1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7#include <linux/bitfield.h>
8#include <linux/device.h>
9#include <linux/errno.h>
10#include <linux/mtd/spi-nor.h>
11
12#include "core.h"
13
14/* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */
15#define USE_CLSR BIT(0)
16#define USE_CLPEF BIT(1)
17
18#define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */
19#define SPINOR_OP_CLPEF 0x82 /* Clear program/erase failure flags */
20#define SPINOR_OP_CYPRESS_DIE_ERASE 0x61 /* Chip (die) erase */
21#define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */
22#define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */
23#define SPINOR_REG_CYPRESS_VREG 0x00800000
24#define SPINOR_REG_CYPRESS_STR1 0x0
25#define SPINOR_REG_CYPRESS_STR1V \
26 (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1)
27#define SPINOR_REG_CYPRESS_CFR1 0x2
28#define SPINOR_REG_CYPRESS_CFR1_QUAD_EN BIT(1) /* Quad Enable */
29#define SPINOR_REG_CYPRESS_CFR2 0x3
30#define SPINOR_REG_CYPRESS_CFR2V \
31 (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2)
32#define SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK GENMASK(3, 0)
33#define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24 0xb
34#define SPINOR_REG_CYPRESS_CFR2_ADRBYT BIT(7)
35#define SPINOR_REG_CYPRESS_CFR3 0x4
36#define SPINOR_REG_CYPRESS_CFR3_PGSZ BIT(4) /* Page size. */
37#define SPINOR_REG_CYPRESS_CFR5 0x6
38#define SPINOR_REG_CYPRESS_CFR5_BIT6 BIT(6)
39#define SPINOR_REG_CYPRESS_CFR5_DDR BIT(1)
40#define SPINOR_REG_CYPRESS_CFR5_OPI BIT(0)
41#define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN \
42 (SPINOR_REG_CYPRESS_CFR5_BIT6 | SPINOR_REG_CYPRESS_CFR5_DDR | \
43 SPINOR_REG_CYPRESS_CFR5_OPI)
44#define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS SPINOR_REG_CYPRESS_CFR5_BIT6
45#define SPINOR_OP_CYPRESS_RD_FAST 0xee
46#define SPINOR_REG_CYPRESS_ARCFN 0x00000006
47
48/* Cypress SPI NOR flash operations. */
49#define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \
50 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0), \
51 SPI_MEM_OP_ADDR(naddr, addr, 0), \
52 SPI_MEM_OP_NO_DUMMY, \
53 SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
54
55#define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf) \
56 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0), \
57 SPI_MEM_OP_ADDR(naddr, addr, 0), \
58 SPI_MEM_OP_DUMMY(ndummy, 0), \
59 SPI_MEM_OP_DATA_IN(1, buf, 0))
60
61#define SPANSION_OP(opcode) \
62 SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \
63 SPI_MEM_OP_NO_ADDR, \
64 SPI_MEM_OP_NO_DUMMY, \
65 SPI_MEM_OP_NO_DATA)
66
67/**
68 * struct spansion_nor_params - Spansion private parameters.
69 * @clsr: Clear Status Register or Clear Program and Erase Failure Flag
70 * opcode.
71 */
72struct spansion_nor_params {
73 u8 clsr;
74};
75
76/**
77 * spansion_nor_clear_sr() - Clear the Status Register.
78 * @nor: pointer to 'struct spi_nor'.
79 */
80static void spansion_nor_clear_sr(struct spi_nor *nor)
81{
82 const struct spansion_nor_params *priv_params = nor->params->priv;
83 int ret;
84
85 if (nor->spimem) {
86 struct spi_mem_op op = SPANSION_OP(priv_params->clsr);
87
88 spi_nor_spimem_setup_op(nor, op: &op, proto: nor->reg_proto);
89
90 ret = spi_mem_exec_op(mem: nor->spimem, op: &op);
91 } else {
92 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
93 NULL, len: 0);
94 }
95
96 if (ret)
97 dev_dbg(nor->dev, "error %d clearing SR\n", ret);
98}
99
100static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr)
101{
102 struct spi_nor_flash_parameter *params = nor->params;
103 struct spi_mem_op op =
104 CYPRESS_NOR_RD_ANY_REG_OP(params->addr_mode_nbytes, addr,
105 0, nor->bouncebuf);
106 int ret;
107
108 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
109 op.dummy.nbytes = params->rdsr_dummy;
110 op.data.nbytes = 2;
111 }
112
113 ret = spi_nor_read_any_reg(nor, op: &op, proto: nor->reg_proto);
114 if (ret)
115 return ret;
116
117 if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
118 if (nor->bouncebuf[0] & SR_E_ERR)
119 dev_err(nor->dev, "Erase Error occurred\n");
120 else
121 dev_err(nor->dev, "Programming Error occurred\n");
122
123 spansion_nor_clear_sr(nor);
124
125 ret = spi_nor_write_disable(nor);
126 if (ret)
127 return ret;
128
129 return -EIO;
130 }
131
132 return !(nor->bouncebuf[0] & SR_WIP);
133}
134/**
135 * cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by
136 * using Read Any Register command to see if the whole flash is ready for new
137 * commands and clear it if there are any errors.
138 * @nor: pointer to 'struct spi_nor'.
139 *
140 * Return: 1 if ready, 0 if not ready, -errno on errors.
141 */
142static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor)
143{
144 struct spi_nor_flash_parameter *params = nor->params;
145 u64 addr;
146 int ret;
147 u8 i;
148
149 for (i = 0; i < params->n_dice; i++) {
150 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1;
151 ret = cypress_nor_sr_ready_and_clear_reg(nor, addr);
152 if (ret < 0)
153 return ret;
154 else if (ret == 0)
155 return 0;
156 }
157
158 return 1;
159}
160
161static int cypress_nor_set_memlat(struct spi_nor *nor, u64 addr)
162{
163 struct spi_mem_op op;
164 u8 *buf = nor->bouncebuf;
165 int ret;
166 u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
167
168 op = (struct spi_mem_op)
169 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, buf);
170
171 ret = spi_nor_read_any_reg(nor, op: &op, proto: nor->reg_proto);
172 if (ret)
173 return ret;
174
175 /* Use 24 dummy cycles for memory array reads. */
176 *buf &= ~SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK;
177 *buf |= FIELD_PREP(SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK,
178 SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24);
179 op = (struct spi_mem_op)
180 CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, buf);
181
182 ret = spi_nor_write_any_volatile_reg(nor, op: &op, proto: nor->reg_proto);
183 if (ret)
184 return ret;
185
186 nor->read_dummy = 24;
187
188 return 0;
189}
190
191static int cypress_nor_set_octal_dtr_bits(struct spi_nor *nor, u64 addr)
192{
193 struct spi_mem_op op;
194 u8 *buf = nor->bouncebuf;
195
196 /* Set the octal and DTR enable bits. */
197 buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN;
198 op = (struct spi_mem_op)
199 CYPRESS_NOR_WR_ANY_REG_OP(nor->params->addr_mode_nbytes,
200 addr, 1, buf);
201
202 return spi_nor_write_any_volatile_reg(nor, op: &op, proto: nor->reg_proto);
203}
204
205static int cypress_nor_octal_dtr_en(struct spi_nor *nor)
206{
207 const struct spi_nor_flash_parameter *params = nor->params;
208 u8 *buf = nor->bouncebuf;
209 u64 addr;
210 int i, ret;
211
212 for (i = 0; i < params->n_dice; i++) {
213 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR2;
214 ret = cypress_nor_set_memlat(nor, addr);
215 if (ret)
216 return ret;
217
218 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5;
219 ret = cypress_nor_set_octal_dtr_bits(nor, addr);
220 if (ret)
221 return ret;
222 }
223
224 /* Read flash ID to make sure the switch was successful. */
225 ret = spi_nor_read_id(nor, naddr: nor->addr_nbytes, ndummy: 3, id: buf,
226 reg_proto: SNOR_PROTO_8_8_8_DTR);
227 if (ret) {
228 dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
229 return ret;
230 }
231
232 if (memcmp(p: buf, q: nor->info->id->bytes, size: nor->info->id->len))
233 return -EINVAL;
234
235 return 0;
236}
237
238static int cypress_nor_set_single_spi_bits(struct spi_nor *nor, u64 addr)
239{
240 struct spi_mem_op op;
241 u8 *buf = nor->bouncebuf;
242
243 /*
244 * The register is 1-byte wide, but 1-byte transactions are not allowed
245 * in 8D-8D-8D mode. Since there is no register at the next location,
246 * just initialize the value to 0 and let the transaction go on.
247 */
248 buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS;
249 buf[1] = 0;
250 op = (struct spi_mem_op)
251 CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes, addr, 2, buf);
252 return spi_nor_write_any_volatile_reg(nor, op: &op, proto: SNOR_PROTO_8_8_8_DTR);
253}
254
255static int cypress_nor_octal_dtr_dis(struct spi_nor *nor)
256{
257 const struct spi_nor_flash_parameter *params = nor->params;
258 u8 *buf = nor->bouncebuf;
259 u64 addr;
260 int i, ret;
261
262 for (i = 0; i < params->n_dice; i++) {
263 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5;
264 ret = cypress_nor_set_single_spi_bits(nor, addr);
265 if (ret)
266 return ret;
267 }
268
269 /* Read flash ID to make sure the switch was successful. */
270 ret = spi_nor_read_id(nor, naddr: 0, ndummy: 0, id: buf, reg_proto: SNOR_PROTO_1_1_1);
271 if (ret) {
272 dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
273 return ret;
274 }
275
276 if (memcmp(p: buf, q: nor->info->id->bytes, size: nor->info->id->len))
277 return -EINVAL;
278
279 return 0;
280}
281
282static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr)
283{
284 struct spi_mem_op op;
285 u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
286 u8 cfr1v_written;
287 int ret;
288
289 op = (struct spi_mem_op)
290 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
291 nor->bouncebuf);
292
293 ret = spi_nor_read_any_reg(nor, op: &op, proto: nor->reg_proto);
294 if (ret)
295 return ret;
296
297 if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN)
298 return 0;
299
300 /* Update the Quad Enable bit. */
301 nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN;
302 op = (struct spi_mem_op)
303 CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1,
304 nor->bouncebuf);
305 ret = spi_nor_write_any_volatile_reg(nor, op: &op, proto: nor->reg_proto);
306 if (ret)
307 return ret;
308
309 cfr1v_written = nor->bouncebuf[0];
310
311 /* Read back and check it. */
312 op = (struct spi_mem_op)
313 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
314 nor->bouncebuf);
315 ret = spi_nor_read_any_reg(nor, op: &op, proto: nor->reg_proto);
316 if (ret)
317 return ret;
318
319 if (nor->bouncebuf[0] != cfr1v_written) {
320 dev_err(nor->dev, "CFR1: Read back test failed\n");
321 return -EIO;
322 }
323
324 return 0;
325}
326
327/**
328 * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile
329 * register.
330 * @nor: pointer to a 'struct spi_nor'
331 *
332 * It is recommended to update volatile registers in the field application due
333 * to a risk of the non-volatile registers corruption by power interrupt. This
334 * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable
335 * bit in the CFR1 non-volatile in advance (typically by a Flash programmer
336 * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is
337 * also set during Flash power-up.
338 *
339 * Return: 0 on success, -errno otherwise.
340 */
341static int cypress_nor_quad_enable_volatile(struct spi_nor *nor)
342{
343 struct spi_nor_flash_parameter *params = nor->params;
344 u64 addr;
345 u8 i;
346 int ret;
347
348 for (i = 0; i < params->n_dice; i++) {
349 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1;
350 ret = cypress_nor_quad_enable_volatile_reg(nor, addr);
351 if (ret)
352 return ret;
353 }
354
355 return 0;
356}
357
358/**
359 * cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode
360 * (3 or 4-byte) by querying status
361 * register 1 (SR1).
362 * @nor: pointer to a 'struct spi_nor'
363 * @addr_mode: ponter to a buffer where we return the determined
364 * address mode.
365 *
366 * This function tries to determine current address mode by comparing SR1 value
367 * from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address).
368 *
369 * Return: 0 on success, -errno otherwise.
370 */
371static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor,
372 u8 *addr_mode)
373{
374 struct spi_mem_op op =
375 CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0,
376 nor->bouncebuf);
377 bool is3byte, is4byte;
378 int ret;
379
380 ret = spi_nor_read_sr(nor, sr: &nor->bouncebuf[1]);
381 if (ret)
382 return ret;
383
384 ret = spi_nor_read_any_reg(nor, op: &op, proto: nor->reg_proto);
385 if (ret)
386 return ret;
387
388 is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
389
390 op = (struct spi_mem_op)
391 CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0,
392 nor->bouncebuf);
393 ret = spi_nor_read_any_reg(nor, op: &op, proto: nor->reg_proto);
394 if (ret)
395 return ret;
396
397 is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
398
399 if (is3byte == is4byte)
400 return -EIO;
401 if (is3byte)
402 *addr_mode = 3;
403 else
404 *addr_mode = 4;
405
406 return 0;
407}
408
409/**
410 * cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of
411 * current address mode.
412 * @nor: pointer to a 'struct spi_nor'
413 *
414 * Determine current address mode by reading SR1 with different methods, then
415 * query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte
416 * address mode.
417 *
418 * Return: 0 on success, -errno otherwise.
419 */
420static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor)
421{
422 struct spi_mem_op op;
423 u8 addr_mode;
424 int ret;
425
426 /*
427 * Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable
428 * that sets bit-1 in SR1.
429 */
430 ret = spi_nor_write_enable(nor);
431 if (ret)
432 return ret;
433 ret = cypress_nor_determine_addr_mode_by_sr1(nor, addr_mode: &addr_mode);
434 if (ret) {
435 ret = spi_nor_set_4byte_addr_mode(nor, enable: true);
436 if (ret)
437 return ret;
438 return spi_nor_write_disable(nor);
439 }
440 ret = spi_nor_write_disable(nor);
441 if (ret)
442 return ret;
443
444 /*
445 * Query CFR2V and make sure no contradiction between determined address
446 * mode and CFR2V[7].
447 */
448 op = (struct spi_mem_op)
449 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V,
450 0, nor->bouncebuf);
451 ret = spi_nor_read_any_reg(nor, op: &op, proto: nor->reg_proto);
452 if (ret)
453 return ret;
454
455 if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) {
456 if (addr_mode != 4)
457 return spi_nor_set_4byte_addr_mode(nor, enable: true);
458 } else {
459 if (addr_mode != 3)
460 return spi_nor_set_4byte_addr_mode(nor, enable: true);
461 }
462
463 nor->params->addr_nbytes = addr_mode;
464 nor->params->addr_mode_nbytes = addr_mode;
465
466 return 0;
467}
468
469/**
470 * cypress_nor_get_page_size() - Get flash page size configuration.
471 * @nor: pointer to a 'struct spi_nor'
472 *
473 * The BFPT table advertises a 512B or 256B page size depending on part but the
474 * page size is actually configurable (with the default being 256B). Read from
475 * CFR3V[4] and set the correct size.
476 *
477 * Return: 0 on success, -errno otherwise.
478 */
479static int cypress_nor_get_page_size(struct spi_nor *nor)
480{
481 struct spi_mem_op op =
482 CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
483 0, 0, nor->bouncebuf);
484 struct spi_nor_flash_parameter *params = nor->params;
485 int ret;
486 u8 i;
487
488 /*
489 * Use the minimum common page size configuration. Programming 256-byte
490 * under 512-byte page size configuration is safe.
491 */
492 params->page_size = 256;
493 for (i = 0; i < params->n_dice; i++) {
494 op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3;
495
496 ret = spi_nor_read_any_reg(nor, op: &op, proto: nor->reg_proto);
497 if (ret)
498 return ret;
499
500 if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ))
501 return 0;
502 }
503
504 params->page_size = 512;
505
506 return 0;
507}
508
509static void cypress_nor_ecc_init(struct spi_nor *nor)
510{
511 /*
512 * Programming is supported only in 16-byte ECC data unit granularity.
513 * Byte-programming, bit-walking, or multiple program operations to the
514 * same ECC data unit without an erase are not allowed.
515 */
516 nor->params->writesize = 16;
517 nor->flags |= SNOR_F_ECC;
518}
519
520static int
521s25fs256t_post_bfpt_fixup(struct spi_nor *nor,
522 const struct sfdp_parameter_header *bfpt_header,
523 const struct sfdp_bfpt *bfpt)
524{
525 struct spi_mem_op op;
526 int ret;
527
528 ret = cypress_nor_set_addr_mode_nbytes(nor);
529 if (ret)
530 return ret;
531
532 /* Read Architecture Configuration Register (ARCFN) */
533 op = (struct spi_mem_op)
534 CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
535 SPINOR_REG_CYPRESS_ARCFN, 1,
536 nor->bouncebuf);
537 ret = spi_nor_read_any_reg(nor, op: &op, proto: nor->reg_proto);
538 if (ret)
539 return ret;
540
541 /* ARCFN value must be 0 if uniform sector is selected */
542 if (nor->bouncebuf[0])
543 return -ENODEV;
544
545 return 0;
546}
547
548static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor)
549{
550 struct spi_nor_flash_parameter *params = nor->params;
551
552 /*
553 * S25FS256T does not define the SCCR map, but we would like to use the
554 * same code base for both single and multi chip package devices, thus
555 * set the vreg_offset and n_dice to be able to do so.
556 */
557 params->vreg_offset = devm_kmalloc(dev: nor->dev, size: sizeof(u32), GFP_KERNEL);
558 if (!params->vreg_offset)
559 return -ENOMEM;
560
561 params->vreg_offset[0] = SPINOR_REG_CYPRESS_VREG;
562 params->n_dice = 1;
563
564 /* PP_1_1_4_4B is supported but missing in 4BAIT. */
565 params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
566 spi_nor_set_pp_settings(pp: &params->page_programs[SNOR_CMD_PP_1_1_4],
567 SPINOR_OP_PP_1_1_4_4B,
568 proto: SNOR_PROTO_1_1_4);
569
570 return cypress_nor_get_page_size(nor);
571}
572
573static int s25fs256t_late_init(struct spi_nor *nor)
574{
575 cypress_nor_ecc_init(nor);
576
577 return 0;
578}
579
580static struct spi_nor_fixups s25fs256t_fixups = {
581 .post_bfpt = s25fs256t_post_bfpt_fixup,
582 .post_sfdp = s25fs256t_post_sfdp_fixup,
583 .late_init = s25fs256t_late_init,
584};
585
586static int
587s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
588 const struct sfdp_parameter_header *bfpt_header,
589 const struct sfdp_bfpt *bfpt)
590{
591 int ret;
592
593 ret = cypress_nor_set_addr_mode_nbytes(nor);
594 if (ret)
595 return ret;
596
597 /* Replace Quad Enable with volatile version */
598 nor->params->quad_enable = cypress_nor_quad_enable_volatile;
599
600 return 0;
601}
602
603static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor)
604{
605 struct spi_nor_flash_parameter *params = nor->params;
606 struct spi_nor_erase_type *erase_type = params->erase_map.erase_type;
607 unsigned int i;
608
609 if (!params->n_dice || !params->vreg_offset) {
610 dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n",
611 __func__);
612 return -EOPNOTSUPP;
613 }
614
615 /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
616 if (params->size == SZ_256M)
617 params->n_dice = 2;
618
619 /*
620 * In some parts, 3byte erase opcodes are advertised by 4BAIT.
621 * Convert them to 4byte erase opcodes.
622 */
623 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
624 switch (erase_type[i].opcode) {
625 case SPINOR_OP_SE:
626 erase_type[i].opcode = SPINOR_OP_SE_4B;
627 break;
628 case SPINOR_OP_BE_4K:
629 erase_type[i].opcode = SPINOR_OP_BE_4K_4B;
630 break;
631 default:
632 break;
633 }
634 }
635
636 return cypress_nor_get_page_size(nor);
637}
638
639static int s25hx_t_late_init(struct spi_nor *nor)
640{
641 struct spi_nor_flash_parameter *params = nor->params;
642
643 /* Fast Read 4B requires mode cycles */
644 params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
645 params->ready = cypress_nor_sr_ready_and_clear;
646 cypress_nor_ecc_init(nor);
647
648 params->die_erase_opcode = SPINOR_OP_CYPRESS_DIE_ERASE;
649 return 0;
650}
651
652static struct spi_nor_fixups s25hx_t_fixups = {
653 .post_bfpt = s25hx_t_post_bfpt_fixup,
654 .post_sfdp = s25hx_t_post_sfdp_fixup,
655 .late_init = s25hx_t_late_init,
656};
657
658/**
659 * cypress_nor_set_octal_dtr() - Enable or disable octal DTR on Cypress flashes.
660 * @nor: pointer to a 'struct spi_nor'
661 * @enable: whether to enable or disable Octal DTR
662 *
663 * This also sets the memory access latency cycles to 24 to allow the flash to
664 * run at up to 200MHz.
665 *
666 * Return: 0 on success, -errno otherwise.
667 */
668static int cypress_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
669{
670 return enable ? cypress_nor_octal_dtr_en(nor) :
671 cypress_nor_octal_dtr_dis(nor);
672}
673
674static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor)
675{
676 struct spi_nor_flash_parameter *params = nor->params;
677
678 if (!params->n_dice || !params->vreg_offset) {
679 dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n",
680 __func__);
681 return -EOPNOTSUPP;
682 }
683
684 /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
685 if (params->size == SZ_256M)
686 params->n_dice = 2;
687
688 /*
689 * On older versions of the flash the xSPI Profile 1.0 table has the
690 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
691 */
692 if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
693 params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
694 SPINOR_OP_CYPRESS_RD_FAST;
695
696 /* This flash is also missing the 4-byte Page Program opcode bit. */
697 spi_nor_set_pp_settings(pp: &params->page_programs[SNOR_CMD_PP],
698 SPINOR_OP_PP_4B, proto: SNOR_PROTO_1_1_1);
699 /*
700 * Since xSPI Page Program opcode is backward compatible with
701 * Legacy SPI, use Legacy SPI opcode there as well.
702 */
703 spi_nor_set_pp_settings(pp: &params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
704 SPINOR_OP_PP_4B, proto: SNOR_PROTO_8_8_8_DTR);
705
706 /*
707 * The xSPI Profile 1.0 table advertises the number of additional
708 * address bytes needed for Read Status Register command as 0 but the
709 * actual value for that is 4.
710 */
711 params->rdsr_addr_nbytes = 4;
712
713 return cypress_nor_get_page_size(nor);
714}
715
716static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor,
717 const struct sfdp_parameter_header *bfpt_header,
718 const struct sfdp_bfpt *bfpt)
719{
720 return cypress_nor_set_addr_mode_nbytes(nor);
721}
722
723static int s28hx_t_late_init(struct spi_nor *nor)
724{
725 struct spi_nor_flash_parameter *params = nor->params;
726
727 params->set_octal_dtr = cypress_nor_set_octal_dtr;
728 params->ready = cypress_nor_sr_ready_and_clear;
729 cypress_nor_ecc_init(nor);
730
731 return 0;
732}
733
734static const struct spi_nor_fixups s28hx_t_fixups = {
735 .post_sfdp = s28hx_t_post_sfdp_fixup,
736 .post_bfpt = s28hx_t_post_bfpt_fixup,
737 .late_init = s28hx_t_late_init,
738};
739
740static int
741s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor,
742 const struct sfdp_parameter_header *bfpt_header,
743 const struct sfdp_bfpt *bfpt)
744{
745 /*
746 * The S25FS-S chip family reports 512-byte pages in BFPT but
747 * in reality the write buffer still wraps at the safe default
748 * of 256 bytes. Overwrite the page size advertised by BFPT
749 * to get the writes working.
750 */
751 nor->params->page_size = 256;
752
753 return 0;
754}
755
756static const struct spi_nor_fixups s25fs_s_nor_fixups = {
757 .post_bfpt = s25fs_s_nor_post_bfpt_fixups,
758};
759
760static const struct flash_info spansion_nor_parts[] = {
761 {
762 .id = SNOR_ID(0x01, 0x02, 0x12),
763 .name = "s25sl004a",
764 .size = SZ_512K,
765 }, {
766 .id = SNOR_ID(0x01, 0x02, 0x13),
767 .name = "s25sl008a",
768 .size = SZ_1M,
769 }, {
770 .id = SNOR_ID(0x01, 0x02, 0x14),
771 .name = "s25sl016a",
772 .size = SZ_2M,
773 }, {
774 .id = SNOR_ID(0x01, 0x02, 0x15, 0x4d, 0x00),
775 .name = "s25sl032p",
776 .size = SZ_4M,
777 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
778 }, {
779 .id = SNOR_ID(0x01, 0x02, 0x15),
780 .name = "s25sl032a",
781 .size = SZ_4M,
782 }, {
783 .id = SNOR_ID(0x01, 0x02, 0x16, 0x4d, 0x00),
784 .name = "s25sl064p",
785 .size = SZ_8M,
786 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
787 }, {
788 .id = SNOR_ID(0x01, 0x02, 0x16),
789 .name = "s25sl064a",
790 .size = SZ_8M,
791 }, {
792 .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x00, 0x80),
793 .name = "s25fl256s0",
794 .size = SZ_32M,
795 .sector_size = SZ_256K,
796 .no_sfdp_flags = SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
797 .mfr_flags = USE_CLSR,
798 }, {
799 .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x00, 0x81),
800 .name = "s25fs256s0",
801 .size = SZ_32M,
802 .sector_size = SZ_256K,
803 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
804 .mfr_flags = USE_CLSR,
805 }, {
806 .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x01, 0x80),
807 .name = "s25fl256s1",
808 .size = SZ_32M,
809 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
810 .mfr_flags = USE_CLSR,
811 }, {
812 .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x01, 0x81),
813 .name = "s25fs256s1",
814 .size = SZ_32M,
815 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
816 .mfr_flags = USE_CLSR,
817 }, {
818 .id = SNOR_ID(0x01, 0x02, 0x20, 0x4d, 0x00, 0x80),
819 .name = "s25fl512s",
820 .size = SZ_64M,
821 .sector_size = SZ_256K,
822 .flags = SPI_NOR_HAS_LOCK,
823 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
824 .mfr_flags = USE_CLSR,
825 }, {
826 .id = SNOR_ID(0x01, 0x02, 0x20, 0x4d, 0x00, 0x81),
827 .name = "s25fs512s",
828 .size = SZ_64M,
829 .sector_size = SZ_256K,
830 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
831 .mfr_flags = USE_CLSR,
832 .fixups = &s25fs_s_nor_fixups,
833 }, {
834 .id = SNOR_ID(0x01, 0x20, 0x18, 0x03, 0x00),
835 .name = "s25sl12800",
836 .size = SZ_16M,
837 .sector_size = SZ_256K,
838 }, {
839 .id = SNOR_ID(0x01, 0x20, 0x18, 0x03, 0x01),
840 .name = "s25sl12801",
841 .size = SZ_16M,
842 }, {
843 .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x00, 0x80),
844 .name = "s25fl128s0",
845 .size = SZ_16M,
846 .sector_size = SZ_256K,
847 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
848 .mfr_flags = USE_CLSR,
849 }, {
850 .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x00),
851 .name = "s25fl129p0",
852 .size = SZ_16M,
853 .sector_size = SZ_256K,
854 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
855 .mfr_flags = USE_CLSR,
856 }, {
857 .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01, 0x80),
858 .name = "s25fl128s1",
859 .size = SZ_16M,
860 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
861 .mfr_flags = USE_CLSR,
862 }, {
863 .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01, 0x81),
864 .name = "s25fs128s1",
865 .size = SZ_16M,
866 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
867 .mfr_flags = USE_CLSR,
868 .fixups = &s25fs_s_nor_fixups,
869 }, {
870 .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01),
871 .name = "s25fl129p1",
872 .size = SZ_16M,
873 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
874 .mfr_flags = USE_CLSR,
875 }, {
876 .id = SNOR_ID(0x01, 0x40, 0x13),
877 .name = "s25fl204k",
878 .size = SZ_512K,
879 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ,
880 }, {
881 .id = SNOR_ID(0x01, 0x40, 0x14),
882 .name = "s25fl208k",
883 .size = SZ_1M,
884 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ,
885 }, {
886 .id = SNOR_ID(0x01, 0x40, 0x15),
887 .name = "s25fl116k",
888 .size = SZ_2M,
889 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
890 }, {
891 .id = SNOR_ID(0x01, 0x40, 0x16),
892 .name = "s25fl132k",
893 .size = SZ_4M,
894 .no_sfdp_flags = SECT_4K,
895 }, {
896 .id = SNOR_ID(0x01, 0x40, 0x17),
897 .name = "s25fl164k",
898 .size = SZ_8M,
899 .no_sfdp_flags = SECT_4K,
900 }, {
901 .id = SNOR_ID(0x01, 0x60, 0x17),
902 .name = "s25fl064l",
903 .size = SZ_8M,
904 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
905 .fixup_flags = SPI_NOR_4B_OPCODES,
906 }, {
907 .id = SNOR_ID(0x01, 0x60, 0x18),
908 .name = "s25fl128l",
909 .size = SZ_16M,
910 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
911 .fixup_flags = SPI_NOR_4B_OPCODES,
912 }, {
913 .id = SNOR_ID(0x01, 0x60, 0x19),
914 .name = "s25fl256l",
915 .size = SZ_32M,
916 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
917 .fixup_flags = SPI_NOR_4B_OPCODES,
918 }, {
919 .id = SNOR_ID(0x04, 0x2c, 0xc2, 0x7f, 0x7f, 0x7f),
920 .name = "cy15x104q",
921 .size = SZ_512K,
922 .sector_size = SZ_512K,
923 .flags = SPI_NOR_NO_ERASE,
924 }, {
925 .id = SNOR_ID(0x34, 0x2a, 0x1a, 0x0f, 0x03, 0x90),
926 .name = "s25hl512t",
927 .mfr_flags = USE_CLPEF,
928 .fixups = &s25hx_t_fixups
929 }, {
930 .id = SNOR_ID(0x34, 0x2a, 0x1b, 0x0f, 0x03, 0x90),
931 .name = "s25hl01gt",
932 .mfr_flags = USE_CLPEF,
933 .fixups = &s25hx_t_fixups
934 }, {
935 .id = SNOR_ID(0x34, 0x2a, 0x1c, 0x0f, 0x00, 0x90),
936 .name = "s25hl02gt",
937 .mfr_flags = USE_CLPEF,
938 .fixups = &s25hx_t_fixups
939 }, {
940 .id = SNOR_ID(0x34, 0x2b, 0x19, 0x0f, 0x08, 0x90),
941 .name = "s25fs256t",
942 .mfr_flags = USE_CLPEF,
943 .fixups = &s25fs256t_fixups
944 }, {
945 .id = SNOR_ID(0x34, 0x2b, 0x1a, 0x0f, 0x03, 0x90),
946 .name = "s25hs512t",
947 .mfr_flags = USE_CLPEF,
948 .fixups = &s25hx_t_fixups
949 }, {
950 .id = SNOR_ID(0x34, 0x2b, 0x1b, 0x0f, 0x03, 0x90),
951 .name = "s25hs01gt",
952 .mfr_flags = USE_CLPEF,
953 .fixups = &s25hx_t_fixups
954 }, {
955 .id = SNOR_ID(0x34, 0x2b, 0x1c, 0x0f, 0x00, 0x90),
956 .name = "s25hs02gt",
957 .mfr_flags = USE_CLPEF,
958 .fixups = &s25hx_t_fixups
959 }, {
960 .id = SNOR_ID(0x34, 0x5a, 0x1a),
961 .name = "s28hl512t",
962 .mfr_flags = USE_CLPEF,
963 .fixups = &s28hx_t_fixups,
964 }, {
965 .id = SNOR_ID(0x34, 0x5a, 0x1b),
966 .name = "s28hl01gt",
967 .mfr_flags = USE_CLPEF,
968 .fixups = &s28hx_t_fixups,
969 }, {
970 .id = SNOR_ID(0x34, 0x5b, 0x1a),
971 .name = "s28hs512t",
972 .mfr_flags = USE_CLPEF,
973 .fixups = &s28hx_t_fixups,
974 }, {
975 .id = SNOR_ID(0x34, 0x5b, 0x1b),
976 .name = "s28hs01gt",
977 .mfr_flags = USE_CLPEF,
978 .fixups = &s28hx_t_fixups,
979 }, {
980 .id = SNOR_ID(0x34, 0x5b, 0x1c),
981 .name = "s28hs02gt",
982 .mfr_flags = USE_CLPEF,
983 .fixups = &s28hx_t_fixups,
984 }, {
985 .id = SNOR_ID(0xef, 0x40, 0x13),
986 .name = "s25fl004k",
987 .size = SZ_512K,
988 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
989 }, {
990 .id = SNOR_ID(0xef, 0x40, 0x14),
991 .name = "s25fl008k",
992 .size = SZ_1M,
993 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
994 }, {
995 .id = SNOR_ID(0xef, 0x40, 0x15),
996 .name = "s25fl016k",
997 .size = SZ_2M,
998 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
999 }, {
1000 .id = SNOR_ID(0xef, 0x40, 0x17),
1001 .name = "s25fl064k",
1002 .size = SZ_8M,
1003 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
1004 }
1005};
1006
1007/**
1008 * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the
1009 * flash is ready for new commands and clear it if there are any errors.
1010 * @nor: pointer to 'struct spi_nor'.
1011 *
1012 * Return: 1 if ready, 0 if not ready, -errno on errors.
1013 */
1014static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor)
1015{
1016 int ret;
1017
1018 ret = spi_nor_read_sr(nor, sr: nor->bouncebuf);
1019 if (ret)
1020 return ret;
1021
1022 if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
1023 if (nor->bouncebuf[0] & SR_E_ERR)
1024 dev_err(nor->dev, "Erase Error occurred\n");
1025 else
1026 dev_err(nor->dev, "Programming Error occurred\n");
1027
1028 spansion_nor_clear_sr(nor);
1029
1030 /*
1031 * WEL bit remains set to one when an erase or page program
1032 * error occurs. Issue a Write Disable command to protect
1033 * against inadvertent writes that can possibly corrupt the
1034 * contents of the memory.
1035 */
1036 ret = spi_nor_write_disable(nor);
1037 if (ret)
1038 return ret;
1039
1040 return -EIO;
1041 }
1042
1043 return !(nor->bouncebuf[0] & SR_WIP);
1044}
1045
1046static int spansion_nor_late_init(struct spi_nor *nor)
1047{
1048 struct spi_nor_flash_parameter *params = nor->params;
1049 struct spansion_nor_params *priv_params;
1050 u8 mfr_flags = nor->info->mfr_flags;
1051
1052 if (params->size > SZ_16M) {
1053 nor->flags |= SNOR_F_4B_OPCODES;
1054 /* No small sector erase for 4-byte command set */
1055 nor->erase_opcode = SPINOR_OP_SE;
1056 nor->mtd.erasesize = nor->info->sector_size ?:
1057 SPI_NOR_DEFAULT_SECTOR_SIZE;
1058 }
1059
1060 if (mfr_flags & (USE_CLSR | USE_CLPEF)) {
1061 priv_params = devm_kmalloc(dev: nor->dev, size: sizeof(*priv_params),
1062 GFP_KERNEL);
1063 if (!priv_params)
1064 return -ENOMEM;
1065
1066 if (mfr_flags & USE_CLSR)
1067 priv_params->clsr = SPINOR_OP_CLSR;
1068 else if (mfr_flags & USE_CLPEF)
1069 priv_params->clsr = SPINOR_OP_CLPEF;
1070
1071 params->priv = priv_params;
1072 params->ready = spansion_nor_sr_ready_and_clear;
1073 }
1074
1075 return 0;
1076}
1077
1078static const struct spi_nor_fixups spansion_nor_fixups = {
1079 .late_init = spansion_nor_late_init,
1080};
1081
1082const struct spi_nor_manufacturer spi_nor_spansion = {
1083 .name = "spansion",
1084 .parts = spansion_nor_parts,
1085 .nparts = ARRAY_SIZE(spansion_nor_parts),
1086 .fixups = &spansion_nor_fixups,
1087};
1088

source code of linux/drivers/mtd/spi-nor/spansion.c