1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6#include <linux/module.h>
7#include <linux/slab.h>
8#include <linux/blk-mq.h>
9#include <linux/parser.h>
10#include <linux/random.h>
11#include <uapi/scsi/fc/fc_fs.h>
12#include <uapi/scsi/fc/fc_els.h>
13
14#include "nvmet.h"
15#include <linux/nvme-fc-driver.h>
16#include <linux/nvme-fc.h>
17#include "../host/fc.h"
18
19
20/* *************************** Data Structures/Defines ****************** */
21
22
23#define NVMET_LS_CTX_COUNT 256
24
25struct nvmet_fc_tgtport;
26struct nvmet_fc_tgt_assoc;
27
28struct nvmet_fc_ls_iod { /* for an LS RQST RCV */
29 struct nvmefc_ls_rsp *lsrsp;
30 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
31
32 struct list_head ls_rcv_list; /* tgtport->ls_rcv_list */
33
34 struct nvmet_fc_tgtport *tgtport;
35 struct nvmet_fc_tgt_assoc *assoc;
36 void *hosthandle;
37
38 union nvmefc_ls_requests *rqstbuf;
39 union nvmefc_ls_responses *rspbuf;
40 u16 rqstdatalen;
41 dma_addr_t rspdma;
42
43 struct scatterlist sg[2];
44
45 struct work_struct work;
46} __aligned(sizeof(unsigned long long));
47
48struct nvmet_fc_ls_req_op { /* for an LS RQST XMT */
49 struct nvmefc_ls_req ls_req;
50
51 struct nvmet_fc_tgtport *tgtport;
52 void *hosthandle;
53
54 int ls_error;
55 struct list_head lsreq_list; /* tgtport->ls_req_list */
56 bool req_queued;
57};
58
59
60/* desired maximum for a single sequence - if sg list allows it */
61#define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
62
63enum nvmet_fcp_datadir {
64 NVMET_FCP_NODATA,
65 NVMET_FCP_WRITE,
66 NVMET_FCP_READ,
67 NVMET_FCP_ABORTED,
68};
69
70struct nvmet_fc_fcp_iod {
71 struct nvmefc_tgt_fcp_req *fcpreq;
72
73 struct nvme_fc_cmd_iu cmdiubuf;
74 struct nvme_fc_ersp_iu rspiubuf;
75 dma_addr_t rspdma;
76 struct scatterlist *next_sg;
77 struct scatterlist *data_sg;
78 int data_sg_cnt;
79 u32 offset;
80 enum nvmet_fcp_datadir io_dir;
81 bool active;
82 bool abort;
83 bool aborted;
84 bool writedataactive;
85 spinlock_t flock;
86
87 struct nvmet_req req;
88 struct work_struct defer_work;
89
90 struct nvmet_fc_tgtport *tgtport;
91 struct nvmet_fc_tgt_queue *queue;
92
93 struct list_head fcp_list; /* tgtport->fcp_list */
94};
95
96struct nvmet_fc_tgtport {
97 struct nvmet_fc_target_port fc_target_port;
98
99 struct list_head tgt_list; /* nvmet_fc_target_list */
100 struct device *dev; /* dev for dma mapping */
101 struct nvmet_fc_target_template *ops;
102
103 struct nvmet_fc_ls_iod *iod;
104 spinlock_t lock;
105 struct list_head ls_rcv_list;
106 struct list_head ls_req_list;
107 struct list_head ls_busylist;
108 struct list_head assoc_list;
109 struct list_head host_list;
110 struct ida assoc_cnt;
111 struct nvmet_fc_port_entry *pe;
112 struct kref ref;
113 u32 max_sg_cnt;
114
115 struct work_struct put_work;
116};
117
118struct nvmet_fc_port_entry {
119 struct nvmet_fc_tgtport *tgtport;
120 struct nvmet_port *port;
121 u64 node_name;
122 u64 port_name;
123 struct list_head pe_list;
124};
125
126struct nvmet_fc_defer_fcp_req {
127 struct list_head req_list;
128 struct nvmefc_tgt_fcp_req *fcp_req;
129};
130
131struct nvmet_fc_tgt_queue {
132 bool ninetypercent;
133 u16 qid;
134 u16 sqsize;
135 u16 ersp_ratio;
136 __le16 sqhd;
137 atomic_t connected;
138 atomic_t sqtail;
139 atomic_t zrspcnt;
140 atomic_t rsn;
141 spinlock_t qlock;
142 struct nvmet_cq nvme_cq;
143 struct nvmet_sq nvme_sq;
144 struct nvmet_fc_tgt_assoc *assoc;
145 struct list_head fod_list;
146 struct list_head pending_cmd_list;
147 struct list_head avail_defer_list;
148 struct workqueue_struct *work_q;
149 struct kref ref;
150 /* array of fcp_iods */
151 struct nvmet_fc_fcp_iod fod[] __counted_by(sqsize);
152} __aligned(sizeof(unsigned long long));
153
154struct nvmet_fc_hostport {
155 struct nvmet_fc_tgtport *tgtport;
156 void *hosthandle;
157 struct list_head host_list;
158 struct kref ref;
159 u8 invalid;
160};
161
162struct nvmet_fc_tgt_assoc {
163 u64 association_id;
164 u32 a_id;
165 atomic_t terminating;
166 struct nvmet_fc_tgtport *tgtport;
167 struct nvmet_fc_hostport *hostport;
168 struct nvmet_fc_ls_iod *rcv_disconn;
169 struct list_head a_list;
170 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1];
171 struct kref ref;
172 struct work_struct del_work;
173};
174
175
176static inline int
177nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
178{
179 return (iodptr - iodptr->tgtport->iod);
180}
181
182static inline int
183nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
184{
185 return (fodptr - fodptr->queue->fod);
186}
187
188
189/*
190 * Association and Connection IDs:
191 *
192 * Association ID will have random number in upper 6 bytes and zero
193 * in lower 2 bytes
194 *
195 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
196 *
197 * note: Association ID = Connection ID for queue 0
198 */
199#define BYTES_FOR_QID sizeof(u16)
200#define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
201#define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
202
203static inline u64
204nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
205{
206 return (assoc->association_id | qid);
207}
208
209static inline u64
210nvmet_fc_getassociationid(u64 connectionid)
211{
212 return connectionid & ~NVMET_FC_QUEUEID_MASK;
213}
214
215static inline u16
216nvmet_fc_getqueueid(u64 connectionid)
217{
218 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
219}
220
221static inline struct nvmet_fc_tgtport *
222targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
223{
224 return container_of(targetport, struct nvmet_fc_tgtport,
225 fc_target_port);
226}
227
228static inline struct nvmet_fc_fcp_iod *
229nvmet_req_to_fod(struct nvmet_req *nvme_req)
230{
231 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
232}
233
234
235/* *************************** Globals **************************** */
236
237
238static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
239
240static LIST_HEAD(nvmet_fc_target_list);
241static DEFINE_IDA(nvmet_fc_tgtport_cnt);
242static LIST_HEAD(nvmet_fc_portentry_list);
243
244
245static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
246static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
247static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
248static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
249static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
250static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
251static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
252static void nvmet_fc_put_tgtport_work(struct work_struct *work)
253{
254 struct nvmet_fc_tgtport *tgtport =
255 container_of(work, struct nvmet_fc_tgtport, put_work);
256
257 nvmet_fc_tgtport_put(tgtport);
258}
259static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
260static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
261 struct nvmet_fc_fcp_iod *fod);
262static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
263static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
264 struct nvmet_fc_ls_iod *iod);
265
266
267/* *********************** FC-NVME DMA Handling **************************** */
268
269/*
270 * The fcloop device passes in a NULL device pointer. Real LLD's will
271 * pass in a valid device pointer. If NULL is passed to the dma mapping
272 * routines, depending on the platform, it may or may not succeed, and
273 * may crash.
274 *
275 * As such:
276 * Wrapper all the dma routines and check the dev pointer.
277 *
278 * If simple mappings (return just a dma address, we'll noop them,
279 * returning a dma address of 0.
280 *
281 * On more complex mappings (dma_map_sg), a pseudo routine fills
282 * in the scatter list, setting all dma addresses to 0.
283 */
284
285static inline dma_addr_t
286fc_dma_map_single(struct device *dev, void *ptr, size_t size,
287 enum dma_data_direction dir)
288{
289 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
290}
291
292static inline int
293fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
294{
295 return dev ? dma_mapping_error(dev, dma_addr) : 0;
296}
297
298static inline void
299fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
300 enum dma_data_direction dir)
301{
302 if (dev)
303 dma_unmap_single(dev, addr, size, dir);
304}
305
306static inline void
307fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
308 enum dma_data_direction dir)
309{
310 if (dev)
311 dma_sync_single_for_cpu(dev, addr, size, dir);
312}
313
314static inline void
315fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
316 enum dma_data_direction dir)
317{
318 if (dev)
319 dma_sync_single_for_device(dev, addr, size, dir);
320}
321
322/* pseudo dma_map_sg call */
323static int
324fc_map_sg(struct scatterlist *sg, int nents)
325{
326 struct scatterlist *s;
327 int i;
328
329 WARN_ON(nents == 0 || sg[0].length == 0);
330
331 for_each_sg(sg, s, nents, i) {
332 s->dma_address = 0L;
333#ifdef CONFIG_NEED_SG_DMA_LENGTH
334 s->dma_length = s->length;
335#endif
336 }
337 return nents;
338}
339
340static inline int
341fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
342 enum dma_data_direction dir)
343{
344 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
345}
346
347static inline void
348fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
349 enum dma_data_direction dir)
350{
351 if (dev)
352 dma_unmap_sg(dev, sg, nents, dir);
353}
354
355
356/* ********************** FC-NVME LS XMT Handling ************************* */
357
358
359static void
360__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
361{
362 struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
363 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
364 unsigned long flags;
365
366 spin_lock_irqsave(&tgtport->lock, flags);
367
368 if (!lsop->req_queued) {
369 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
370 goto out_putwork;
371 }
372
373 list_del(entry: &lsop->lsreq_list);
374
375 lsop->req_queued = false;
376
377 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
378
379 fc_dma_unmap_single(dev: tgtport->dev, addr: lsreq->rqstdma,
380 size: (lsreq->rqstlen + lsreq->rsplen),
381 dir: DMA_BIDIRECTIONAL);
382
383out_putwork:
384 queue_work(wq: nvmet_wq, work: &tgtport->put_work);
385}
386
387static int
388__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
389 struct nvmet_fc_ls_req_op *lsop,
390 void (*done)(struct nvmefc_ls_req *req, int status))
391{
392 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
393 unsigned long flags;
394 int ret = 0;
395
396 if (!tgtport->ops->ls_req)
397 return -EOPNOTSUPP;
398
399 if (!nvmet_fc_tgtport_get(tgtport))
400 return -ESHUTDOWN;
401
402 lsreq->done = done;
403 lsop->req_queued = false;
404 INIT_LIST_HEAD(list: &lsop->lsreq_list);
405
406 lsreq->rqstdma = fc_dma_map_single(dev: tgtport->dev, ptr: lsreq->rqstaddr,
407 size: lsreq->rqstlen + lsreq->rsplen,
408 dir: DMA_BIDIRECTIONAL);
409 if (fc_dma_mapping_error(dev: tgtport->dev, dma_addr: lsreq->rqstdma)) {
410 ret = -EFAULT;
411 goto out_puttgtport;
412 }
413 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
414
415 spin_lock_irqsave(&tgtport->lock, flags);
416
417 list_add_tail(new: &lsop->lsreq_list, head: &tgtport->ls_req_list);
418
419 lsop->req_queued = true;
420
421 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
422
423 ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
424 lsreq);
425 if (ret)
426 goto out_unlink;
427
428 return 0;
429
430out_unlink:
431 lsop->ls_error = ret;
432 spin_lock_irqsave(&tgtport->lock, flags);
433 lsop->req_queued = false;
434 list_del(entry: &lsop->lsreq_list);
435 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
436 fc_dma_unmap_single(dev: tgtport->dev, addr: lsreq->rqstdma,
437 size: (lsreq->rqstlen + lsreq->rsplen),
438 dir: DMA_BIDIRECTIONAL);
439out_puttgtport:
440 nvmet_fc_tgtport_put(tgtport);
441
442 return ret;
443}
444
445static int
446nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
447 struct nvmet_fc_ls_req_op *lsop,
448 void (*done)(struct nvmefc_ls_req *req, int status))
449{
450 /* don't wait for completion */
451
452 return __nvmet_fc_send_ls_req(tgtport, lsop, done);
453}
454
455static void
456nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
457{
458 struct nvmet_fc_ls_req_op *lsop =
459 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
460
461 __nvmet_fc_finish_ls_req(lsop);
462
463 /* fc-nvme target doesn't care about success or failure of cmd */
464
465 kfree(objp: lsop);
466}
467
468/*
469 * This routine sends a FC-NVME LS to disconnect (aka terminate)
470 * the FC-NVME Association. Terminating the association also
471 * terminates the FC-NVME connections (per queue, both admin and io
472 * queues) that are part of the association. E.g. things are torn
473 * down, and the related FC-NVME Association ID and Connection IDs
474 * become invalid.
475 *
476 * The behavior of the fc-nvme target is such that it's
477 * understanding of the association and connections will implicitly
478 * be torn down. The action is implicit as it may be due to a loss of
479 * connectivity with the fc-nvme host, so the target may never get a
480 * response even if it tried. As such, the action of this routine
481 * is to asynchronously send the LS, ignore any results of the LS, and
482 * continue on with terminating the association. If the fc-nvme host
483 * is present and receives the LS, it too can tear down.
484 */
485static void
486nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
487{
488 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
489 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
490 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
491 struct nvmet_fc_ls_req_op *lsop;
492 struct nvmefc_ls_req *lsreq;
493 int ret;
494
495 /*
496 * If ls_req is NULL or no hosthandle, it's an older lldd and no
497 * message is normal. Otherwise, send unless the hostport has
498 * already been invalidated by the lldd.
499 */
500 if (!tgtport->ops->ls_req || assoc->hostport->invalid)
501 return;
502
503 lsop = kzalloc(size: (sizeof(*lsop) +
504 sizeof(*discon_rqst) + sizeof(*discon_acc) +
505 tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
506 if (!lsop) {
507 dev_info(tgtport->dev,
508 "{%d:%d} send Disconnect Association failed: ENOMEM\n",
509 tgtport->fc_target_port.port_num, assoc->a_id);
510 return;
511 }
512
513 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
514 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
515 lsreq = &lsop->ls_req;
516 if (tgtport->ops->lsrqst_priv_sz)
517 lsreq->private = (void *)&discon_acc[1];
518 else
519 lsreq->private = NULL;
520
521 lsop->tgtport = tgtport;
522 lsop->hosthandle = assoc->hostport->hosthandle;
523
524 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
525 association_id: assoc->association_id);
526
527 ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
528 done: nvmet_fc_disconnect_assoc_done);
529 if (ret) {
530 dev_info(tgtport->dev,
531 "{%d:%d} XMT Disconnect Association failed: %d\n",
532 tgtport->fc_target_port.port_num, assoc->a_id, ret);
533 kfree(objp: lsop);
534 }
535}
536
537
538/* *********************** FC-NVME Port Management ************************ */
539
540
541static int
542nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
543{
544 struct nvmet_fc_ls_iod *iod;
545 int i;
546
547 iod = kcalloc(NVMET_LS_CTX_COUNT, size: sizeof(struct nvmet_fc_ls_iod),
548 GFP_KERNEL);
549 if (!iod)
550 return -ENOMEM;
551
552 tgtport->iod = iod;
553
554 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
555 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
556 iod->tgtport = tgtport;
557 list_add_tail(new: &iod->ls_rcv_list, head: &tgtport->ls_rcv_list);
558
559 iod->rqstbuf = kzalloc(size: sizeof(union nvmefc_ls_requests) +
560 sizeof(union nvmefc_ls_responses),
561 GFP_KERNEL);
562 if (!iod->rqstbuf)
563 goto out_fail;
564
565 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
566
567 iod->rspdma = fc_dma_map_single(dev: tgtport->dev, ptr: iod->rspbuf,
568 size: sizeof(*iod->rspbuf),
569 dir: DMA_TO_DEVICE);
570 if (fc_dma_mapping_error(dev: tgtport->dev, dma_addr: iod->rspdma))
571 goto out_fail;
572 }
573
574 return 0;
575
576out_fail:
577 kfree(objp: iod->rqstbuf);
578 list_del(entry: &iod->ls_rcv_list);
579 for (iod--, i--; i >= 0; iod--, i--) {
580 fc_dma_unmap_single(dev: tgtport->dev, addr: iod->rspdma,
581 size: sizeof(*iod->rspbuf), dir: DMA_TO_DEVICE);
582 kfree(objp: iod->rqstbuf);
583 list_del(entry: &iod->ls_rcv_list);
584 }
585
586 kfree(objp: iod);
587
588 return -EFAULT;
589}
590
591static void
592nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
593{
594 struct nvmet_fc_ls_iod *iod = tgtport->iod;
595 int i;
596
597 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
598 fc_dma_unmap_single(dev: tgtport->dev,
599 addr: iod->rspdma, size: sizeof(*iod->rspbuf),
600 dir: DMA_TO_DEVICE);
601 kfree(objp: iod->rqstbuf);
602 list_del(entry: &iod->ls_rcv_list);
603 }
604 kfree(objp: tgtport->iod);
605}
606
607static struct nvmet_fc_ls_iod *
608nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
609{
610 struct nvmet_fc_ls_iod *iod;
611 unsigned long flags;
612
613 spin_lock_irqsave(&tgtport->lock, flags);
614 iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
615 struct nvmet_fc_ls_iod, ls_rcv_list);
616 if (iod)
617 list_move_tail(list: &iod->ls_rcv_list, head: &tgtport->ls_busylist);
618 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
619 return iod;
620}
621
622
623static void
624nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
625 struct nvmet_fc_ls_iod *iod)
626{
627 unsigned long flags;
628
629 spin_lock_irqsave(&tgtport->lock, flags);
630 list_move(list: &iod->ls_rcv_list, head: &tgtport->ls_rcv_list);
631 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
632}
633
634static void
635nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
636 struct nvmet_fc_tgt_queue *queue)
637{
638 struct nvmet_fc_fcp_iod *fod = queue->fod;
639 int i;
640
641 for (i = 0; i < queue->sqsize; fod++, i++) {
642 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
643 fod->tgtport = tgtport;
644 fod->queue = queue;
645 fod->active = false;
646 fod->abort = false;
647 fod->aborted = false;
648 fod->fcpreq = NULL;
649 list_add_tail(new: &fod->fcp_list, head: &queue->fod_list);
650 spin_lock_init(&fod->flock);
651
652 fod->rspdma = fc_dma_map_single(dev: tgtport->dev, ptr: &fod->rspiubuf,
653 size: sizeof(fod->rspiubuf), dir: DMA_TO_DEVICE);
654 if (fc_dma_mapping_error(dev: tgtport->dev, dma_addr: fod->rspdma)) {
655 list_del(entry: &fod->fcp_list);
656 for (fod--, i--; i >= 0; fod--, i--) {
657 fc_dma_unmap_single(dev: tgtport->dev, addr: fod->rspdma,
658 size: sizeof(fod->rspiubuf),
659 dir: DMA_TO_DEVICE);
660 fod->rspdma = 0L;
661 list_del(entry: &fod->fcp_list);
662 }
663
664 return;
665 }
666 }
667}
668
669static void
670nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
671 struct nvmet_fc_tgt_queue *queue)
672{
673 struct nvmet_fc_fcp_iod *fod = queue->fod;
674 int i;
675
676 for (i = 0; i < queue->sqsize; fod++, i++) {
677 if (fod->rspdma)
678 fc_dma_unmap_single(dev: tgtport->dev, addr: fod->rspdma,
679 size: sizeof(fod->rspiubuf), dir: DMA_TO_DEVICE);
680 }
681}
682
683static struct nvmet_fc_fcp_iod *
684nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
685{
686 struct nvmet_fc_fcp_iod *fod;
687
688 lockdep_assert_held(&queue->qlock);
689
690 fod = list_first_entry_or_null(&queue->fod_list,
691 struct nvmet_fc_fcp_iod, fcp_list);
692 if (fod) {
693 list_del(entry: &fod->fcp_list);
694 fod->active = true;
695 /*
696 * no queue reference is taken, as it was taken by the
697 * queue lookup just prior to the allocation. The iod
698 * will "inherit" that reference.
699 */
700 }
701 return fod;
702}
703
704
705static void
706nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
707 struct nvmet_fc_tgt_queue *queue,
708 struct nvmefc_tgt_fcp_req *fcpreq)
709{
710 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
711
712 /*
713 * put all admin cmds on hw queue id 0. All io commands go to
714 * the respective hw queue based on a modulo basis
715 */
716 fcpreq->hwqid = queue->qid ?
717 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
718
719 nvmet_fc_handle_fcp_rqst(tgtport, fod);
720}
721
722static void
723nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
724{
725 struct nvmet_fc_fcp_iod *fod =
726 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
727
728 /* Submit deferred IO for processing */
729 nvmet_fc_queue_fcp_req(tgtport: fod->tgtport, queue: fod->queue, fcpreq: fod->fcpreq);
730
731}
732
733static void
734nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
735 struct nvmet_fc_fcp_iod *fod)
736{
737 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
738 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
739 struct nvmet_fc_defer_fcp_req *deferfcp;
740 unsigned long flags;
741
742 fc_dma_sync_single_for_cpu(dev: tgtport->dev, addr: fod->rspdma,
743 size: sizeof(fod->rspiubuf), dir: DMA_TO_DEVICE);
744
745 fcpreq->nvmet_fc_private = NULL;
746
747 fod->active = false;
748 fod->abort = false;
749 fod->aborted = false;
750 fod->writedataactive = false;
751 fod->fcpreq = NULL;
752
753 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
754
755 /* release the queue lookup reference on the completed IO */
756 nvmet_fc_tgt_q_put(queue);
757
758 spin_lock_irqsave(&queue->qlock, flags);
759 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
760 struct nvmet_fc_defer_fcp_req, req_list);
761 if (!deferfcp) {
762 list_add_tail(new: &fod->fcp_list, head: &fod->queue->fod_list);
763 spin_unlock_irqrestore(lock: &queue->qlock, flags);
764 return;
765 }
766
767 /* Re-use the fod for the next pending cmd that was deferred */
768 list_del(entry: &deferfcp->req_list);
769
770 fcpreq = deferfcp->fcp_req;
771
772 /* deferfcp can be reused for another IO at a later date */
773 list_add_tail(new: &deferfcp->req_list, head: &queue->avail_defer_list);
774
775 spin_unlock_irqrestore(lock: &queue->qlock, flags);
776
777 /* Save NVME CMD IO in fod */
778 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
779
780 /* Setup new fcpreq to be processed */
781 fcpreq->rspaddr = NULL;
782 fcpreq->rsplen = 0;
783 fcpreq->nvmet_fc_private = fod;
784 fod->fcpreq = fcpreq;
785 fod->active = true;
786
787 /* inform LLDD IO is now being processed */
788 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
789
790 /*
791 * Leave the queue lookup get reference taken when
792 * fod was originally allocated.
793 */
794
795 queue_work(wq: queue->work_q, work: &fod->defer_work);
796}
797
798static struct nvmet_fc_tgt_queue *
799nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
800 u16 qid, u16 sqsize)
801{
802 struct nvmet_fc_tgt_queue *queue;
803 int ret;
804
805 if (qid > NVMET_NR_QUEUES)
806 return NULL;
807
808 queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
809 if (!queue)
810 return NULL;
811
812 queue->work_q = alloc_workqueue(fmt: "ntfc%d.%d.%d", flags: 0, max_active: 0,
813 assoc->tgtport->fc_target_port.port_num,
814 assoc->a_id, qid);
815 if (!queue->work_q)
816 goto out_free_queue;
817
818 queue->qid = qid;
819 queue->sqsize = sqsize;
820 queue->assoc = assoc;
821 INIT_LIST_HEAD(list: &queue->fod_list);
822 INIT_LIST_HEAD(list: &queue->avail_defer_list);
823 INIT_LIST_HEAD(list: &queue->pending_cmd_list);
824 atomic_set(v: &queue->connected, i: 0);
825 atomic_set(v: &queue->sqtail, i: 0);
826 atomic_set(v: &queue->rsn, i: 1);
827 atomic_set(v: &queue->zrspcnt, i: 0);
828 spin_lock_init(&queue->qlock);
829 kref_init(kref: &queue->ref);
830
831 nvmet_fc_prep_fcp_iodlist(tgtport: assoc->tgtport, queue);
832
833 ret = nvmet_sq_init(sq: &queue->nvme_sq);
834 if (ret)
835 goto out_fail_iodlist;
836
837 WARN_ON(assoc->queues[qid]);
838 assoc->queues[qid] = queue;
839
840 return queue;
841
842out_fail_iodlist:
843 nvmet_fc_destroy_fcp_iodlist(tgtport: assoc->tgtport, queue);
844 destroy_workqueue(wq: queue->work_q);
845out_free_queue:
846 kfree(objp: queue);
847 return NULL;
848}
849
850
851static void
852nvmet_fc_tgt_queue_free(struct kref *ref)
853{
854 struct nvmet_fc_tgt_queue *queue =
855 container_of(ref, struct nvmet_fc_tgt_queue, ref);
856
857 nvmet_fc_destroy_fcp_iodlist(tgtport: queue->assoc->tgtport, queue);
858
859 destroy_workqueue(wq: queue->work_q);
860
861 kfree(objp: queue);
862}
863
864static void
865nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
866{
867 kref_put(kref: &queue->ref, release: nvmet_fc_tgt_queue_free);
868}
869
870static int
871nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
872{
873 return kref_get_unless_zero(kref: &queue->ref);
874}
875
876
877static void
878nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
879{
880 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
881 struct nvmet_fc_fcp_iod *fod = queue->fod;
882 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
883 unsigned long flags;
884 int i;
885 bool disconnect;
886
887 disconnect = atomic_xchg(v: &queue->connected, new: 0);
888
889 /* if not connected, nothing to do */
890 if (!disconnect)
891 return;
892
893 spin_lock_irqsave(&queue->qlock, flags);
894 /* abort outstanding io's */
895 for (i = 0; i < queue->sqsize; fod++, i++) {
896 if (fod->active) {
897 spin_lock(lock: &fod->flock);
898 fod->abort = true;
899 /*
900 * only call lldd abort routine if waiting for
901 * writedata. other outstanding ops should finish
902 * on their own.
903 */
904 if (fod->writedataactive) {
905 fod->aborted = true;
906 spin_unlock(lock: &fod->flock);
907 tgtport->ops->fcp_abort(
908 &tgtport->fc_target_port, fod->fcpreq);
909 } else
910 spin_unlock(lock: &fod->flock);
911 }
912 }
913
914 /* Cleanup defer'ed IOs in queue */
915 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
916 req_list) {
917 list_del(entry: &deferfcp->req_list);
918 kfree(objp: deferfcp);
919 }
920
921 for (;;) {
922 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
923 struct nvmet_fc_defer_fcp_req, req_list);
924 if (!deferfcp)
925 break;
926
927 list_del(entry: &deferfcp->req_list);
928 spin_unlock_irqrestore(lock: &queue->qlock, flags);
929
930 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
931 deferfcp->fcp_req);
932
933 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
934 deferfcp->fcp_req);
935
936 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
937 deferfcp->fcp_req);
938
939 /* release the queue lookup reference */
940 nvmet_fc_tgt_q_put(queue);
941
942 kfree(objp: deferfcp);
943
944 spin_lock_irqsave(&queue->qlock, flags);
945 }
946 spin_unlock_irqrestore(lock: &queue->qlock, flags);
947
948 flush_workqueue(queue->work_q);
949
950 nvmet_sq_destroy(sq: &queue->nvme_sq);
951
952 nvmet_fc_tgt_q_put(queue);
953}
954
955static struct nvmet_fc_tgt_queue *
956nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
957 u64 connection_id)
958{
959 struct nvmet_fc_tgt_assoc *assoc;
960 struct nvmet_fc_tgt_queue *queue;
961 u64 association_id = nvmet_fc_getassociationid(connectionid: connection_id);
962 u16 qid = nvmet_fc_getqueueid(connectionid: connection_id);
963
964 if (qid > NVMET_NR_QUEUES)
965 return NULL;
966
967 rcu_read_lock();
968 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
969 if (association_id == assoc->association_id) {
970 queue = assoc->queues[qid];
971 if (queue &&
972 (!atomic_read(v: &queue->connected) ||
973 !nvmet_fc_tgt_q_get(queue)))
974 queue = NULL;
975 rcu_read_unlock();
976 return queue;
977 }
978 }
979 rcu_read_unlock();
980 return NULL;
981}
982
983static void
984nvmet_fc_hostport_free(struct kref *ref)
985{
986 struct nvmet_fc_hostport *hostport =
987 container_of(ref, struct nvmet_fc_hostport, ref);
988 struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
989 unsigned long flags;
990
991 spin_lock_irqsave(&tgtport->lock, flags);
992 list_del(entry: &hostport->host_list);
993 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
994 if (tgtport->ops->host_release && hostport->invalid)
995 tgtport->ops->host_release(hostport->hosthandle);
996 kfree(objp: hostport);
997 nvmet_fc_tgtport_put(tgtport);
998}
999
1000static void
1001nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1002{
1003 kref_put(kref: &hostport->ref, release: nvmet_fc_hostport_free);
1004}
1005
1006static int
1007nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1008{
1009 return kref_get_unless_zero(kref: &hostport->ref);
1010}
1011
1012static void
1013nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1014{
1015 /* if LLDD not implemented, leave as NULL */
1016 if (!hostport || !hostport->hosthandle)
1017 return;
1018
1019 nvmet_fc_hostport_put(hostport);
1020}
1021
1022static struct nvmet_fc_hostport *
1023nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1024{
1025 struct nvmet_fc_hostport *host;
1026
1027 lockdep_assert_held(&tgtport->lock);
1028
1029 list_for_each_entry(host, &tgtport->host_list, host_list) {
1030 if (host->hosthandle == hosthandle && !host->invalid) {
1031 if (nvmet_fc_hostport_get(hostport: host))
1032 return host;
1033 }
1034 }
1035
1036 return NULL;
1037}
1038
1039static struct nvmet_fc_hostport *
1040nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1041{
1042 struct nvmet_fc_hostport *newhost, *match = NULL;
1043 unsigned long flags;
1044
1045 /* if LLDD not implemented, leave as NULL */
1046 if (!hosthandle)
1047 return NULL;
1048
1049 /*
1050 * take reference for what will be the newly allocated hostport if
1051 * we end up using a new allocation
1052 */
1053 if (!nvmet_fc_tgtport_get(tgtport))
1054 return ERR_PTR(error: -EINVAL);
1055
1056 spin_lock_irqsave(&tgtport->lock, flags);
1057 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1058 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1059
1060 if (match) {
1061 /* no new allocation - release reference */
1062 nvmet_fc_tgtport_put(tgtport);
1063 return match;
1064 }
1065
1066 newhost = kzalloc(size: sizeof(*newhost), GFP_KERNEL);
1067 if (!newhost) {
1068 /* no new allocation - release reference */
1069 nvmet_fc_tgtport_put(tgtport);
1070 return ERR_PTR(error: -ENOMEM);
1071 }
1072
1073 spin_lock_irqsave(&tgtport->lock, flags);
1074 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1075 if (match) {
1076 /* new allocation not needed */
1077 kfree(objp: newhost);
1078 newhost = match;
1079 } else {
1080 newhost->tgtport = tgtport;
1081 newhost->hosthandle = hosthandle;
1082 INIT_LIST_HEAD(list: &newhost->host_list);
1083 kref_init(kref: &newhost->ref);
1084
1085 list_add_tail(new: &newhost->host_list, head: &tgtport->host_list);
1086 }
1087 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1088
1089 return newhost;
1090}
1091
1092static void
1093nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1094{
1095 nvmet_fc_delete_target_assoc(assoc);
1096 nvmet_fc_tgt_a_put(assoc);
1097}
1098
1099static void
1100nvmet_fc_delete_assoc_work(struct work_struct *work)
1101{
1102 struct nvmet_fc_tgt_assoc *assoc =
1103 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1104 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1105
1106 nvmet_fc_delete_assoc(assoc);
1107 nvmet_fc_tgtport_put(tgtport);
1108}
1109
1110static void
1111nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1112{
1113 nvmet_fc_tgtport_get(tgtport: assoc->tgtport);
1114 queue_work(wq: nvmet_wq, work: &assoc->del_work);
1115}
1116
1117static bool
1118nvmet_fc_assoc_exists(struct nvmet_fc_tgtport *tgtport, u64 association_id)
1119{
1120 struct nvmet_fc_tgt_assoc *a;
1121 bool found = false;
1122
1123 rcu_read_lock();
1124 list_for_each_entry_rcu(a, &tgtport->assoc_list, a_list) {
1125 if (association_id == a->association_id) {
1126 found = true;
1127 break;
1128 }
1129 }
1130 rcu_read_unlock();
1131
1132 return found;
1133}
1134
1135static struct nvmet_fc_tgt_assoc *
1136nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1137{
1138 struct nvmet_fc_tgt_assoc *assoc;
1139 unsigned long flags;
1140 bool done;
1141 u64 ran;
1142 int idx;
1143
1144 if (!tgtport->pe)
1145 return NULL;
1146
1147 assoc = kzalloc(size: sizeof(*assoc), GFP_KERNEL);
1148 if (!assoc)
1149 return NULL;
1150
1151 idx = ida_alloc(ida: &tgtport->assoc_cnt, GFP_KERNEL);
1152 if (idx < 0)
1153 goto out_free_assoc;
1154
1155 assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1156 if (IS_ERR(ptr: assoc->hostport))
1157 goto out_ida;
1158
1159 assoc->tgtport = tgtport;
1160 assoc->a_id = idx;
1161 INIT_LIST_HEAD(list: &assoc->a_list);
1162 kref_init(kref: &assoc->ref);
1163 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1164 atomic_set(v: &assoc->terminating, i: 0);
1165
1166 done = false;
1167 do {
1168 get_random_bytes(buf: &ran, len: sizeof(ran) - BYTES_FOR_QID);
1169 ran = ran << BYTES_FOR_QID_SHIFT;
1170
1171 spin_lock_irqsave(&tgtport->lock, flags);
1172 if (!nvmet_fc_assoc_exists(tgtport, association_id: ran)) {
1173 assoc->association_id = ran;
1174 list_add_tail_rcu(new: &assoc->a_list, head: &tgtport->assoc_list);
1175 done = true;
1176 }
1177 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1178 } while (!done);
1179
1180 return assoc;
1181
1182out_ida:
1183 ida_free(&tgtport->assoc_cnt, id: idx);
1184out_free_assoc:
1185 kfree(objp: assoc);
1186 return NULL;
1187}
1188
1189static void
1190nvmet_fc_target_assoc_free(struct kref *ref)
1191{
1192 struct nvmet_fc_tgt_assoc *assoc =
1193 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1194 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1195 struct nvmet_fc_ls_iod *oldls;
1196 unsigned long flags;
1197 int i;
1198
1199 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1200 if (assoc->queues[i])
1201 nvmet_fc_delete_target_queue(queue: assoc->queues[i]);
1202 }
1203
1204 /* Send Disconnect now that all i/o has completed */
1205 nvmet_fc_xmt_disconnect_assoc(assoc);
1206
1207 nvmet_fc_free_hostport(hostport: assoc->hostport);
1208 spin_lock_irqsave(&tgtport->lock, flags);
1209 oldls = assoc->rcv_disconn;
1210 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1211 /* if pending Rcv Disconnect Association LS, send rsp now */
1212 if (oldls)
1213 nvmet_fc_xmt_ls_rsp(tgtport, iod: oldls);
1214 ida_free(&tgtport->assoc_cnt, id: assoc->a_id);
1215 dev_info(tgtport->dev,
1216 "{%d:%d} Association freed\n",
1217 tgtport->fc_target_port.port_num, assoc->a_id);
1218 kfree(objp: assoc);
1219}
1220
1221static void
1222nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1223{
1224 kref_put(kref: &assoc->ref, release: nvmet_fc_target_assoc_free);
1225}
1226
1227static int
1228nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1229{
1230 return kref_get_unless_zero(kref: &assoc->ref);
1231}
1232
1233static void
1234nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1235{
1236 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1237 unsigned long flags;
1238 int i, terminating;
1239
1240 terminating = atomic_xchg(v: &assoc->terminating, new: 1);
1241
1242 /* if already terminating, do nothing */
1243 if (terminating)
1244 return;
1245
1246 spin_lock_irqsave(&tgtport->lock, flags);
1247 list_del_rcu(entry: &assoc->a_list);
1248 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1249
1250 synchronize_rcu();
1251
1252 /* ensure all in-flight I/Os have been processed */
1253 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1254 if (assoc->queues[i])
1255 flush_workqueue(assoc->queues[i]->work_q);
1256 }
1257
1258 dev_info(tgtport->dev,
1259 "{%d:%d} Association deleted\n",
1260 tgtport->fc_target_port.port_num, assoc->a_id);
1261}
1262
1263static struct nvmet_fc_tgt_assoc *
1264nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1265 u64 association_id)
1266{
1267 struct nvmet_fc_tgt_assoc *assoc;
1268 struct nvmet_fc_tgt_assoc *ret = NULL;
1269
1270 rcu_read_lock();
1271 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1272 if (association_id == assoc->association_id) {
1273 ret = assoc;
1274 if (!nvmet_fc_tgt_a_get(assoc))
1275 ret = NULL;
1276 break;
1277 }
1278 }
1279 rcu_read_unlock();
1280
1281 return ret;
1282}
1283
1284static void
1285nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1286 struct nvmet_fc_port_entry *pe,
1287 struct nvmet_port *port)
1288{
1289 lockdep_assert_held(&nvmet_fc_tgtlock);
1290
1291 pe->tgtport = tgtport;
1292 tgtport->pe = pe;
1293
1294 pe->port = port;
1295 port->priv = pe;
1296
1297 pe->node_name = tgtport->fc_target_port.node_name;
1298 pe->port_name = tgtport->fc_target_port.port_name;
1299 INIT_LIST_HEAD(list: &pe->pe_list);
1300
1301 list_add_tail(new: &pe->pe_list, head: &nvmet_fc_portentry_list);
1302}
1303
1304static void
1305nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1306{
1307 unsigned long flags;
1308
1309 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1310 if (pe->tgtport)
1311 pe->tgtport->pe = NULL;
1312 list_del(entry: &pe->pe_list);
1313 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1314}
1315
1316/*
1317 * called when a targetport deregisters. Breaks the relationship
1318 * with the nvmet port, but leaves the port_entry in place so that
1319 * re-registration can resume operation.
1320 */
1321static void
1322nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1323{
1324 struct nvmet_fc_port_entry *pe;
1325 unsigned long flags;
1326
1327 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1328 pe = tgtport->pe;
1329 if (pe)
1330 pe->tgtport = NULL;
1331 tgtport->pe = NULL;
1332 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1333}
1334
1335/*
1336 * called when a new targetport is registered. Looks in the
1337 * existing nvmet port_entries to see if the nvmet layer is
1338 * configured for the targetport's wwn's. (the targetport existed,
1339 * nvmet configured, the lldd unregistered the tgtport, and is now
1340 * reregistering the same targetport). If so, set the nvmet port
1341 * port entry on the targetport.
1342 */
1343static void
1344nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1345{
1346 struct nvmet_fc_port_entry *pe;
1347 unsigned long flags;
1348
1349 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1350 list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1351 if (tgtport->fc_target_port.node_name == pe->node_name &&
1352 tgtport->fc_target_port.port_name == pe->port_name) {
1353 WARN_ON(pe->tgtport);
1354 tgtport->pe = pe;
1355 pe->tgtport = tgtport;
1356 break;
1357 }
1358 }
1359 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1360}
1361
1362/**
1363 * nvmet_fc_register_targetport - transport entry point called by an
1364 * LLDD to register the existence of a local
1365 * NVME subystem FC port.
1366 * @pinfo: pointer to information about the port to be registered
1367 * @template: LLDD entrypoints and operational parameters for the port
1368 * @dev: physical hardware device node port corresponds to. Will be
1369 * used for DMA mappings
1370 * @portptr: pointer to a local port pointer. Upon success, the routine
1371 * will allocate a nvme_fc_local_port structure and place its
1372 * address in the local port pointer. Upon failure, local port
1373 * pointer will be set to NULL.
1374 *
1375 * Returns:
1376 * a completion status. Must be 0 upon success; a negative errno
1377 * (ex: -ENXIO) upon failure.
1378 */
1379int
1380nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1381 struct nvmet_fc_target_template *template,
1382 struct device *dev,
1383 struct nvmet_fc_target_port **portptr)
1384{
1385 struct nvmet_fc_tgtport *newrec;
1386 unsigned long flags;
1387 int ret, idx;
1388
1389 if (!template->xmt_ls_rsp || !template->fcp_op ||
1390 !template->fcp_abort ||
1391 !template->fcp_req_release || !template->targetport_delete ||
1392 !template->max_hw_queues || !template->max_sgl_segments ||
1393 !template->max_dif_sgl_segments || !template->dma_boundary) {
1394 ret = -EINVAL;
1395 goto out_regtgt_failed;
1396 }
1397
1398 newrec = kzalloc(size: (sizeof(*newrec) + template->target_priv_sz),
1399 GFP_KERNEL);
1400 if (!newrec) {
1401 ret = -ENOMEM;
1402 goto out_regtgt_failed;
1403 }
1404
1405 idx = ida_alloc(ida: &nvmet_fc_tgtport_cnt, GFP_KERNEL);
1406 if (idx < 0) {
1407 ret = -ENOSPC;
1408 goto out_fail_kfree;
1409 }
1410
1411 if (!get_device(dev) && dev) {
1412 ret = -ENODEV;
1413 goto out_ida_put;
1414 }
1415
1416 newrec->fc_target_port.node_name = pinfo->node_name;
1417 newrec->fc_target_port.port_name = pinfo->port_name;
1418 if (template->target_priv_sz)
1419 newrec->fc_target_port.private = &newrec[1];
1420 else
1421 newrec->fc_target_port.private = NULL;
1422 newrec->fc_target_port.port_id = pinfo->port_id;
1423 newrec->fc_target_port.port_num = idx;
1424 INIT_LIST_HEAD(list: &newrec->tgt_list);
1425 newrec->dev = dev;
1426 newrec->ops = template;
1427 spin_lock_init(&newrec->lock);
1428 INIT_LIST_HEAD(list: &newrec->ls_rcv_list);
1429 INIT_LIST_HEAD(list: &newrec->ls_req_list);
1430 INIT_LIST_HEAD(list: &newrec->ls_busylist);
1431 INIT_LIST_HEAD(list: &newrec->assoc_list);
1432 INIT_LIST_HEAD(list: &newrec->host_list);
1433 kref_init(kref: &newrec->ref);
1434 ida_init(ida: &newrec->assoc_cnt);
1435 newrec->max_sg_cnt = template->max_sgl_segments;
1436 INIT_WORK(&newrec->put_work, nvmet_fc_put_tgtport_work);
1437
1438 ret = nvmet_fc_alloc_ls_iodlist(tgtport: newrec);
1439 if (ret) {
1440 ret = -ENOMEM;
1441 goto out_free_newrec;
1442 }
1443
1444 nvmet_fc_portentry_rebind_tgt(tgtport: newrec);
1445
1446 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1447 list_add_tail(new: &newrec->tgt_list, head: &nvmet_fc_target_list);
1448 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1449
1450 *portptr = &newrec->fc_target_port;
1451 return 0;
1452
1453out_free_newrec:
1454 put_device(dev);
1455out_ida_put:
1456 ida_free(&nvmet_fc_tgtport_cnt, id: idx);
1457out_fail_kfree:
1458 kfree(objp: newrec);
1459out_regtgt_failed:
1460 *portptr = NULL;
1461 return ret;
1462}
1463EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1464
1465
1466static void
1467nvmet_fc_free_tgtport(struct kref *ref)
1468{
1469 struct nvmet_fc_tgtport *tgtport =
1470 container_of(ref, struct nvmet_fc_tgtport, ref);
1471 struct device *dev = tgtport->dev;
1472 unsigned long flags;
1473
1474 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1475 list_del(entry: &tgtport->tgt_list);
1476 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1477
1478 nvmet_fc_free_ls_iodlist(tgtport);
1479
1480 /* let the LLDD know we've finished tearing it down */
1481 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1482
1483 ida_free(&nvmet_fc_tgtport_cnt,
1484 id: tgtport->fc_target_port.port_num);
1485
1486 ida_destroy(ida: &tgtport->assoc_cnt);
1487
1488 kfree(objp: tgtport);
1489
1490 put_device(dev);
1491}
1492
1493static void
1494nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1495{
1496 kref_put(kref: &tgtport->ref, release: nvmet_fc_free_tgtport);
1497}
1498
1499static int
1500nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1501{
1502 return kref_get_unless_zero(kref: &tgtport->ref);
1503}
1504
1505static void
1506__nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1507{
1508 struct nvmet_fc_tgt_assoc *assoc;
1509
1510 rcu_read_lock();
1511 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1512 if (!nvmet_fc_tgt_a_get(assoc))
1513 continue;
1514 nvmet_fc_schedule_delete_assoc(assoc);
1515 nvmet_fc_tgt_a_put(assoc);
1516 }
1517 rcu_read_unlock();
1518}
1519
1520/**
1521 * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1522 * to remove references to a hosthandle for LS's.
1523 *
1524 * The nvmet-fc layer ensures that any references to the hosthandle
1525 * on the targetport are forgotten (set to NULL). The LLDD will
1526 * typically call this when a login with a remote host port has been
1527 * lost, thus LS's for the remote host port are no longer possible.
1528 *
1529 * If an LS request is outstanding to the targetport/hosthandle (or
1530 * issued concurrently with the call to invalidate the host), the
1531 * LLDD is responsible for terminating/aborting the LS and completing
1532 * the LS request. It is recommended that these terminations/aborts
1533 * occur after calling to invalidate the host handle to avoid additional
1534 * retries by the nvmet-fc transport. The nvmet-fc transport may
1535 * continue to reference host handle while it cleans up outstanding
1536 * NVME associations. The nvmet-fc transport will call the
1537 * ops->host_release() callback to notify the LLDD that all references
1538 * are complete and the related host handle can be recovered.
1539 * Note: if there are no references, the callback may be called before
1540 * the invalidate host call returns.
1541 *
1542 * @target_port: pointer to the (registered) target port that a prior
1543 * LS was received on and which supplied the transport the
1544 * hosthandle.
1545 * @hosthandle: the handle (pointer) that represents the host port
1546 * that no longer has connectivity and that LS's should
1547 * no longer be directed to.
1548 */
1549void
1550nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1551 void *hosthandle)
1552{
1553 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(targetport: target_port);
1554 struct nvmet_fc_tgt_assoc *assoc, *next;
1555 unsigned long flags;
1556 bool noassoc = true;
1557
1558 spin_lock_irqsave(&tgtport->lock, flags);
1559 list_for_each_entry_safe(assoc, next,
1560 &tgtport->assoc_list, a_list) {
1561 if (assoc->hostport->hosthandle != hosthandle)
1562 continue;
1563 if (!nvmet_fc_tgt_a_get(assoc))
1564 continue;
1565 assoc->hostport->invalid = 1;
1566 noassoc = false;
1567 nvmet_fc_schedule_delete_assoc(assoc);
1568 nvmet_fc_tgt_a_put(assoc);
1569 }
1570 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1571
1572 /* if there's nothing to wait for - call the callback */
1573 if (noassoc && tgtport->ops->host_release)
1574 tgtport->ops->host_release(hosthandle);
1575}
1576EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1577
1578/*
1579 * nvmet layer has called to terminate an association
1580 */
1581static void
1582nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1583{
1584 struct nvmet_fc_tgtport *tgtport, *next;
1585 struct nvmet_fc_tgt_assoc *assoc;
1586 struct nvmet_fc_tgt_queue *queue;
1587 unsigned long flags;
1588 bool found_ctrl = false;
1589
1590 /* this is a bit ugly, but don't want to make locks layered */
1591 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1592 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1593 tgt_list) {
1594 if (!nvmet_fc_tgtport_get(tgtport))
1595 continue;
1596 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1597
1598 rcu_read_lock();
1599 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1600 queue = assoc->queues[0];
1601 if (queue && queue->nvme_sq.ctrl == ctrl) {
1602 if (nvmet_fc_tgt_a_get(assoc))
1603 found_ctrl = true;
1604 break;
1605 }
1606 }
1607 rcu_read_unlock();
1608
1609 nvmet_fc_tgtport_put(tgtport);
1610
1611 if (found_ctrl) {
1612 nvmet_fc_schedule_delete_assoc(assoc);
1613 nvmet_fc_tgt_a_put(assoc);
1614 return;
1615 }
1616
1617 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1618 }
1619 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1620}
1621
1622/**
1623 * nvmet_fc_unregister_targetport - transport entry point called by an
1624 * LLDD to deregister/remove a previously
1625 * registered a local NVME subsystem FC port.
1626 * @target_port: pointer to the (registered) target port that is to be
1627 * deregistered.
1628 *
1629 * Returns:
1630 * a completion status. Must be 0 upon success; a negative errno
1631 * (ex: -ENXIO) upon failure.
1632 */
1633int
1634nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1635{
1636 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(targetport: target_port);
1637
1638 nvmet_fc_portentry_unbind_tgt(tgtport);
1639
1640 /* terminate any outstanding associations */
1641 __nvmet_fc_free_assocs(tgtport);
1642
1643 flush_workqueue(nvmet_wq);
1644
1645 /*
1646 * should terminate LS's as well. However, LS's will be generated
1647 * at the tail end of association termination, so they likely don't
1648 * exist yet. And even if they did, it's worthwhile to just let
1649 * them finish and targetport ref counting will clean things up.
1650 */
1651
1652 nvmet_fc_tgtport_put(tgtport);
1653
1654 return 0;
1655}
1656EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1657
1658
1659/* ********************** FC-NVME LS RCV Handling ************************* */
1660
1661
1662static void
1663nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1664 struct nvmet_fc_ls_iod *iod)
1665{
1666 struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1667 struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1668 struct nvmet_fc_tgt_queue *queue;
1669 int ret = 0;
1670
1671 memset(acc, 0, sizeof(*acc));
1672
1673 /*
1674 * FC-NVME spec changes. There are initiators sending different
1675 * lengths as padding sizes for Create Association Cmd descriptor
1676 * was incorrect.
1677 * Accept anything of "minimum" length. Assume format per 1.15
1678 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1679 * trailing pad length is.
1680 */
1681 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1682 ret = VERR_CR_ASSOC_LEN;
1683 else if (be32_to_cpu(rqst->desc_list_len) <
1684 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1685 ret = VERR_CR_ASSOC_RQST_LEN;
1686 else if (rqst->assoc_cmd.desc_tag !=
1687 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1688 ret = VERR_CR_ASSOC_CMD;
1689 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1690 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1691 ret = VERR_CR_ASSOC_CMD_LEN;
1692 else if (!rqst->assoc_cmd.ersp_ratio ||
1693 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1694 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1695 ret = VERR_ERSP_RATIO;
1696
1697 else {
1698 /* new association w/ admin queue */
1699 iod->assoc = nvmet_fc_alloc_target_assoc(
1700 tgtport, hosthandle: iod->hosthandle);
1701 if (!iod->assoc)
1702 ret = VERR_ASSOC_ALLOC_FAIL;
1703 else {
1704 queue = nvmet_fc_alloc_target_queue(assoc: iod->assoc, qid: 0,
1705 be16_to_cpu(rqst->assoc_cmd.sqsize));
1706 if (!queue) {
1707 ret = VERR_QUEUE_ALLOC_FAIL;
1708 nvmet_fc_tgt_a_put(assoc: iod->assoc);
1709 }
1710 }
1711 }
1712
1713 if (ret) {
1714 dev_err(tgtport->dev,
1715 "Create Association LS failed: %s\n",
1716 validation_errors[ret]);
1717 iod->lsrsp->rsplen = nvme_fc_format_rjt(buf: acc,
1718 buflen: sizeof(*acc), ls_cmd: rqst->w0.ls_cmd,
1719 reason: FCNVME_RJT_RC_LOGIC,
1720 explanation: FCNVME_RJT_EXP_NONE, vendor: 0);
1721 return;
1722 }
1723
1724 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1725 atomic_set(v: &queue->connected, i: 1);
1726 queue->sqhd = 0; /* best place to init value */
1727
1728 dev_info(tgtport->dev,
1729 "{%d:%d} Association created\n",
1730 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1731
1732 /* format a response */
1733
1734 iod->lsrsp->rsplen = sizeof(*acc);
1735
1736 nvme_fc_format_rsp_hdr(buf: acc, ls_cmd: FCNVME_LS_ACC,
1737 desc_len: fcnvme_lsdesc_len(
1738 sz: sizeof(struct fcnvme_ls_cr_assoc_acc)),
1739 rqst_ls_cmd: FCNVME_LS_CREATE_ASSOCIATION);
1740 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1741 acc->associd.desc_len =
1742 fcnvme_lsdesc_len(
1743 sz: sizeof(struct fcnvme_lsdesc_assoc_id));
1744 acc->associd.association_id =
1745 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1746 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1747 acc->connectid.desc_len =
1748 fcnvme_lsdesc_len(
1749 sz: sizeof(struct fcnvme_lsdesc_conn_id));
1750 acc->connectid.connection_id = acc->associd.association_id;
1751}
1752
1753static void
1754nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1755 struct nvmet_fc_ls_iod *iod)
1756{
1757 struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1758 struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1759 struct nvmet_fc_tgt_queue *queue;
1760 int ret = 0;
1761
1762 memset(acc, 0, sizeof(*acc));
1763
1764 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1765 ret = VERR_CR_CONN_LEN;
1766 else if (rqst->desc_list_len !=
1767 fcnvme_lsdesc_len(
1768 sz: sizeof(struct fcnvme_ls_cr_conn_rqst)))
1769 ret = VERR_CR_CONN_RQST_LEN;
1770 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1771 ret = VERR_ASSOC_ID;
1772 else if (rqst->associd.desc_len !=
1773 fcnvme_lsdesc_len(
1774 sz: sizeof(struct fcnvme_lsdesc_assoc_id)))
1775 ret = VERR_ASSOC_ID_LEN;
1776 else if (rqst->connect_cmd.desc_tag !=
1777 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1778 ret = VERR_CR_CONN_CMD;
1779 else if (rqst->connect_cmd.desc_len !=
1780 fcnvme_lsdesc_len(
1781 sz: sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1782 ret = VERR_CR_CONN_CMD_LEN;
1783 else if (!rqst->connect_cmd.ersp_ratio ||
1784 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1785 be16_to_cpu(rqst->connect_cmd.sqsize)))
1786 ret = VERR_ERSP_RATIO;
1787
1788 else {
1789 /* new io queue */
1790 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1791 be64_to_cpu(rqst->associd.association_id));
1792 if (!iod->assoc)
1793 ret = VERR_NO_ASSOC;
1794 else {
1795 queue = nvmet_fc_alloc_target_queue(assoc: iod->assoc,
1796 be16_to_cpu(rqst->connect_cmd.qid),
1797 be16_to_cpu(rqst->connect_cmd.sqsize));
1798 if (!queue)
1799 ret = VERR_QUEUE_ALLOC_FAIL;
1800
1801 /* release get taken in nvmet_fc_find_target_assoc */
1802 nvmet_fc_tgt_a_put(assoc: iod->assoc);
1803 }
1804 }
1805
1806 if (ret) {
1807 dev_err(tgtport->dev,
1808 "Create Connection LS failed: %s\n",
1809 validation_errors[ret]);
1810 iod->lsrsp->rsplen = nvme_fc_format_rjt(buf: acc,
1811 buflen: sizeof(*acc), ls_cmd: rqst->w0.ls_cmd,
1812 reason: (ret == VERR_NO_ASSOC) ?
1813 FCNVME_RJT_RC_INV_ASSOC :
1814 FCNVME_RJT_RC_LOGIC,
1815 explanation: FCNVME_RJT_EXP_NONE, vendor: 0);
1816 return;
1817 }
1818
1819 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1820 atomic_set(v: &queue->connected, i: 1);
1821 queue->sqhd = 0; /* best place to init value */
1822
1823 /* format a response */
1824
1825 iod->lsrsp->rsplen = sizeof(*acc);
1826
1827 nvme_fc_format_rsp_hdr(buf: acc, ls_cmd: FCNVME_LS_ACC,
1828 desc_len: fcnvme_lsdesc_len(sz: sizeof(struct fcnvme_ls_cr_conn_acc)),
1829 rqst_ls_cmd: FCNVME_LS_CREATE_CONNECTION);
1830 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1831 acc->connectid.desc_len =
1832 fcnvme_lsdesc_len(
1833 sz: sizeof(struct fcnvme_lsdesc_conn_id));
1834 acc->connectid.connection_id =
1835 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1836 be16_to_cpu(rqst->connect_cmd.qid)));
1837}
1838
1839/*
1840 * Returns true if the LS response is to be transmit
1841 * Returns false if the LS response is to be delayed
1842 */
1843static int
1844nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1845 struct nvmet_fc_ls_iod *iod)
1846{
1847 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1848 &iod->rqstbuf->rq_dis_assoc;
1849 struct fcnvme_ls_disconnect_assoc_acc *acc =
1850 &iod->rspbuf->rsp_dis_assoc;
1851 struct nvmet_fc_tgt_assoc *assoc = NULL;
1852 struct nvmet_fc_ls_iod *oldls = NULL;
1853 unsigned long flags;
1854 int ret = 0;
1855
1856 memset(acc, 0, sizeof(*acc));
1857
1858 ret = nvmefc_vldt_lsreq_discon_assoc(rqstlen: iod->rqstdatalen, rqst);
1859 if (!ret) {
1860 /* match an active association - takes an assoc ref if !NULL */
1861 assoc = nvmet_fc_find_target_assoc(tgtport,
1862 be64_to_cpu(rqst->associd.association_id));
1863 iod->assoc = assoc;
1864 if (!assoc)
1865 ret = VERR_NO_ASSOC;
1866 }
1867
1868 if (ret || !assoc) {
1869 dev_err(tgtport->dev,
1870 "Disconnect LS failed: %s\n",
1871 validation_errors[ret]);
1872 iod->lsrsp->rsplen = nvme_fc_format_rjt(buf: acc,
1873 buflen: sizeof(*acc), ls_cmd: rqst->w0.ls_cmd,
1874 reason: (ret == VERR_NO_ASSOC) ?
1875 FCNVME_RJT_RC_INV_ASSOC :
1876 FCNVME_RJT_RC_LOGIC,
1877 explanation: FCNVME_RJT_EXP_NONE, vendor: 0);
1878 return true;
1879 }
1880
1881 /* format a response */
1882
1883 iod->lsrsp->rsplen = sizeof(*acc);
1884
1885 nvme_fc_format_rsp_hdr(buf: acc, ls_cmd: FCNVME_LS_ACC,
1886 desc_len: fcnvme_lsdesc_len(
1887 sz: sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1888 rqst_ls_cmd: FCNVME_LS_DISCONNECT_ASSOC);
1889
1890 /*
1891 * The rules for LS response says the response cannot
1892 * go back until ABTS's have been sent for all outstanding
1893 * I/O and a Disconnect Association LS has been sent.
1894 * So... save off the Disconnect LS to send the response
1895 * later. If there was a prior LS already saved, replace
1896 * it with the newer one and send a can't perform reject
1897 * on the older one.
1898 */
1899 spin_lock_irqsave(&tgtport->lock, flags);
1900 oldls = assoc->rcv_disconn;
1901 assoc->rcv_disconn = iod;
1902 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1903
1904 if (oldls) {
1905 dev_info(tgtport->dev,
1906 "{%d:%d} Multiple Disconnect Association LS's "
1907 "received\n",
1908 tgtport->fc_target_port.port_num, assoc->a_id);
1909 /* overwrite good response with bogus failure */
1910 oldls->lsrsp->rsplen = nvme_fc_format_rjt(buf: oldls->rspbuf,
1911 buflen: sizeof(*iod->rspbuf),
1912 /* ok to use rqst, LS is same */
1913 ls_cmd: rqst->w0.ls_cmd,
1914 reason: FCNVME_RJT_RC_UNAB,
1915 explanation: FCNVME_RJT_EXP_NONE, vendor: 0);
1916 nvmet_fc_xmt_ls_rsp(tgtport, iod: oldls);
1917 }
1918
1919 nvmet_fc_schedule_delete_assoc(assoc);
1920 nvmet_fc_tgt_a_put(assoc);
1921
1922 return false;
1923}
1924
1925
1926/* *********************** NVME Ctrl Routines **************************** */
1927
1928
1929static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1930
1931static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1932
1933static void
1934nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1935{
1936 struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1937 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1938
1939 fc_dma_sync_single_for_cpu(dev: tgtport->dev, addr: iod->rspdma,
1940 size: sizeof(*iod->rspbuf), dir: DMA_TO_DEVICE);
1941 nvmet_fc_free_ls_iod(tgtport, iod);
1942 nvmet_fc_tgtport_put(tgtport);
1943}
1944
1945static void
1946nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1947 struct nvmet_fc_ls_iod *iod)
1948{
1949 int ret;
1950
1951 fc_dma_sync_single_for_device(dev: tgtport->dev, addr: iod->rspdma,
1952 size: sizeof(*iod->rspbuf), dir: DMA_TO_DEVICE);
1953
1954 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1955 if (ret)
1956 nvmet_fc_xmt_ls_rsp_done(lsrsp: iod->lsrsp);
1957}
1958
1959/*
1960 * Actual processing routine for received FC-NVME LS Requests from the LLD
1961 */
1962static void
1963nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1964 struct nvmet_fc_ls_iod *iod)
1965{
1966 struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1967 bool sendrsp = true;
1968
1969 iod->lsrsp->nvme_fc_private = iod;
1970 iod->lsrsp->rspbuf = iod->rspbuf;
1971 iod->lsrsp->rspdma = iod->rspdma;
1972 iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1973 /* Be preventative. handlers will later set to valid length */
1974 iod->lsrsp->rsplen = 0;
1975
1976 iod->assoc = NULL;
1977
1978 /*
1979 * handlers:
1980 * parse request input, execute the request, and format the
1981 * LS response
1982 */
1983 switch (w0->ls_cmd) {
1984 case FCNVME_LS_CREATE_ASSOCIATION:
1985 /* Creates Association and initial Admin Queue/Connection */
1986 nvmet_fc_ls_create_association(tgtport, iod);
1987 break;
1988 case FCNVME_LS_CREATE_CONNECTION:
1989 /* Creates an IO Queue/Connection */
1990 nvmet_fc_ls_create_connection(tgtport, iod);
1991 break;
1992 case FCNVME_LS_DISCONNECT_ASSOC:
1993 /* Terminate a Queue/Connection or the Association */
1994 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1995 break;
1996 default:
1997 iod->lsrsp->rsplen = nvme_fc_format_rjt(buf: iod->rspbuf,
1998 buflen: sizeof(*iod->rspbuf), ls_cmd: w0->ls_cmd,
1999 reason: FCNVME_RJT_RC_INVAL, explanation: FCNVME_RJT_EXP_NONE, vendor: 0);
2000 }
2001
2002 if (sendrsp)
2003 nvmet_fc_xmt_ls_rsp(tgtport, iod);
2004}
2005
2006/*
2007 * Actual processing routine for received FC-NVME LS Requests from the LLD
2008 */
2009static void
2010nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
2011{
2012 struct nvmet_fc_ls_iod *iod =
2013 container_of(work, struct nvmet_fc_ls_iod, work);
2014 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2015
2016 nvmet_fc_handle_ls_rqst(tgtport, iod);
2017}
2018
2019
2020/**
2021 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2022 * upon the reception of a NVME LS request.
2023 *
2024 * The nvmet-fc layer will copy payload to an internal structure for
2025 * processing. As such, upon completion of the routine, the LLDD may
2026 * immediately free/reuse the LS request buffer passed in the call.
2027 *
2028 * If this routine returns error, the LLDD should abort the exchange.
2029 *
2030 * @target_port: pointer to the (registered) target port the LS was
2031 * received on.
2032 * @hosthandle: pointer to the host specific data, gets stored in iod.
2033 * @lsrsp: pointer to a lsrsp structure to be used to reference
2034 * the exchange corresponding to the LS.
2035 * @lsreqbuf: pointer to the buffer containing the LS Request
2036 * @lsreqbuf_len: length, in bytes, of the received LS request
2037 */
2038int
2039nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2040 void *hosthandle,
2041 struct nvmefc_ls_rsp *lsrsp,
2042 void *lsreqbuf, u32 lsreqbuf_len)
2043{
2044 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(targetport: target_port);
2045 struct nvmet_fc_ls_iod *iod;
2046 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2047
2048 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2049 dev_info(tgtport->dev,
2050 "RCV %s LS failed: payload too large (%d)\n",
2051 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2052 nvmefc_ls_names[w0->ls_cmd] : "",
2053 lsreqbuf_len);
2054 return -E2BIG;
2055 }
2056
2057 if (!nvmet_fc_tgtport_get(tgtport)) {
2058 dev_info(tgtport->dev,
2059 "RCV %s LS failed: target deleting\n",
2060 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2061 nvmefc_ls_names[w0->ls_cmd] : "");
2062 return -ESHUTDOWN;
2063 }
2064
2065 iod = nvmet_fc_alloc_ls_iod(tgtport);
2066 if (!iod) {
2067 dev_info(tgtport->dev,
2068 "RCV %s LS failed: context allocation failed\n",
2069 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2070 nvmefc_ls_names[w0->ls_cmd] : "");
2071 nvmet_fc_tgtport_put(tgtport);
2072 return -ENOENT;
2073 }
2074
2075 iod->lsrsp = lsrsp;
2076 iod->fcpreq = NULL;
2077 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2078 iod->rqstdatalen = lsreqbuf_len;
2079 iod->hosthandle = hosthandle;
2080
2081 queue_work(wq: nvmet_wq, work: &iod->work);
2082
2083 return 0;
2084}
2085EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2086
2087
2088/*
2089 * **********************
2090 * Start of FCP handling
2091 * **********************
2092 */
2093
2094static int
2095nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2096{
2097 struct scatterlist *sg;
2098 unsigned int nent;
2099
2100 sg = sgl_alloc(length: fod->req.transfer_len, GFP_KERNEL, nent_p: &nent);
2101 if (!sg)
2102 goto out;
2103
2104 fod->data_sg = sg;
2105 fod->data_sg_cnt = nent;
2106 fod->data_sg_cnt = fc_dma_map_sg(dev: fod->tgtport->dev, sg, nents: nent,
2107 dir: ((fod->io_dir == NVMET_FCP_WRITE) ?
2108 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2109 /* note: write from initiator perspective */
2110 fod->next_sg = fod->data_sg;
2111
2112 return 0;
2113
2114out:
2115 return NVME_SC_INTERNAL;
2116}
2117
2118static void
2119nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2120{
2121 if (!fod->data_sg || !fod->data_sg_cnt)
2122 return;
2123
2124 fc_dma_unmap_sg(dev: fod->tgtport->dev, sg: fod->data_sg, nents: fod->data_sg_cnt,
2125 dir: ((fod->io_dir == NVMET_FCP_WRITE) ?
2126 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2127 sgl_free(sgl: fod->data_sg);
2128 fod->data_sg = NULL;
2129 fod->data_sg_cnt = 0;
2130}
2131
2132
2133static bool
2134queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2135{
2136 u32 sqtail, used;
2137
2138 /* egad, this is ugly. And sqtail is just a best guess */
2139 sqtail = atomic_read(v: &q->sqtail) % q->sqsize;
2140
2141 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2142 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2143}
2144
2145/*
2146 * Prep RSP payload.
2147 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2148 */
2149static void
2150nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2151 struct nvmet_fc_fcp_iod *fod)
2152{
2153 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2154 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2155 struct nvme_completion *cqe = &ersp->cqe;
2156 u32 *cqewd = (u32 *)cqe;
2157 bool send_ersp = false;
2158 u32 rsn, rspcnt, xfr_length;
2159
2160 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2161 xfr_length = fod->req.transfer_len;
2162 else
2163 xfr_length = fod->offset;
2164
2165 /*
2166 * check to see if we can send a 0's rsp.
2167 * Note: to send a 0's response, the NVME-FC host transport will
2168 * recreate the CQE. The host transport knows: sq id, SQHD (last
2169 * seen in an ersp), and command_id. Thus it will create a
2170 * zero-filled CQE with those known fields filled in. Transport
2171 * must send an ersp for any condition where the cqe won't match
2172 * this.
2173 *
2174 * Here are the FC-NVME mandated cases where we must send an ersp:
2175 * every N responses, where N=ersp_ratio
2176 * force fabric commands to send ersp's (not in FC-NVME but good
2177 * practice)
2178 * normal cmds: any time status is non-zero, or status is zero
2179 * but words 0 or 1 are non-zero.
2180 * the SQ is 90% or more full
2181 * the cmd is a fused command
2182 * transferred data length not equal to cmd iu length
2183 */
2184 rspcnt = atomic_inc_return(v: &fod->queue->zrspcnt);
2185 if (!(rspcnt % fod->queue->ersp_ratio) ||
2186 nvme_is_fabrics(cmd: (struct nvme_command *) sqe) ||
2187 xfr_length != fod->req.transfer_len ||
2188 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2189 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2190 queue_90percent_full(q: fod->queue, le16_to_cpu(cqe->sq_head)))
2191 send_ersp = true;
2192
2193 /* re-set the fields */
2194 fod->fcpreq->rspaddr = ersp;
2195 fod->fcpreq->rspdma = fod->rspdma;
2196
2197 if (!send_ersp) {
2198 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2199 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2200 } else {
2201 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2202 rsn = atomic_inc_return(v: &fod->queue->rsn);
2203 ersp->rsn = cpu_to_be32(rsn);
2204 ersp->xfrd_len = cpu_to_be32(xfr_length);
2205 fod->fcpreq->rsplen = sizeof(*ersp);
2206 }
2207
2208 fc_dma_sync_single_for_device(dev: tgtport->dev, addr: fod->rspdma,
2209 size: sizeof(fod->rspiubuf), dir: DMA_TO_DEVICE);
2210}
2211
2212static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2213
2214static void
2215nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2216 struct nvmet_fc_fcp_iod *fod)
2217{
2218 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2219
2220 /* data no longer needed */
2221 nvmet_fc_free_tgt_pgs(fod);
2222
2223 /*
2224 * if an ABTS was received or we issued the fcp_abort early
2225 * don't call abort routine again.
2226 */
2227 /* no need to take lock - lock was taken earlier to get here */
2228 if (!fod->aborted)
2229 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2230
2231 nvmet_fc_free_fcp_iod(queue: fod->queue, fod);
2232}
2233
2234static void
2235nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2236 struct nvmet_fc_fcp_iod *fod)
2237{
2238 int ret;
2239
2240 fod->fcpreq->op = NVMET_FCOP_RSP;
2241 fod->fcpreq->timeout = 0;
2242
2243 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2244
2245 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2246 if (ret)
2247 nvmet_fc_abort_op(tgtport, fod);
2248}
2249
2250static void
2251nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2252 struct nvmet_fc_fcp_iod *fod, u8 op)
2253{
2254 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2255 struct scatterlist *sg = fod->next_sg;
2256 unsigned long flags;
2257 u32 remaininglen = fod->req.transfer_len - fod->offset;
2258 u32 tlen = 0;
2259 int ret;
2260
2261 fcpreq->op = op;
2262 fcpreq->offset = fod->offset;
2263 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2264
2265 /*
2266 * for next sequence:
2267 * break at a sg element boundary
2268 * attempt to keep sequence length capped at
2269 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2270 * be longer if a single sg element is larger
2271 * than that amount. This is done to avoid creating
2272 * a new sg list to use for the tgtport api.
2273 */
2274 fcpreq->sg = sg;
2275 fcpreq->sg_cnt = 0;
2276 while (tlen < remaininglen &&
2277 fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2278 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2279 fcpreq->sg_cnt++;
2280 tlen += sg_dma_len(sg);
2281 sg = sg_next(sg);
2282 }
2283 if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2284 fcpreq->sg_cnt++;
2285 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2286 sg = sg_next(sg);
2287 }
2288 if (tlen < remaininglen)
2289 fod->next_sg = sg;
2290 else
2291 fod->next_sg = NULL;
2292
2293 fcpreq->transfer_length = tlen;
2294 fcpreq->transferred_length = 0;
2295 fcpreq->fcp_error = 0;
2296 fcpreq->rsplen = 0;
2297
2298 /*
2299 * If the last READDATA request: check if LLDD supports
2300 * combined xfr with response.
2301 */
2302 if ((op == NVMET_FCOP_READDATA) &&
2303 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2304 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2305 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2306 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2307 }
2308
2309 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2310 if (ret) {
2311 /*
2312 * should be ok to set w/o lock as its in the thread of
2313 * execution (not an async timer routine) and doesn't
2314 * contend with any clearing action
2315 */
2316 fod->abort = true;
2317
2318 if (op == NVMET_FCOP_WRITEDATA) {
2319 spin_lock_irqsave(&fod->flock, flags);
2320 fod->writedataactive = false;
2321 spin_unlock_irqrestore(lock: &fod->flock, flags);
2322 nvmet_req_complete(req: &fod->req, status: NVME_SC_INTERNAL);
2323 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2324 fcpreq->fcp_error = ret;
2325 fcpreq->transferred_length = 0;
2326 nvmet_fc_xmt_fcp_op_done(fcpreq: fod->fcpreq);
2327 }
2328 }
2329}
2330
2331static inline bool
2332__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2333{
2334 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2335 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2336
2337 /* if in the middle of an io and we need to tear down */
2338 if (abort) {
2339 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2340 nvmet_req_complete(req: &fod->req, status: NVME_SC_INTERNAL);
2341 return true;
2342 }
2343
2344 nvmet_fc_abort_op(tgtport, fod);
2345 return true;
2346 }
2347
2348 return false;
2349}
2350
2351/*
2352 * actual done handler for FCP operations when completed by the lldd
2353 */
2354static void
2355nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2356{
2357 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2358 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2359 unsigned long flags;
2360 bool abort;
2361
2362 spin_lock_irqsave(&fod->flock, flags);
2363 abort = fod->abort;
2364 fod->writedataactive = false;
2365 spin_unlock_irqrestore(lock: &fod->flock, flags);
2366
2367 switch (fcpreq->op) {
2368
2369 case NVMET_FCOP_WRITEDATA:
2370 if (__nvmet_fc_fod_op_abort(fod, abort))
2371 return;
2372 if (fcpreq->fcp_error ||
2373 fcpreq->transferred_length != fcpreq->transfer_length) {
2374 spin_lock_irqsave(&fod->flock, flags);
2375 fod->abort = true;
2376 spin_unlock_irqrestore(lock: &fod->flock, flags);
2377
2378 nvmet_req_complete(req: &fod->req, status: NVME_SC_INTERNAL);
2379 return;
2380 }
2381
2382 fod->offset += fcpreq->transferred_length;
2383 if (fod->offset != fod->req.transfer_len) {
2384 spin_lock_irqsave(&fod->flock, flags);
2385 fod->writedataactive = true;
2386 spin_unlock_irqrestore(lock: &fod->flock, flags);
2387
2388 /* transfer the next chunk */
2389 nvmet_fc_transfer_fcp_data(tgtport, fod,
2390 op: NVMET_FCOP_WRITEDATA);
2391 return;
2392 }
2393
2394 /* data transfer complete, resume with nvmet layer */
2395 fod->req.execute(&fod->req);
2396 break;
2397
2398 case NVMET_FCOP_READDATA:
2399 case NVMET_FCOP_READDATA_RSP:
2400 if (__nvmet_fc_fod_op_abort(fod, abort))
2401 return;
2402 if (fcpreq->fcp_error ||
2403 fcpreq->transferred_length != fcpreq->transfer_length) {
2404 nvmet_fc_abort_op(tgtport, fod);
2405 return;
2406 }
2407
2408 /* success */
2409
2410 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2411 /* data no longer needed */
2412 nvmet_fc_free_tgt_pgs(fod);
2413 nvmet_fc_free_fcp_iod(queue: fod->queue, fod);
2414 return;
2415 }
2416
2417 fod->offset += fcpreq->transferred_length;
2418 if (fod->offset != fod->req.transfer_len) {
2419 /* transfer the next chunk */
2420 nvmet_fc_transfer_fcp_data(tgtport, fod,
2421 op: NVMET_FCOP_READDATA);
2422 return;
2423 }
2424
2425 /* data transfer complete, send response */
2426
2427 /* data no longer needed */
2428 nvmet_fc_free_tgt_pgs(fod);
2429
2430 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2431
2432 break;
2433
2434 case NVMET_FCOP_RSP:
2435 if (__nvmet_fc_fod_op_abort(fod, abort))
2436 return;
2437 nvmet_fc_free_fcp_iod(queue: fod->queue, fod);
2438 break;
2439
2440 default:
2441 break;
2442 }
2443}
2444
2445static void
2446nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2447{
2448 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2449
2450 nvmet_fc_fod_op_done(fod);
2451}
2452
2453/*
2454 * actual completion handler after execution by the nvmet layer
2455 */
2456static void
2457__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2458 struct nvmet_fc_fcp_iod *fod, int status)
2459{
2460 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2461 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2462 unsigned long flags;
2463 bool abort;
2464
2465 spin_lock_irqsave(&fod->flock, flags);
2466 abort = fod->abort;
2467 spin_unlock_irqrestore(lock: &fod->flock, flags);
2468
2469 /* if we have a CQE, snoop the last sq_head value */
2470 if (!status)
2471 fod->queue->sqhd = cqe->sq_head;
2472
2473 if (abort) {
2474 nvmet_fc_abort_op(tgtport, fod);
2475 return;
2476 }
2477
2478 /* if an error handling the cmd post initial parsing */
2479 if (status) {
2480 /* fudge up a failed CQE status for our transport error */
2481 memset(cqe, 0, sizeof(*cqe));
2482 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
2483 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2484 cqe->command_id = sqe->command_id;
2485 cqe->status = cpu_to_le16(status);
2486 } else {
2487
2488 /*
2489 * try to push the data even if the SQE status is non-zero.
2490 * There may be a status where data still was intended to
2491 * be moved
2492 */
2493 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2494 /* push the data over before sending rsp */
2495 nvmet_fc_transfer_fcp_data(tgtport, fod,
2496 op: NVMET_FCOP_READDATA);
2497 return;
2498 }
2499
2500 /* writes & no data - fall thru */
2501 }
2502
2503 /* data no longer needed */
2504 nvmet_fc_free_tgt_pgs(fod);
2505
2506 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2507}
2508
2509
2510static void
2511nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2512{
2513 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2514 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2515
2516 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, status: 0);
2517}
2518
2519
2520/*
2521 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2522 */
2523static void
2524nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2525 struct nvmet_fc_fcp_iod *fod)
2526{
2527 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2528 u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2529 int ret;
2530
2531 /*
2532 * Fused commands are currently not supported in the linux
2533 * implementation.
2534 *
2535 * As such, the implementation of the FC transport does not
2536 * look at the fused commands and order delivery to the upper
2537 * layer until we have both based on csn.
2538 */
2539
2540 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2541
2542 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2543 fod->io_dir = NVMET_FCP_WRITE;
2544 if (!nvme_is_write(cmd: &cmdiu->sqe))
2545 goto transport_error;
2546 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2547 fod->io_dir = NVMET_FCP_READ;
2548 if (nvme_is_write(cmd: &cmdiu->sqe))
2549 goto transport_error;
2550 } else {
2551 fod->io_dir = NVMET_FCP_NODATA;
2552 if (xfrlen)
2553 goto transport_error;
2554 }
2555
2556 fod->req.cmd = &fod->cmdiubuf.sqe;
2557 fod->req.cqe = &fod->rspiubuf.cqe;
2558 if (!tgtport->pe)
2559 goto transport_error;
2560 fod->req.port = tgtport->pe->port;
2561
2562 /* clear any response payload */
2563 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2564
2565 fod->data_sg = NULL;
2566 fod->data_sg_cnt = 0;
2567
2568 ret = nvmet_req_init(req: &fod->req,
2569 cq: &fod->queue->nvme_cq,
2570 sq: &fod->queue->nvme_sq,
2571 ops: &nvmet_fc_tgt_fcp_ops);
2572 if (!ret) {
2573 /* bad SQE content or invalid ctrl state */
2574 /* nvmet layer has already called op done to send rsp. */
2575 return;
2576 }
2577
2578 fod->req.transfer_len = xfrlen;
2579
2580 /* keep a running counter of tail position */
2581 atomic_inc(v: &fod->queue->sqtail);
2582
2583 if (fod->req.transfer_len) {
2584 ret = nvmet_fc_alloc_tgt_pgs(fod);
2585 if (ret) {
2586 nvmet_req_complete(req: &fod->req, status: ret);
2587 return;
2588 }
2589 }
2590 fod->req.sg = fod->data_sg;
2591 fod->req.sg_cnt = fod->data_sg_cnt;
2592 fod->offset = 0;
2593
2594 if (fod->io_dir == NVMET_FCP_WRITE) {
2595 /* pull the data over before invoking nvmet layer */
2596 nvmet_fc_transfer_fcp_data(tgtport, fod, op: NVMET_FCOP_WRITEDATA);
2597 return;
2598 }
2599
2600 /*
2601 * Reads or no data:
2602 *
2603 * can invoke the nvmet_layer now. If read data, cmd completion will
2604 * push the data
2605 */
2606 fod->req.execute(&fod->req);
2607 return;
2608
2609transport_error:
2610 nvmet_fc_abort_op(tgtport, fod);
2611}
2612
2613/**
2614 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2615 * upon the reception of a NVME FCP CMD IU.
2616 *
2617 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2618 * layer for processing.
2619 *
2620 * The nvmet_fc layer allocates a local job structure (struct
2621 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2622 * CMD IU buffer to the job structure. As such, on a successful
2623 * completion (returns 0), the LLDD may immediately free/reuse
2624 * the CMD IU buffer passed in the call.
2625 *
2626 * However, in some circumstances, due to the packetized nature of FC
2627 * and the api of the FC LLDD which may issue a hw command to send the
2628 * response, but the LLDD may not get the hw completion for that command
2629 * and upcall the nvmet_fc layer before a new command may be
2630 * asynchronously received - its possible for a command to be received
2631 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2632 * the appearance of more commands received than fits in the sq.
2633 * To alleviate this scenario, a temporary queue is maintained in the
2634 * transport for pending LLDD requests waiting for a queue job structure.
2635 * In these "overrun" cases, a temporary queue element is allocated
2636 * the LLDD request and CMD iu buffer information remembered, and the
2637 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2638 * structure is freed, it is immediately reallocated for anything on the
2639 * pending request list. The LLDDs defer_rcv() callback is called,
2640 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2641 * is then started normally with the transport.
2642 *
2643 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2644 * the completion as successful but must not reuse the CMD IU buffer
2645 * until the LLDD's defer_rcv() callback has been called for the
2646 * corresponding struct nvmefc_tgt_fcp_req pointer.
2647 *
2648 * If there is any other condition in which an error occurs, the
2649 * transport will return a non-zero status indicating the error.
2650 * In all cases other than -EOVERFLOW, the transport has not accepted the
2651 * request and the LLDD should abort the exchange.
2652 *
2653 * @target_port: pointer to the (registered) target port the FCP CMD IU
2654 * was received on.
2655 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2656 * the exchange corresponding to the FCP Exchange.
2657 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2658 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2659 */
2660int
2661nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2662 struct nvmefc_tgt_fcp_req *fcpreq,
2663 void *cmdiubuf, u32 cmdiubuf_len)
2664{
2665 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(targetport: target_port);
2666 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2667 struct nvmet_fc_tgt_queue *queue;
2668 struct nvmet_fc_fcp_iod *fod;
2669 struct nvmet_fc_defer_fcp_req *deferfcp;
2670 unsigned long flags;
2671
2672 /* validate iu, so the connection id can be used to find the queue */
2673 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2674 (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2675 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2676 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2677 return -EIO;
2678
2679 queue = nvmet_fc_find_target_queue(tgtport,
2680 be64_to_cpu(cmdiu->connection_id));
2681 if (!queue)
2682 return -ENOTCONN;
2683
2684 /*
2685 * note: reference taken by find_target_queue
2686 * After successful fod allocation, the fod will inherit the
2687 * ownership of that reference and will remove the reference
2688 * when the fod is freed.
2689 */
2690
2691 spin_lock_irqsave(&queue->qlock, flags);
2692
2693 fod = nvmet_fc_alloc_fcp_iod(queue);
2694 if (fod) {
2695 spin_unlock_irqrestore(lock: &queue->qlock, flags);
2696
2697 fcpreq->nvmet_fc_private = fod;
2698 fod->fcpreq = fcpreq;
2699
2700 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2701
2702 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2703
2704 return 0;
2705 }
2706
2707 if (!tgtport->ops->defer_rcv) {
2708 spin_unlock_irqrestore(lock: &queue->qlock, flags);
2709 /* release the queue lookup reference */
2710 nvmet_fc_tgt_q_put(queue);
2711 return -ENOENT;
2712 }
2713
2714 deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2715 struct nvmet_fc_defer_fcp_req, req_list);
2716 if (deferfcp) {
2717 /* Just re-use one that was previously allocated */
2718 list_del(entry: &deferfcp->req_list);
2719 } else {
2720 spin_unlock_irqrestore(lock: &queue->qlock, flags);
2721
2722 /* Now we need to dynamically allocate one */
2723 deferfcp = kmalloc(size: sizeof(*deferfcp), GFP_KERNEL);
2724 if (!deferfcp) {
2725 /* release the queue lookup reference */
2726 nvmet_fc_tgt_q_put(queue);
2727 return -ENOMEM;
2728 }
2729 spin_lock_irqsave(&queue->qlock, flags);
2730 }
2731
2732 /* For now, use rspaddr / rsplen to save payload information */
2733 fcpreq->rspaddr = cmdiubuf;
2734 fcpreq->rsplen = cmdiubuf_len;
2735 deferfcp->fcp_req = fcpreq;
2736
2737 /* defer processing till a fod becomes available */
2738 list_add_tail(new: &deferfcp->req_list, head: &queue->pending_cmd_list);
2739
2740 /* NOTE: the queue lookup reference is still valid */
2741
2742 spin_unlock_irqrestore(lock: &queue->qlock, flags);
2743
2744 return -EOVERFLOW;
2745}
2746EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2747
2748/**
2749 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2750 * upon the reception of an ABTS for a FCP command
2751 *
2752 * Notify the transport that an ABTS has been received for a FCP command
2753 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2754 * LLDD believes the command is still being worked on
2755 * (template_ops->fcp_req_release() has not been called).
2756 *
2757 * The transport will wait for any outstanding work (an op to the LLDD,
2758 * which the lldd should complete with error due to the ABTS; or the
2759 * completion from the nvmet layer of the nvme command), then will
2760 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2761 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2762 * to the ABTS either after return from this function (assuming any
2763 * outstanding op work has been terminated) or upon the callback being
2764 * called.
2765 *
2766 * @target_port: pointer to the (registered) target port the FCP CMD IU
2767 * was received on.
2768 * @fcpreq: pointer to the fcpreq request structure that corresponds
2769 * to the exchange that received the ABTS.
2770 */
2771void
2772nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2773 struct nvmefc_tgt_fcp_req *fcpreq)
2774{
2775 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2776 struct nvmet_fc_tgt_queue *queue;
2777 unsigned long flags;
2778
2779 if (!fod || fod->fcpreq != fcpreq)
2780 /* job appears to have already completed, ignore abort */
2781 return;
2782
2783 queue = fod->queue;
2784
2785 spin_lock_irqsave(&queue->qlock, flags);
2786 if (fod->active) {
2787 /*
2788 * mark as abort. The abort handler, invoked upon completion
2789 * of any work, will detect the aborted status and do the
2790 * callback.
2791 */
2792 spin_lock(lock: &fod->flock);
2793 fod->abort = true;
2794 fod->aborted = true;
2795 spin_unlock(lock: &fod->flock);
2796 }
2797 spin_unlock_irqrestore(lock: &queue->qlock, flags);
2798}
2799EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2800
2801
2802struct nvmet_fc_traddr {
2803 u64 nn;
2804 u64 pn;
2805};
2806
2807static int
2808__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2809{
2810 u64 token64;
2811
2812 if (match_u64(sstr, result: &token64))
2813 return -EINVAL;
2814 *val = token64;
2815
2816 return 0;
2817}
2818
2819/*
2820 * This routine validates and extracts the WWN's from the TRADDR string.
2821 * As kernel parsers need the 0x to determine number base, universally
2822 * build string to parse with 0x prefix before parsing name strings.
2823 */
2824static int
2825nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2826{
2827 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2828 substring_t wwn = { name, &name[sizeof(name)-1] };
2829 int nnoffset, pnoffset;
2830
2831 /* validate if string is one of the 2 allowed formats */
2832 if (strnlen(p: buf, maxlen: blen) == NVME_FC_TRADDR_MAXLENGTH &&
2833 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2834 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2835 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2836 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2837 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2838 NVME_FC_TRADDR_OXNNLEN;
2839 } else if ((strnlen(p: buf, maxlen: blen) == NVME_FC_TRADDR_MINLENGTH &&
2840 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2841 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2842 "pn-", NVME_FC_TRADDR_NNLEN))) {
2843 nnoffset = NVME_FC_TRADDR_NNLEN;
2844 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2845 } else
2846 goto out_einval;
2847
2848 name[0] = '0';
2849 name[1] = 'x';
2850 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2851
2852 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2853 if (__nvme_fc_parse_u64(sstr: &wwn, val: &traddr->nn))
2854 goto out_einval;
2855
2856 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2857 if (__nvme_fc_parse_u64(sstr: &wwn, val: &traddr->pn))
2858 goto out_einval;
2859
2860 return 0;
2861
2862out_einval:
2863 pr_warn("%s: bad traddr string\n", __func__);
2864 return -EINVAL;
2865}
2866
2867static int
2868nvmet_fc_add_port(struct nvmet_port *port)
2869{
2870 struct nvmet_fc_tgtport *tgtport;
2871 struct nvmet_fc_port_entry *pe;
2872 struct nvmet_fc_traddr traddr = { 0L, 0L };
2873 unsigned long flags;
2874 int ret;
2875
2876 /* validate the address info */
2877 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2878 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2879 return -EINVAL;
2880
2881 /* map the traddr address info to a target port */
2882
2883 ret = nvme_fc_parse_traddr(traddr: &traddr, buf: port->disc_addr.traddr,
2884 blen: sizeof(port->disc_addr.traddr));
2885 if (ret)
2886 return ret;
2887
2888 pe = kzalloc(size: sizeof(*pe), GFP_KERNEL);
2889 if (!pe)
2890 return -ENOMEM;
2891
2892 ret = -ENXIO;
2893 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2894 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2895 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2896 (tgtport->fc_target_port.port_name == traddr.pn)) {
2897 /* a FC port can only be 1 nvmet port id */
2898 if (!tgtport->pe) {
2899 nvmet_fc_portentry_bind(tgtport, pe, port);
2900 ret = 0;
2901 } else
2902 ret = -EALREADY;
2903 break;
2904 }
2905 }
2906 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
2907
2908 if (ret)
2909 kfree(objp: pe);
2910
2911 return ret;
2912}
2913
2914static void
2915nvmet_fc_remove_port(struct nvmet_port *port)
2916{
2917 struct nvmet_fc_port_entry *pe = port->priv;
2918
2919 nvmet_fc_portentry_unbind(pe);
2920
2921 /* terminate any outstanding associations */
2922 __nvmet_fc_free_assocs(tgtport: pe->tgtport);
2923
2924 kfree(objp: pe);
2925}
2926
2927static void
2928nvmet_fc_discovery_chg(struct nvmet_port *port)
2929{
2930 struct nvmet_fc_port_entry *pe = port->priv;
2931 struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2932
2933 if (tgtport && tgtport->ops->discovery_event)
2934 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2935}
2936
2937static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2938 .owner = THIS_MODULE,
2939 .type = NVMF_TRTYPE_FC,
2940 .msdbd = 1,
2941 .add_port = nvmet_fc_add_port,
2942 .remove_port = nvmet_fc_remove_port,
2943 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
2944 .delete_ctrl = nvmet_fc_delete_ctrl,
2945 .discovery_chg = nvmet_fc_discovery_chg,
2946};
2947
2948static int __init nvmet_fc_init_module(void)
2949{
2950 return nvmet_register_transport(ops: &nvmet_fc_tgt_fcp_ops);
2951}
2952
2953static void __exit nvmet_fc_exit_module(void)
2954{
2955 /* ensure any shutdown operation, e.g. delete ctrls have finished */
2956 flush_workqueue(nvmet_wq);
2957
2958 /* sanity check - all lports should be removed */
2959 if (!list_empty(head: &nvmet_fc_target_list))
2960 pr_warn("%s: targetport list not empty\n", __func__);
2961
2962 nvmet_unregister_transport(ops: &nvmet_fc_tgt_fcp_ops);
2963
2964 ida_destroy(ida: &nvmet_fc_tgtport_cnt);
2965}
2966
2967module_init(nvmet_fc_init_module);
2968module_exit(nvmet_fc_exit_module);
2969
2970MODULE_DESCRIPTION("NVMe target FC transport driver");
2971MODULE_LICENSE("GPL v2");
2972

source code of linux/drivers/nvme/target/fc.c