuration
97 * register. Since the transaction needs to be at least 2 bytes wide,
98 * set the next register to its default value. This also makes sense
99 * because the value was changed when enabling 8D-8D-8D mode, it should
100 * be reset when disabling.
101 */
102 buf[0] = SPINOR_MT_EXSPI;
103 buf[1] = SPINOR_REG_MT_CFR1V_DEF;
104 op = (struct spi_mem_op)
105 MICRON_ST_NOR_WR_ANY_REG_OP(nor->addr_nbytes,
106 SPINOR_REG_MT_CFR0V, 2, buf);
107 ret = spi_nor_write_any_volatile_reg(nor, op: &op, proto: SNOR_PROTO_8_8_8_DTR);
108 if (ret)
109 return ret;
110
111 /* Read flash ID to make sure the switch was successful. */
112 ret = spi_nor_read_id(nor, naddr: 0, ndummy: 0, id: buf, reg_proto: SNOR_PROTO_1_1_1);
113 if (ret) {
114 dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
115 return ret;
116 }
117
118 if (memcmp(p: buf, q: nor->info->id->bytes, size: nor->info->id->len))
119 return -EINVAL;
120
121 return 0;
122}
123
124static int micron_st_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
125{
126 return enable ? micron_st_nor_octal_dtr_en(nor) :
127 micron_st_nor_octal_dtr_dis(nor);
128}
129
130static void mt35xu512aba_default_init(struct spi_nor *nor)
131{
132 nor->params->set_octal_dtr = micron_st_nor_set_octal_dtr;
133}
134
135static int mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor)
136{
137 /* Set the Fast Read settings. */
138 nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
139 spi_nor_set_read_settings(read: &nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
140 num_mode_clocks: 0, num_wait_states: 20, SPINOR_OP_MT_DTR_RD,
141 proto: SNOR_PROTO_8_8_8_DTR);
142
143 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
144 nor->params->rdsr_dummy = 8;
145 nor->params->rdsr_addr_nbytes = 0;
146
147 /*
148 * The BFPT quad enable field is set to a reserved value so the quad
149 * enable function is ignored by spi_nor_parse_bfpt(). Make sure we
150 * disable it.
151 */
152 nor->params->quad_enable = NULL;
153
154 return 0;
155}
156
157static const struct spi_nor_fixups mt35xu512aba_fixups = {
158 .default_init = mt35xu512aba_default_init,
159 .post_sfdp = mt35xu512aba_post_sfdp_fixup,
160};
161
162static const struct flash_info micron_nor_parts[] = {
163 {
164 .id = SNOR_ID(0x2c, 0x5b, 0x1a),
165 .name = "mt35xu512aba",
166 .sector_size = SZ_128K,
167 .size = SZ_64M,
168 .no_sfdp_flags = SECT_4K | SPI_NOR_OCTAL_READ |
169 SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP,
170 .mfr_flags = USE_FSR,
171 .fixup_flags = SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE,
172 .fixups = &mt35xu512aba_fixups,
173 }, {
174 .id = SNOR_ID(0x2c, 0x5b, 0x1c),
175 .name = "mt35xu02g",
176 .sector_size = SZ_128K,
177 .size = SZ_256M,
178 .no_sfdp_flags = SECT_4K | SPI_NOR_OCTAL_READ,
179 .mfr_flags = USE_FSR,
180 .fixup_flags = SPI_NOR_4B_OPCODES,
181 },
182};
183
184static int mt25qu512a_post_bfpt_fixup(struct spi_nor *nor,
185 const struct sfdp_parameter_header *bfpt_header,
186 const struct sfdp_bfpt *bfpt)
187{
188 nor->flags &= ~SNOR_F_HAS_16BIT_SR;
189 return 0;
190}
191
192static struct spi_nor_fixups mt25qu512a_fixups = {
193 .post_bfpt = mt25qu512a_post_bfpt_fixup,
194};
195
196static int st_nor_four_die_late_init(struct spi_nor *nor)
197{
198 struct spi_nor_flash_parameter *params = nor->params;
199
200 params->die_erase_opcode = SPINOR_OP_MT_DIE_ERASE;
201 params->n_dice = 4;
202
203 /*
204 * Unfortunately the die erase opcode does not have a 4-byte opcode
205 * correspondent for these flashes. The SFDP 4BAIT table fails to
206 * consider the die erase too. We're forced to enter in the 4 byte
207 * address mode in order to benefit of the die erase.
208 */
209 return spi_nor_set_4byte_addr_mode(nor, enable: true);
210}
211
212static int st_nor_two_die_late_init(struct spi_nor *nor)
213{
214 struct spi_nor_flash_parameter *params = nor->params;
215
216 params->die_erase_opcode = SPINOR_OP_MT_DIE_ERASE;
217 params->n_dice = 2;
218
219 /*
220 * Unfortunately the die erase opcode does not have a 4-byte opcode
221 * correspondent for these flashes. The SFDP 4BAIT table fails to
222 * consider the die erase too. We're forced to enter in the 4 byte
223 * address mode in order to benefit of the die erase.
224 */
225 return spi_nor_set_4byte_addr_mode(nor, enable: true);
226}
227
228static struct spi_nor_fixups n25q00_fixups = {
229 .late_init = st_nor_four_die_late_init,
230};
231
232static struct spi_nor_fixups mt25q01_fixups = {
233 .late_init = st_nor_two_die_late_init,
234};
235
236static struct spi_nor_fixups mt25q02_fixups = {
237 .late_init = st_nor_four_die_late_init,
238};
239
240static const struct flash_info st_nor_parts[] = {
241 {
242 .name = "m25p05-nonjedec",
243 .sector_size = SZ_32K,
244 .size = SZ_64K,
245 }, {
246 .name = "m25p10-nonjedec",
247 .sector_size = SZ_32K,
248 .size = SZ_128K,
249 }, {
250 .name = "m25p20-nonjedec",
251 .size = SZ_256K,
252 }, {
253 .name = "m25p40-nonjedec",
254 .size = SZ_512K,
255 }, {
256 .name = "m25p80-nonjedec",
257 .size = SZ_1M,
258 }, {
259 .name = "m25p16-nonjedec",
260 .size = SZ_2M,
261 }, {
262 .name = "m25p32-nonjedec",
263 .size = SZ_4M,
264 }, {
265 .name = "m25p64-nonjedec",
266 .size = SZ_8M,
267 }, {
268 .name = "m25p128-nonjedec",
269 .sector_size = SZ_256K,
270 .size = SZ_16M,
271 }, {
272 .id = SNOR_ID(0x20, 0x20, 0x10),
273 .name = "m25p05",
274 .sector_size = SZ_32K,
275 .size = SZ_64K,
276 }, {
277 .id = SNOR_ID(0x20, 0x20, 0x11),
278 .name = "m25p10",
279 .sector_size = SZ_32K,
280 .size = SZ_128K,
281 }, {
282 .id = SNOR_ID(0x20, 0x20, 0x12),
283 .name = "m25p20",
284 .size = SZ_256K,
285 }, {
286 .id = SNOR_ID(0x20, 0x20, 0x13),
287 .name = "m25p40",
288 .size = SZ_512K,
289 }, {
290 .id = SNOR_ID(0x20, 0x20, 0x14),
291 .name = "m25p80",
292 .size = SZ_1M,
293 }, {
294 .id = SNOR_ID(0x20, 0x20, 0x15),
295 .name = "m25p16",
296 .size = SZ_2M,
297 }, {
298 .id = SNOR_ID(0x20, 0x20, 0x16),
299 .name = "m25p32",
300 .size = SZ_4M,
301 }, {
302 .id = SNOR_ID(0x20, 0x20, 0x17),
303 .name = "m25p64",
304 .size = SZ_8M,
305 }, {
306 .id = SNOR_ID(0x20, 0x20, 0x18),
307 .name = "m25p128",
308 .sector_size = SZ_256K,
309 .size = SZ_16M,
310 }, {
311 .id = SNOR_ID(0x20, 0x40, 0x11),
312 .name = "m45pe10",
313 .size = SZ_128K,
314 }, {
315 .id = SNOR_ID(0x20, 0x40, 0x14),
316 .name = "m45pe80",
317 .size = SZ_1M,
318 }, {
319 .id = SNOR_ID(0x20, 0x40, 0x15),
320 .name = "m45pe16",
321 .size = SZ_2M,
322 }, {
323 .id = SNOR_ID(0x20, 0x63, 0x16),
324 .name = "m25px32-s1",
325 .size = SZ_4M,
326 .no_sfdp_flags = SECT_4K,
327 }, {
328 .id = SNOR_ID(0x20, 0x71, 0x14),
329 .name = "m25px80",
330 .size = SZ_1M,
331 }, {
332 .id = SNOR_ID(0x20, 0x71, 0x15),
333 .name = "m25px16",
334 .size = SZ_2M,
335 .no_sfdp_flags = SECT_4K,
336 }, {
337 .id = SNOR_ID(0x20, 0x71, 0x16),
338 .name = "m25px32",
339 .size = SZ_4M,
340 .no_sfdp_flags = SECT_4K,
341 }, {
342 .id = SNOR_ID(0x20, 0x71, 0x17),
343 .name = "m25px64",
344 .size = SZ_8M,
345 }, {
346 .id = SNOR_ID(0x20, 0x73, 0x16),
347 .name = "m25px32-s0",
348 .size = SZ_4M,
349 .no_sfdp_flags = SECT_4K,
350 }, {
351 .id = SNOR_ID(0x20, 0x80, 0x12),
352 .name = "m25pe20",
353 .size = SZ_256K,
354 }, {
355 .id = SNOR_ID(0x20, 0x80, 0x14),
356 .name = "m25pe80",
357 .size = SZ_1M,
358 }, {
359 .id = SNOR_ID(0x20, 0x80, 0x15),
360 .name = "m25pe16",
361 .size = SZ_2M,
362 .no_sfdp_flags = SECT_4K,
363 }, {
364 .id = SNOR_ID(0x20, 0xba, 0x16),
365 .name = "n25q032",
366 .size = SZ_4M,
367 .no_sfdp_flags = SPI_NOR_QUAD_READ,
368 }, {
369 .id = SNOR_ID(0x20, 0xba, 0x17),
370 .name = "n25q064",
371 .size = SZ_8M,
372 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
373 }, {
374 .id = SNOR_ID(0x20, 0xba, 0x18),
375 .name = "n25q128a13",
376 .size = SZ_16M,
377 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
378 SPI_NOR_BP3_SR_BIT6,
379 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
380 .mfr_flags = USE_FSR,
381 }, {
382 .id = SNOR_ID(0x20, 0xba, 0x19, 0x10, 0x44, 0x00),
383 .name = "mt25ql256a",
384 .size = SZ_32M,
385 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
386 .fixup_flags = SPI_NOR_4B_OPCODES,
387 .mfr_flags = USE_FSR,
388 }, {
389 .id = SNOR_ID(0x20, 0xba, 0x19),
390 .name = "n25q256a",
391 .size = SZ_32M,
392 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
393 .mfr_flags = USE_FSR,
394 }, {
395 .id = SNOR_ID(0x20, 0xba, 0x20, 0x10, 0x44, 0x00),
396 .name = "mt25ql512a",
397 .size = SZ_64M,
398 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
399 .fixup_flags = SPI_NOR_4B_OPCODES,
400 .mfr_flags = USE_FSR,
401 }, {
402 .id = SNOR_ID(0x20, 0xba, 0x20),
403 .name = "n25q512ax3",
404 .size = SZ_64M,
405 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
406 SPI_NOR_BP3_SR_BIT6,
407 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
408 .mfr_flags = USE_FSR,
409 }, {
410 .id = SNOR_ID(0x20, 0xba, 0x21),
411 .name = "n25q00",
412 .size = SZ_128M,
413 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
414 SPI_NOR_BP3_SR_BIT6,
415 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
416 .mfr_flags = USE_FSR,
417 .fixups = &n25q00_fixups,
418 }, {
419 .id = SNOR_ID(0x20, 0xba, 0x22),
420 .name = "mt25ql02g",
421 .size = SZ_256M,
422 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
423 .mfr_flags = USE_FSR,
424 .fixups = &mt25q02_fixups,
425 }, {
426 .id = SNOR_ID(0x20, 0xbb, 0x15),
427 .name = "n25q016a",
428 .size = SZ_2M,
429 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
430 }, {
431 .id = SNOR_ID(0x20, 0xbb, 0x16),
432 .name = "n25q032a",
433 .size = SZ_4M,
434 .no_sfdp_flags = SPI_NOR_QUAD_READ,
435 }, {
436 .id = SNOR_ID(0x20, 0xbb, 0x17),
437 .name = "n25q064a",
438 .size = SZ_8M,
439 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
440 }, {
441 .id = SNOR_ID(0x20, 0xbb, 0x18),
442 .name = "n25q128a11",
443 .size = SZ_16M,
444 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
445 SPI_NOR_BP3_SR_BIT6,
446 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
447 .mfr_flags = USE_FSR,
448 }, {
449 .id = SNOR_ID(0x20, 0xbb, 0x19, 0x10, 0x44, 0x00),
450 .name = "mt25qu256a",
451 .size = SZ_32M,
452 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
453 SPI_NOR_BP3_SR_BIT6,
454 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
455 .fixup_flags = SPI_NOR_4B_OPCODES,
456 .mfr_flags = USE_FSR,
457 }, {
458 .id = SNOR_ID(0x20, 0xbb, 0x19),
459 .name = "n25q256ax1",
460 .size = SZ_32M,
461 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
462 .mfr_flags = USE_FSR,
463 }, {
464 .id = SNOR_ID(0x20, 0xbb, 0x20, 0x10, 0x44, 0x00),
465 .name = "mt25qu512a",
466 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
467 SPI_NOR_BP3_SR_BIT6,
468 .mfr_flags = USE_FSR,
469 .fixups = &mt25qu512a_fixups,
470 }, {
471 .id = SNOR_ID(0x20, 0xbb, 0x20),
472 .name = "n25q512a",
473 .size = SZ_64M,
474 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
475 SPI_NOR_BP3_SR_BIT6,
476 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
477 .mfr_flags = USE_FSR,
478 }, {
479 .id = SNOR_ID(0x20, 0xbb, 0x21, 0x10, 0x44, 0x00),
480 .name = "mt25qu01g",
481 .mfr_flags = USE_FSR,
482 .fixups = &mt25q01_fixups,
483 }, {
484 .id = SNOR_ID(0x20, 0xbb, 0x21),
485 .name = "n25q00a",
486 .size = SZ_128M,
487 .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
488 .mfr_flags = USE_FSR,
489 .fixups = &n25q00_fixups,
490 }, {
491 .id = SNOR_ID(0x20, 0xbb, 0x22),
492 .name = "mt25qu02g",
493 .size = SZ_256M,
494 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
495 .mfr_flags = USE_FSR,
496 .fixups = &mt25q02_fixups,
497 }
498};
499
500/**
501 * micron_st_nor_read_fsr() - Read the Flag Status Register.
502 * @nor: pointer to 'struct spi_nor'
503 * @fsr: pointer to a DMA-able buffer where the value of the
504 * Flag Status Register will be written. Should be at least 2
505 * bytes.
506 *
507 * Return: 0 on success, -errno otherwise.
508 */
509static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
510{
511 int ret;
512
513 if (nor->spimem) {
514 struct spi_mem_op op = MICRON_ST_RDFSR_OP(fsr);
515
516 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
517 op.addr.nbytes = nor->params->rdsr_addr_nbytes;
518 op.dummy.nbytes = nor->params->rdsr_dummy;
519 /*
520 * We don't want to read only one byte in DTR mode. So,
521 * read 2 and then discard the second byte.
522 */
523 op.data.nbytes = 2;
524 }
525
526 spi_nor_spimem_setup_op(nor, op: &op, proto: nor->reg_proto);
527
528 ret = spi_mem_exec_op(mem: nor->spimem, op: &op);
529 } else {
530 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, buf: fsr,
531 len: 1);
532 }
533
534 if (ret)
535 dev_dbg(nor->dev, "error %d reading FSR\n", ret);
536
537 return ret;
538}
539
540/**
541 * micron_st_nor_clear_fsr() - Clear the Flag Status Register.
542 * @nor: pointer to 'struct spi_nor'.
543 */
544static void micron_st_nor_clear_fsr(struct spi_nor *nor)
545{
546 int ret;
547
548 if (nor->spimem) {
549 struct spi_mem_op op = MICRON_ST_CLFSR_OP;
550
551 spi_nor_spimem_setup_op(nor, op: &op, proto: nor->reg_proto);
552
553 ret = spi_mem_exec_op(mem: nor->spimem, op: &op);
554 } else {
555 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
556 NULL, len: 0);
557 }
558
559 if (ret)
560 dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
561}
562
563/**
564 * micron_st_nor_ready() - Query the Status Register as well as the Flag Status
565 * Register to see if the flash is ready for new commands. If there are any
566 * errors in the FSR clear them.
567 * @nor: pointer to 'struct spi_nor'.
568 *
569 * Return: 1 if ready, 0 if not ready, -errno on errors.
570 */
571static int micron_st_nor_ready(struct spi_nor *nor)
572{
573 int sr_ready, ret;
574
575 sr_ready = spi_nor_sr_ready(nor);
576 if (sr_ready < 0)
577 return sr_ready;
578
579 ret = micron_st_nor_read_fsr(nor, fsr: nor->bouncebuf);
580 if (ret) {
581 /*
582 * Some controllers, such as Intel SPI, do not support low
583 * level operations such as reading the flag status
584 * register. They only expose small amount of high level
585 * operations to the software. If this is the case we use
586 * only the status register value.
587 */
588 return ret == -EOPNOTSUPP ? sr_ready : ret;
589 }
590
591 if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
592 if (nor->bouncebuf[0] & FSR_E_ERR)
593 dev_err(nor->dev, "Erase operation failed.\n");
594 else
595 dev_err(nor->dev, "Program operation failed.\n");
596
597 if (nor->bouncebuf[0] & FSR_PT_ERR)
598 dev_err(nor->dev,
599 "Attempted to modify a protected sector.\n");
600
601 micron_st_nor_clear_fsr(nor);
602
603 /*
604 * WEL bit remains set to one when an erase or page program
605 * error occurs. Issue a Write Disable command to protect
606 * against inadvertent writes that can possibly corrupt the
607 * contents of the memory.
608 */
609 ret = spi_nor_write_disable(nor);
610 if (ret)
611 return ret;
612
613 return -EIO;
614 }
615
616 return sr_ready && !!(nor->bouncebuf[0] & FSR_READY);
617}
618
619static void micron_st_nor_default_init(struct spi_nor *nor)
620{
621 nor->flags |= SNOR_F_HAS_LOCK;
622 nor->flags &= ~SNOR_F_HAS_16BIT_SR;
623 nor->params->quad_enable = NULL;
624}
625
626static int micron_st_nor_late_init(struct spi_nor *nor)
627{
628 struct spi_nor_flash_parameter *params = nor->params;
629
630 if (nor->info->mfr_flags & USE_FSR)
631 params->ready = micron_st_nor_ready;
632
633 if (!params->set_4byte_addr_mode)
634 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
635
636 return 0;
637}
638
639static const struct spi_nor_fixups micron_st_nor_fixups = {
640 .default_init = micron_st_nor_default_init,
641 .late_init = micron_st_nor_late_init,
642};
643
644const struct spi_nor_manufacturer spi_nor_micron = {
645 .name = "micron",
646 .parts = micron_nor_parts,
647 .nparts = ARRAY_SIZE(micron_nor_parts),
648 .fixups = &micron_st_nor_fixups,
649};
650
651const struct spi_nor_manufacturer spi_nor_st = {
652 .name = "st",
653 .parts = st_nor_parts,
654 .nparts = ARRAY_SIZE(st_nor_parts),
655 .fixups = &micron_st_nor_fixups,
656};
657

source code of linux/drivers/mtd/spi-nor/micron-st.c